
Princeton Univ. F’24 COS 597b: Recent Advances in Graph Algorithms

Lecture 16: Dynamic Algorithms for Maximum Matching Size

Lecturer: Pachara Sawettamalya, Elena Gribelyuk, Akhil Jakatdar Scribe:
Zhijun Zhang

1 Approximate Maximum Matching Size

Given a graph G = (V,E) on n vertices, the goal is to design efficient algorithms that can
compute good approximations to (the size of) maximum matchings. Relevant works are in
two different settings: (1) the sublinear setting where the graph is accessed via queries to its
adjacency matrix/list; (2) the dynamic setting where the graph is updated by a sequence of
edge insertions and deletions. Previous works and new results are summarized in Table 1.

Table 1: Previous works and new results

Reference Approximation ratio (Update) time Setting Output

[BGS18] 1/2 O(polylog(n)) Dynamic Edges

[BLM20] 1/2 + Ωϵ(1) O(nϵ) Dynamic Edges

[Beh21] 1/2− ϵ Õ(n/ϵ2) Sublinear Size

[BRRS23] 1/2 + Ωϵ(1) O(n1+ϵ) Sublinear Size

[Beh23] 1/2 + Ω(1) O(polylog(n)) Dynamic Size

[Beh23] 2/3 + Ω(1) O(
√
n) Dynamic, Bipartite Size

2 Warmup: Lazy Approach

Throughout, we assume µ(G) = Θ(n). This is without loss of generality using known
techniques. The basic idea is to transform sublinear algorithms into dynamic algorithms.
Suppose there is a sublinear algorithm A for α-approximate maximum matching size in T
time. It implies a dynamic algorithm A′ for (α− ϵ)-approximate maximum matching size in
O(T/(ϵn)) update time (amortized, but can be de-amortized to be worst-case) as follows.

1. Run A to approximate µ(G).

2. Do nothing for ϵn steps, and then repeat the first step.

Observe that we do need sublinear algorithms because T = Θ(n2) only yields Θ(n/ϵ)
update time. Using this lazy approach, [Beh21] implies an (almost) 1/2-approximation in
O(polylog(n)) update time, and [BRRS23] recovers the result of [BLM20] (but only for the
size not the edges). It also means that for our purpose, it is sufficient to design a sublinear
algorithm for (1/2 + Ω(1))-approximate maximum matching size in Õ(n) time.

Lemma 1 (Lemma 4.1 of [Beh23]). If there is a (randomized) semi-dynamic algorithm
A with update time U(n) and query time Q(n, ϵ) that outputs µ̃ satisfying αµ(G) − ϵn ≤

1

2

E[µ̃] ≤ µ(G), then there is a (randomized) fully-dynamic algorithm B with update time
O((U(n) + Q(n, ϵ2)/n) · poly(log n, 1/ϵ)) that w.h.p. outputs µ̃′ satisfying (α − ϵ)µ(G) ≤
µ̃′ ≤ µ(G).

3 Overview of [Beh21]

Given a permutation π over the edge set E of a graph G = (V,E), let GMM(G, π) denote
the greedy maximal matching obtained by greedily adding edges of G in the order of E
whenever possible. A crucial component used in the proof is a sublinear algorithm of [Beh21]
for approximating GMM(G, π) using query access to the adjacency matrix of G.

Proposition 2 (Proposition 4.4 of [Beh23]). There exists a randomized algorithm with
query access to adjacency matrix that w.h.p. outputs g̃ satisfying

Eπ[|GMM(G, π)|]− ϵn ≤ g̃ ≤ Eπ[|GMM(G, π)|]

in Õ(n/ϵ3) time.

At a very high level, the algorithm of [Beh21] is roughly as follows. LetM be a matching.
Suppose we have oracle access that given v ∈ V , returns whether v is matched by M using
Q queries. Then we can sample T vertices and output g̃ = (#matched vertices/T) · (n/2).
Setting T = Θ(1/ϵ2) approximates the size of M with ϵn additive error. The running time
is QT . So the task is basically minimizing Q for a random vertex, which depends on M .
It turns out that it is easy to check whether v is matched for a random greedy maximal
matching.

4 Bipartite Graphs & Oblivious Adversaries

We first present a semi-dynamic algorithm with update time U(n) = O(polylog(n)), query
time Q(n, ϵ) = Õ(n/ϵ3), and approximation parameter α = 2−

√
2, in the case of bipartite

graphs and oblivious adversaries. Plugging into Lemma 1, we can get a (2−
√
2) ≈ 0.585-

approximate dynamic algorithm. The starting point is the following query algorithm in-
spired by a random-order streaming algorithm of [KMM12].

1. Let M be a maximal matching that we maintain.

2. Let M ′ ⊆ M include each matching edge independently with probability p.

3. Let V ′ = V (M ′) and U = V \ V (M).

4. Let H = G[V ′, U].

5. Let g = Eπ[|GMM(H,π)|].

6. Return µ̃ = |M |+max(0, g − |M ′|).

3

The update time is O(polylog(n)) for maintaining M using [BGS18]. To see the query time,
the computation of M ′, V ′, U can all be done in O(n) time given M . Although explicitly
maintaining H is too time-consuming, g can be approximated up to ϵn additive error in
Õ(n/ϵ3) time by Proposition 2, which is tolerable by Lemma 1. So it remains to show µ̃ is
a (2−

√
2)-approximation of µ(G) in expectation. To this end, we need the following result

from [KMM12].

Proposition 3. Let 0 < p ≤ 1. Let G = (A ⊔ B,E) be a bipartite graph. Let A′ ⊆ A
include each vertex independently with probability p. Let H be the induced bipartite subgraph
on A′, B. Then, for any permutation π over E, it holds that

EA′ [|GMM(H,π)|] ≥ p/(1 + p) · µ(G).

Proof of approximation ratio. We first show the lower bound. Define FL = G[V (M)∩L,U∩
R], FR = G[V (M)∩R,U ∩L], HL = G[V (M ′)∩L,U ∩R], and HR = G[V (M ′)∩R,U ∩L].
Fix a maximum matching M∗ of G. Consider the symmetric difference M∗ ⊕ M . There
are exactly |M∗| − |M | = µ(G) − |M | disjoint augmenting paths with respect to M by
the optimality of M∗. Furthermore, every augmenting path has length at least 3 since M
is a maximal matching (length-1 augmenting path is simply an isolated edge). Any such
augmenting path must starts with an edge in FL ∩M∗ and ends with an edge in FR ∩M∗

(or conversely). As all edges of M∗ are disjoint, we can get µ(FL) ≥ µ(G) − |M | and
µ(FR) ≥ µ(G)− |M |. Applying Proposition 3, we have that for any π,

EM ′ [|GMM(HL, π)|] ≥ p/(1 + p) · µ(FL) ≥ p/(1 + p) · (µ(G)− |M |),

and
EM ′ [|GMM(HR, π)|] ≥ p/(1 + p) · µ(FR) ≥ p/(1 + p) · (µ(G)− |M |).

Since HL and HR are disjoint, for H = HL ⊔HR, we can get

EM ′ [|GMM(H,π)|] ≥ 2p/(1 + p) · (µ(G)− |M |).

Finally, taking expectation over µ̃, we have

EM ′ [µ̃] = EM ′ [|M |+max(0, g − |M ′|)]
≥ |M |+max(0,EM ′ [g − |M ′|])
≥ |M |+max(0, 2p/(1 + p) · (µ(G)− |M |)− p|M |)
≥ (1− 2p/(1 + p)− p)|M |+ 2p/(1 + p) · µ(G).

The lower bound follows by setting p =
√
2− 1.

Upper bound: to be continued.

References

[Beh21] Soheil Behnezhad. Time-optimal sublinear algorithms for matching and vertex
cover. In 62nd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 873–884, 2021.

4

[Beh23] Soheil Behnezhad. Dynamic algorithms for maximum matching size. In Proceed-
ings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023,
Florence, Italy, January 22-25, 2023, pages 129–162, 2023.

[BGS18] Surender Baswana, Manoj Gupta, and Sandeep Sen. Fully dynamic maximal
matching in o(log n) update time. SIAM J. Comput., 47(3):617–650, 2018.

[BLM20] Soheil Behnezhad, Jakub Lacki, and Vahab S. Mirrokni. Fully dynamic matching:
Beating 2-approximation in δϵ update time. In Proceedings of the 2020 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT,
USA, January 5-8, 2020, pages 2492–2508, 2020.

[BRRS23] Soheil Behnezhad, Mohammad Roghani, Aviad Rubinstein, and Amin Saberi.
Beating greedy matching in sublinear time. In Proceedings of the 2023 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January
22-25, 2023, pages 3900–3945, 2023.

[KMM12] Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum match-
ing in semi-streaming with few passes. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques - 15th International
Workshop, APPROX 2012, and 16th International Workshop, RANDOM 2012,
Cambridge, MA, USA, August 15-17, 2012. Proceedings, volume 7408 of Lecture
Notes in Computer Science, pages 231–242, 2012.

	Approximate Maximum Matching Size
	Warmup: Lazy Approach
	Overview of Beh21
	Bipartite Graphs & Oblivious Adversaries

