
COS 597B: Recent Advances in Graph Algorithms (Fall ’24) November 18, 2024

Lecture 18: Deterministic Near-Linear Time Minimum Cut on Weighted Graphs

Presenters: Frederick Qiu, Chenxiao Tian Scribe notes by: Akhil Jakatdar

Preliminary

In this lecture, the presenters begin discussing the paper, Deterministic Near-Linear Time Minimum Cut

on Weighted Graphs [2]. The presenters began by discussing the problem statement of the paper, followed

by a brief summary of the history of this problem, followed by describing some important notation used

in the rest of the lecture. Finally, they discussed the algorithm introduced in the paper and a brief

introduction to the three different types of decomposition used in the algorithm. In these notes, I will

describe all aspects of the paper covered in this lecture by the presenters.

Problem Statement. Let G = (V,E,w) be an undirected, weighted graph with |V | = n vertices and

E ⊆ V × V, |E| = m edges, and a weight function w : E → R for all edges e ∈ E. We can define the

minimum cut λ(G) of our graph as a partition (A,B) of V such that the following are true:

1. A,B form a non-empty bipartition of V . That is A ∩B = ∅, A ∪B = V and A,B ̸= ∅.

2. the total weight of edges crossing the cut (A,B) is minimized.

That is, λ(G) = min(A,B)

∑
u∈A,v∈B,(u,v)∈E w(u, v).

History Review. In order to better understand the history of finding the minimum cut of a weighted

graph G in near-linear time, we must first discuss prior works on this problem. In 1996, David Karger

[3] introduced a randomized algorithm to find the minimum cut of a graph in O(m log3 n) time. He coins

the term “near-linear” in describing the runtime of his algorithm has being linear in the size of the input

multiplied by some polylogarithmic factor. Later work by Kawarabayashi and Thorup [4] introduce a

near-linear time algorithm for simple graphs where they use a clustering procedure that maintains the

true minimum cut of the graph. Work by Henzinger, Rao, and Wang [1] improved this algorithm to run

in O(m log2 n log logn) time. Recently, work by Li [5] introduces an “almost linear” m1+o(1) deterministic

minimum cut algorithm for weighted graphs that “derandomizes” the random step introduces in Karger’s

algorithm by introducing an expander decomposition that does not perfectly preserve the true minimum

cut.

Important Notation. The presenters then discussed some important notation used in the paper.

Weights. The first set of notations concerns the weights of the graph G.

1. For vertex setsA,B ⊆ V such thatA∩B = ∅, we define the function wG(A,B) =
∑

(u,v)∈E,u∈A,v∈B w(u, v)

2. For a vertex set A ⊆ V , we define the function wG(A) =
∑

(u,v)∈E,u,v∈Aw(u, v)

1

3. For a vertex v ∈ V , the function d(v) returns the number of edges adjacent to v in G. Alternatively

this represents the degree of v.

4. For a vertex v ∈ V , the function dW (v) returns the total edge weight of all edges adjacent to v in

G.

5. For a vertex set A ⊆ V , vol(A) =
∑

v∈A d(v).

6. For a vertex set A ⊆ V , volW (A) =
∑

v∈A dW (v).

7. We define W to be the sum of weights across all edges in G. That is W =
∑

e∈E w(e).

Subgraphs. The next set of notations concerns how we define subgraphs on G.

1. A subgraph G induced on a set of vertices A will be denoted as G[A].

2. A subgraph G induced on a set of vertices A such that ∀u ∈ A s.t. wG(u,G \A) > 0, a self-loop is

constructed with weight wG(u,G \A) will be denoted as G{A}.

One important remark on the construction of G{A} is that the added self-loops make dW (u) the same

in the induced subgraph as in G for all vertices u ∈ A.

Components. The final set of notations define components of G.

1. A component C is a connected component of G \ E′ for some edgeset E′ ⊆ E.

2. For a component C, the edgeset ∂C is the set of edges in G with exactly one endpoint in C. It is

also called the boundary of component C.

3. An s-strong component C for a given s, δ̃ ≥ 0 is a component such that for all cuts S with cut-size

w(S,G \ S) ≤ 1.1δ̃, the following is satisfied:

min(volWG{S}(S ∩ C),volWG{S}(C \ S)) ≤ s

From the definition of an s-strong component, we can note that the smaller the value of s is, the more

closely connected the component C is and thus the harder it is to separate the partitions within C.

Furthermore, this definition of an s-strong component provides us with the following useful fact.

Fact 2.2 Any component that is a subset of an s-strong component for some s, δ̃ ≥ 0 is s-strong for

the same s, δ̃.

β-boundary sparse sets. The last important definition used in the paper is one for a β-boundary

sparse set. For a component A ⊂ V and a parameter β ≥ 1, a set U ⊆ A is β-boundary sparse iff

w(U,A \ U) < βmin(w(U, V \A), w(A \ U, V \A))

If U is β-boundary sparse set in A, then A \ U is also β-boundary sparse and both ∅ and A are not

β-boundary sparse in A. From the definition of β-boundary sparse sets, we can note that the smaller the

β parameter is, the easier it is for U to be separated.

2

Main Result

The presenters then briefly outlined the algorithm presented in the paper that “derandomizes” Karger’s

algorithm using through a customized graph decomposition procedure that creates a minimum cut spar-

sifier called a skeleton graph H. The customized graph decomposition at a high level reduces the runtime

from the expander decomposition used in [5] to be near-linear while maintaining the property that the

resulting decomposition clusters the vertices such that there exists a cut of size (1+ ϵ)λ(G) that does not

cross between any of the clusters, where ϵ = 1
polylogn . The algorithm is shown below:

Near-Linear Time Minimum Cut Algorithm.

1. We first run Matula’s (2 + ϵ)-approximation algorithm [6] (which can be easily extended to the

weighted setting) to get a value λ0 such that λ ≤ λ0 ≤ 3λ.

2. For all powers λ̃ of 1.01 between λ0/3 and 1.01λ0:

(a) Initialize j ← 0 and G0 ← G with vertex set V0 and edge set E0.

(b) While there are at least 2 nodes in Gj = (Vj , Ej):

i. Partition Vj into subsets called clusters that are s0-strong using the algorithm of Lemma

5.1, for parameters δ̃ = λ̃/1.01 and s0 = 1011δ̃2r2. Let Cs0
j be the set of s0-strong clusters.

ii. Let ϵ = 1/ log1.1 n.

iii. For each resulting cluster C, we further decompose C according to the large cluster de-

composition with values λ̃ and ϵ. Note that all clusters except possibly A0 (if it exists) is

a small cluster.

iv. For each small cluster, we further decompose it according to small cluster decomposition

with values λ̃ and ϵ.

v. Let Cj = {Cj,1, Cj,2, . . . } be the resulting set of clusters. Collapse every cluster C ∈ Cj

with |C| > 1 into one node and call the resulting graph Gj+1 = (Vj+1, Ej+1).

vi. j ← j + 1.

(c) Build a skeleton graph H using the clusters {Cj}j by using the algorithm from Section 7.

(d) Run Karger’s tree packing and dynamic programming algorithm on the skeleton graph to find

a cut S.

3. Output the cut S with the minimum value found across all iterations of λ̃.

This algorithm runs a linear time 2-approximation algorithm to initialize a best-guess minimum cut

value λ0 such that λ(G) ≤ λ0 ≤ 3λ(G). We then iterate through the range λ0
3 ≤ λ̃ ≤ 1.01λ0 and perform

three different types of graph decompositions. After the decomposition step, we construct our skeleton

graph H from the resulting clusters and run Karger’s tree packing and DP algorithm for each estimate

λ̃ on H to get a cut S. Finally, we return the smallest S for all λ̃.

Graph Decompositions. The presenters lastly discussed the three different types of graph decompo-

sitions introduced in the paper. These are the main technical contributions of this paper and allow for

the near-linear runtime guarantee that was not possible in [5].

3

s0-strong partition. The presenter calls these Θ̃(λ)-strong partitions. These partitions can be con-

structed in Õ(m) time such that the intercluster total edge weight is less than 1
polylogm ·vol

W (V). These

partitions are referred to as clusters in the aforementioned algorithm. A complete definition of this

decomposition is given below.

(s0-strong partition) Given a weighted graph G = (V,E,w), a parameter δ̃ such that δ̃ ≤
minv∈V dW (v) and a parameter s0 = Θ(δ̃ logc n) for some c ≥ 2, there is an algorithm that runs

in Õ(m) time and partitions the vertex set V into s0-strong components for δ̃ such that the total

weight of the edges between distinct components is at most

O


√

δ̃ log n
√
s0

 · volW (V).

Large cluster decomposition. These s0-strong clusters are then decomposed further into larger clus-

ters and small clusters. Given some s0-strong cluster, there exists an algorithm that runs in Õ(E(G[A]))

time that partitions A into A0, A1, . . . , Ak, such that there are O(∂Apolylog |A|) intercluster edges. From
this decomposition, there is at most one “large” cluster A0 which is “uncrossed”. That is, for every cut

S of size at most 1.01λ̃, S can be transformed to a cut S∗ such that S∗ does not cross A0 and S∗ is of

size at most (1 + ϵ)S. For all remaining “small” clusters A1, . . . , Ak, we have volW (Ai) = Õ(λ). It is

important to note that because this decomposition happens to all s0-strong clusters, by Fact 2.2, these

further decomposed clusters are also s0-strong. A complete definition ofthe large cluster decomposition

is given below.

(Large cluster decomposition) Let A ⊆ V be a cluster, let 0 < ϵ ≤ 0.1 be a parameter, and

let λ̃ ≤ 1.01λ be an approximate lower bound to the minimum cut known to the algorithm. There

is an algorithm that partitions A into a (potentially “large”) set A0 and “small” sets A1, . . . , Ak

such that:

1. For each i ∈ {1, 2, . . . , r}, we have

volWG (Ai) ≤
(
10s0

ϵλ̃

)
· s0.

2. The total weight w(A0, A1, . . . , Ak) of inter-cluster edges is at most O(ϵ−1) · ∂A.

3. For any set S ⊆ A with ∂G[A]S ≤ 1.01λ̃ and volWG (S) ≤ s0, there exists S∗ ⊆ S with

S∗ ∩A0 = ∅ and
w(S \ S∗, V \A) + ∂G[A]S

∗ ≤ (1 + ϵ)∂G[A]S.

Small cluster decomposition. The remaining small partitions can be further decomposed. For a

cluster A, there exists an algorithm that runs in poly|A| time that partitions A into A1, . . . , Ak such that

the intercluster edges have weight O(∂Apolylog |A|) and for a set S ⊆ A there is a grouping of {Ai}

4

into P1, . . . , Pℓ such that there exists Pj such that S ∩ Pj is not (1− 1
polylogm)-boundary sparse in Pj . A

complete definition of the small cluster decomposition is given below.

(Small cluster decomposition) Let A ⊆ V be a cluster, let 0 < ϵ ≤ 0.01 be a parameter, and

let λ̃ ≤ 1.01λ be an approximate lower bound to the minimum cut known to the algorithm. There

is an algorithm that partitions A into a disjoint union of clusters A1∪A2∪ · · · ∪Ak = A such that:

1. For any set S ⊆ A of G with ∂G[A]S ≤ 1.01λ̃, there is a partition P of the set {A1, A2, . . . , Ak}
such that for each part P = {Ai1 , . . . , Aiℓ} ∈ P, the set S∩

⋃
A′∈P A′ is non-(1−ϵ)-boundary-

sparse in
⋃

A′∈P A′.

2. The sum of boundaries
∑

i ∂Ai is at most

O(ϵ−3(log |A|)O(1)∂A).

This concludes the notes on all aspects of the paper discussed in Lecture 18.

References

[1] Monika Henzinger, Satish Rao, and Di Wang. “Local flow partitioning for faster edge connectivity”.

In: SIAM Journal on Computing 49.1 (2020), pp. 1–36.

[2] Monika Henzinger et al. “Deterministic near-linear time minimum cut in weighted graphs”. In:

Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM.

2024, pp. 3089–3139.

[3] David R Karger. “Minimum cuts in near-linear time”. In: Journal of the ACM (JACM) 47.1 (2000),

pp. 46–76.

[4] Ken-ichi Kawarabayashi and Mikkel Thorup. “Deterministic edge connectivity in near-linear time”.

In: Journal of the ACM (JACM) 66.1 (2018), pp. 1–50.

[5] Jason Li. “Deterministic mincut in almost-linear time”. In: Proceedings of the 53rd Annual ACM

SIGACT Symposium on Theory of Computing. 2021, pp. 384–395.

[6] David W Matula. “A linear time 2+ ε approximation algorithm for edge connectivity”. In: Proceed-

ings of the fourth annual ACM-SIAM Symposium on Discrete algorithms. 1993, pp. 500–504.

5

