PRINCETON UN1v. F’24 COS 597B: RECENT ADVANCES IN GRAPH ALGORITHMS

Lecture 16: Dynamic Algorithms for Maximum Matching Size

Lecturer: Pachara Sawettamalya, Elena Gribelyuk, Akhil Jakatdar Scribe:
Zhigun Zhang

1 Approximate Maximum Matching Size

Given a graph G = (V, E) on n vertices, the goal is to design efficient algorithms that can
compute good approximations to (the size of) maximum matchings. Relevant works are in
two different settings: (1) the sublinear setting where the graph is accessed via queries to its
adjacency matrix/list; (2) the dynamic setting where the graph is updated by a sequence of
edge insertions and deletions. Previous works and new results are summarized in Table

Table 1: Previous works and new results

Reference | Approximation ratio | (Update) time Setting Output
[BGS1S] 1/2 O(polylog(n)) Dynamic Edges
[BLM20] 1/2 + Qc(1) O(n°) Dynamic Edges
[Beh21] 1/2 —€ O(n/e?) Sublinear Size
[BRRS23] 1/2 4+ Q.(1) O(n'*e) Sublinear Size
[Beh23] 1/2 +Q(1) O(polylog(n)) Dynamic Size
[Beh23] 2/34+Q(1) O(v/n) Dynamic, Bipartite | Size

2 Warmup: Lazy Approach

Throughout, we assume p(G) = O(n). This is without loss of generality using known
techniques. The basic idea is to transform sublinear algorithms into dynamic algorithms.
Suppose there is a sublinear algorithm A for a-approximate maximum matching size in T
time. It implies a dynamic algorithm A’ for (a— €)-approximate maximum matching size in
O(T/(en)) update time (amortized, but can be de-amortized to be worst-case) as follows.

1. Run A to approximate u(G).
2. Do nothing for en steps, and then repeat the first step.

Observe that we do need sublinear algorithms because T' = ©(n?) only yields ©(n/e)
update time. Using this lazy approach, [Beh21] implies an (almost) 1/2-approximation in
O(polylog(n)) update time, and [BRRS23] recovers the result of [BLM20] (but only for the
size not the edges). It also means that for our purpose, it is sufficient to design a sublinear
algorithm for (1/2 4+ Q(1))-approximate maximum matching size in O(n) time.

Lemma 1 (Lemma 4.1 of [Beh23]). If there is a (randomized) semi-dynamic algorithm
A with update time U(n) and query time Q(n,€) that outputs i satisfying ap(G) — en <

Ela] < w(G), then there is a (randomized) fully-dynamic algorithm B with update time
O((U(n) + Q(n,€e?)/n) - poly(logn, 1/€)) that w.h.p. outputs i’ satisfying (o — €)u(G) <

3 Overview of [Beh21]

Given a permutation 7 over the edge set E of a graph G = (V, E), let GMM(G, 7) denote
the greedy maximal matching obtained by greedily adding edges of G in the order of FE
whenever possible. A crucial component used in the proof is a sublinear algorithm of [Beh21]
for approximating GMM(G,) using query access to the adjacency matrix of G.

Proposition 2 (Proposition 4.4 of [Beh23|). There exists a randomized algorithm with
query access to adjacency matriz that w.h.p. outputs § satisfying

E-[|GMM(G,)|] — en < g < E;[|GMM(G, 7)|]
in O(n/€®) time.

At a very high level, the algorithm of [Beh21] is roughly as follows. Let M be a matching.
Suppose we have oracle access that given v € V, returns whether v is matched by M using
@ queries. Then we can sample T vertices and output § = (#matched vertices/T) - (n/2).
Setting T' = ©(1/€?) approximates the size of M with en additive error. The running time
is QT. So the task is basically minimizing @ for a random vertex, which depends on M.
It turns out that it is easy to check whether v is matched for a random greedy maximal
matching.

4 Bipartite Graphs & Oblivious Adversaries

We first present a semi-dynamic algorithm with update time U(n) = O(polylog(n)), query
time Q(n,€) = O(n/e?), and approximation parameter o = 2 — /2, in the case of bipartite
graphs and oblivious adversaries. Plugging into Lemma [1, we can get a (2 — v/2) ~ 0.585-
approximate dynamic algorithm. The starting point is the following query algorithm in-
spired by a random-order streaming algorithm of [KMM12].

1. Let M be a maximal matching that we maintain.

2. Let M’ C M include each matching edge independently with probability p.
3. Let V! =V(M') and U =V \ V(M).

4. Let H = G[V', U].

5. Let g = E;[|GMM(H, m)|].

6. Return i = |M| + max(0,g — |M']).

The update time is O(polylog(n)) for maintaining M using [BGS18]. To see the query time,
the computation of M’ V' U can all be done in O(n) time given M. Although explicitly
maintaining H is too time-consuming, g can be approximated up to en additive error in
O(n/€?) time by Proposition 2, which is tolerable by Lemma |l So it remains to show fi is
a (2 —v/2)-approximation of x(G) in expectation. To this end, we need the following result
from [KMM12].

Proposition 3. Let 0 < p < 1. Let G = (AU B, E) be a bipartite graph. Let A’ C A
include each vertex independently with probability p. Let H be the induced bipartite subgraph
on A', B. Then, for any permutation m over E, it holds that

Ev[|[GMM(H, 7)]| > p/(1 + p) - u(G).

Proof of approzimation ratio. We first show the lower bound. Define Fj, = G[V(M)NL,UN
R, Fr=GV(M)NR,UNL|, H, =GV(M'YNL,UNR], and Hr = G[V(M')NR,UNL].
Fix a maximum matching M* of G. Consider the symmetric difference M* & M. There
are exactly |M*| — |M| = u(G) — |M]| disjoint augmenting paths with respect to M by
the optimality of M*. Furthermore, every augmenting path has length at least 3 since M
is a maximal matching (length-1 augmenting path is simply an isolated edge). Any such
augmenting path must starts with an edge in Fy N M* and ends with an edge in Fr N M*
(or conversely). As all edges of M* are disjoint, we can get u(Fr) > u(G) — |M| and
w(Fr) > u(G) — |[M|. Applying Proposition [3| we have that for any m,

Err[|[GMM(Hy, m)|] > p/(1 +p) - p(F1) = p/ (1 +p) - (u(G) — [M]),

and
En/[[GMM(Hg, 7)[] 2 p/(1 +p) - n(Fr) = p/(1 + p) - (u(G) — [M]).

Since Hy, and Hp are disjoint, for H = Hp LI Hg, we can get
Ear[|IGMM(H, 7)[] > 2p/(1 +p) - (u(G) — [M]).
Finally, taking expectation over fi, we have
Enp[fi] = Epp[|M] + max(0,g — [M'])]
> [M|+ max(0, Err[g — [M]])
> |M| 4+ max(0,2p/(1 + p) - (W(G) — [M]) — p|M])
> (1=2p/(1+p) —p)|M[+2p/(1 + p) - n(G).

The lower bound follows by setting p = v/2 — 1.
Upper bound: to be continued.]
References

[Beh21] Soheil Behnezhad. Time-optimal sublinear algorithms for matching and vertex
cover. In 62nd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 873-884, 2021.

[Beh23]

[BGS18]

[BLM20]

[BRRS23]

[KMM12]

Soheil Behnezhad. Dynamic algorithms for maximum matching size. In Proceed-
ings of the 2028 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023,
Florence, Italy, January 22-25, 2023, pages 129-162, 2023.

Surender Baswana, Manoj Gupta, and Sandeep Sen. Fully dynamic maximal
matching in o(log n) update time. SIAM J. Comput., 47(3):617-650, 2018.

Soheil Behnezhad, Jakub Lacki, and Vahab S. Mirrokni. Fully dynamic matching:
Beating 2-approximation in §¢ update time. In Proceedings of the 2020 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT,
USA, January 5-8, 2020, pages 2492-2508, 2020.

Soheil Behnezhad, Mohammad Roghani, Aviad Rubinstein, and Amin Saberi.
Beating greedy matching in sublinear time. In Proceedings of the 2028 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January
22-25, 2023, pages 3900-3945, 2023.

Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum match-
ing in semi-streaming with few passes. In Approzimation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques - 15th International
Workshop, APPROX 2012, and 16th International Workshop, RANDOM 2012,
Cambridge, MA, USA, August 15-17, 2012. Proceedings, volume 7408 of Lecture
Notes in Computer Science, pages 231-242, 2012.

	Approximate Maximum Matching Size
	Warmup: Lazy Approach
	Overview of Beh21
	Bipartite Graphs & Oblivious Adversaries

