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1 Preliminary

Definition 1 (EDCS). For unweighted graph G = (V,E), parameter β ≥ β− ≥ 0, subgraph
H = (V,EH) is an (β, β−)-EDCS of G if:

• for e ∈ H, w(e) ≤ β;

• for e ̸∈ H, w(e) ≥ β−.

where w(e) = degH(u) + degH(v) for e = (u, v).

Lemma 1. For every graph G, an EDCS exists for β ≥ β− + 1.

Proof. Consider the following algorithm: We start with an arvitrary subgraph H, and
iteratively fix a violated edge until no such edges.

Define the potential function

Φ(H) = (β − 1

2
) ·
∑
v∈V

degH(v)−
∑
e∈H

w(e).

Suppose edge e ∈ E violates EDCS conditions:

• If w(e) ≥ β + 1: ∆Φ ≥ (β − 1
2) · (−2) + (β − 1 + β + 1) ≥ 1;

• If w(e) ≤ β− − 1 ≤ β − 2: ∆Φ ≥ (β − 1
2) · 2− (β − 2 + β) ≥ 1.

Therefore, every fix would increase Φ by at least 1, the algorithm terminates in polyno-
mial iterations since |Φ(H)| ≤ poly(n, β) for every subgraph H.

2 Approximate Maximum Matching via EDCS [AB19]

For graph G = (V,E), let NG(A) be the set of neighbors of vertices A ⊆ V in G, and let
µ(G) be the maximum matching size of G.

Theorem 2. For any (β, β−)-EDCS H of G, with β− ≥ (1−O(ϵ)) · β and β ≥ O(ϵ−3), we
have µ(G) ≤ (3/2 + ϵ) · µ(H).

We first show the theorem for the case when G is a bipartite graph, and then extend it
to general graphs.
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2.1 Approximate Matching on Bipartite Graphs

Lemma 3 (Hall’s Theorem). Let G = (L,R,E) be any bipartite graph with |L| = |R| = n.
Then,

max
A⊆L

(|A| − |N(A)|) = n− µ(G).

We refer to such set A as a witness set.

Lemma 4. For any (β, β−)-EDCS H of bipartite graph G = (L,R,E), we have µ(G) ≤
(1/2 + β/β−) · µ(H).

Proof. Suppose |L| = |R| = n. Let H = (L,R,EH) be a (β, β−)-EDCS of G with β and β−

satisfying the conditions in the theorem 2, and our goal is to show that

µ(G) ≤ (3/2 + ϵ) · µ(H).

We apply Hall’s theorem (Theorem 3) to H, and consider the witness set S ⊆ L and
T = NH(S) ⊆ R, we have µ(H) = |S̄|+ |T | = n− |S|+ |T |.

Let MG ⊆ L × R be the maximum matching of G, and let M ′ = MG ∩ (S × T̄ ). We
must have

|M ′| ≥ µ(G)− µ(H)

because otherwise it raises the contradiction that

µ(G)− n ≤ |NG(S)| − |S| ≤ |NH(S)|+ |M ′| − |S|
< (|S| − n+ µ(H)) + (µ(G) + µ(H))− |S|
= µ(G)− n

Let V ′ = V (M ′) ⊆ (S ∪ T̄ ) be the endpoints of the matching M ′, and E′ = EH ∩ (V ′ ×
NH(V ′)). By the fact that H is a (β, β−)-EDCS and M ′ ∩H = ∅, we have

|E′| =
∑
v′∈V ′

degH(v′) =
∑

(u,v)∈M ′

(degH(u) + degH(v)) ≥ β− · |M ′| = β−

2
· |V ′|

On the other hand,

β · |E′| ≥
∑

(u,v)∈E′

(degE′(u) + degE′(v))

=
∑
v∈V ′

(degE′(v))2 +
∑

v∈NH(V ′)

(degE′(v))2

≥ |V ′| ·

(
1

|V ′|
∑
v∈V ′

degE′(v)

)2

+ |NH(V ′)| ·

 1

|NH(V ′)|
∑

v∈NH(V ′)

degE′(v)

2

(*)

≥ |E′|2

|V ′|
+

|E′|2

|NH(V ′)|

≥ (
β−

2
+

|E′|
|NH(V ′)|

) · |E′|
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Inequality (*) is due to the Cauchy-Schwarz inequality due to the fact that
∑

v∈V ′ degE′(v) =∑
v∈NH(V ′) degE′(v) = |E′|.
Therefore, |E′| ≤ (β − β−

2 )|NH(V ′)|. Note that |V ′| ≥ 2(µ(G)− µ(H)) and |NH(V ′)| ≤
µ(H), we have

β− · (µ(G)− µ(H)) ≤ |E′| ≤ (β − β−

2
) · µ(H)

As a result,

µ(G) ≤ (1/2 + β/β−) · µ(H)

2.2 Approximate Matching on General Graphs

In this section, we will show that we can generalize the result to general graph G = (V,E)
with a maximum matching MG, and a (β, β−)-EDCS H = (V,EH).

Construction To utilize results in the bipartite case, we apply the following randomized
construction:

• Bipartition V = L ∪ R uniformly at random such that for all (u, v) ∈ MG, u and v
belong to different sides.

• Let G′ = (L,R,E ∩ (L×R)) and H ′ = (L,R,EH ∩ (L×R)).

It immediately follows from the construction that µ(G) = µ(G′) and µ(H ′) ≤ µ(H).
We want to show that a good partition exists, i.e., we can sample that partition with

strictly positive probability using the following Lovasz Local Lemma.

Lemma 5 (Lovasz Local Lemma). For events E1, · · · , En, Pr
⋂
Ēi > 0 if the following

conditions hold:

• PrEi ≤ p;

• Ei is independent of all but d events;

• d · p ≤ 0.1.

Lemma 6. H ′ is a ((1 +O(ϵ))β/2, (1−O(ϵ))β−/2)-EDCS of G′ with probability > 0.

Proof of Lemma 6. For any fixed v ∈ V , the number of its neighbors in subgraph H ′ can be
modeled as: for every u ∈ NH(v), it is added to NH′(v) with probability 1/2 independently.
Moreover, we have E [degH′(v)] = degH(v)/2 (+1 if v is in MG). Therefore, by Chernoff
Bound, we have

Pr | degH′(v)− degH(v)/2| ≥ ϵ · β + 1 ≤ exp(−Ω(ϵ2β)) ≤ 1/poly(β)

By Lovasz Local Lemma with d ≤ β4
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Finally, we are ready to prove the main theorem.

Theorem 2. For any (β, β−)-EDCS H of G, with β− ≥ (1−O(ϵ)) · β and β ≥ O(ϵ−3), we
have µ(G) ≤ (3/2 + ϵ) · µ(H).

Proof of Theorem 2. By Lemma 6, there exists a partition V = L ∪ R such that H ′ =
(L,R,EH ∩ (L × R)) is a ((1 + O(ϵ))β/2, (1 − O(ϵ))β−/2)-EDCS of the bipartite graph
G′ = (L,R,E ∩ (L×R)). Since G′ is a bipartite graph, by Lemma 4, we have

µ(G) = µ(G′) ≤ (1/2 + (1 +O(ϵ))β/(1−O(ϵ))β−)µ(H ′)

≤ (3/2 + ϵ)µ(H ′)

≤ (3/2 + ϵ)µ(H)

2.3 Application: One-Way Communication for Approximate Matching

In this section, we demonstrate an application of EDCS in the one-way communication
model for approximate matching.

Setting Alice and Bob are given graphs GA = (V,EA) and GB = (V,EB), respectively.
Alice is allowed to send a small message to Bob, and the goal is that Bob can find a large
matching in the union graph G = (V,EA ∪ EB) given the message from Alice.

Protocol Alice computes an (β, β− 1)-EDCS HA of GA and send it to Bob, the message
size is only O(n). Bob can then compute a maximum matching in HA ∪GB and output it.

Claim µ(G) ≤ (3/2 + ϵ) · µ(HA ∪GB).

Proof. We fix a maximum matching M in G. Define MB = M ∩ EB, G
′ = (V,EA ∪MB),

and H ′ = (V,EH ∪M ′), where M ′ = {e ∈ MB | wHA
(e) ≤ β}. Now we show that H ′ is a

(β + 2, β − 1)-EDCS of G′. Note that degH′(v)− degH(v) ∈ {0, 1}.

• For any (u, v) ∈ H ′: we have degH′(u) + degH′(v) ≤ degH(u) + degH(v) + 2.

If (u, v) ∈ H, then degH(u) + degH(v) ≤ β by the properties of EDCS H.
Otherwise, by definition of M ′, we have degH(u) + degH(v) ≤ β as well.

• For any (u, v) ̸∈ H ′: we have degH′(u) + degH′(v) ≥ degH(u) + degH(v).

If (u, v) ∈ G \H, there is degH(u) + degH(v) ≥ β − 1 by properties of EDCS H.
Otherwise, degH(u) + degH(v) > β by the definition of M ′.

Finally, since µ(G′) = µ(G), we have

µ(G) = µ(G′) ≤ (3/2 + ϵ) · µ(H ′) ≤ (3/2 + ϵ) · µ(HA ∪GB).
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3 Maintaining an EDCS in General Graphs [GSSU22]

In this section, we introduce a deterministic algorithm with worst-case update-time
Oϵ(m

1/4) for maintaining an (3/2 + ϵ)-MCM in general graphs using EDCS.

Theorem 7. For any dynamic graph G subject to edge updates and for any ϵ < 1/2,
one can maintain a (3/2 + ϵ)-MCM for G with a deterministic worst-case update time of
O(m1/4ϵ−5/2 + ϵ−6).

Related Works. In the following summirization of related works, we focus on the fol-
lowing key properties: the approximation factor, the update time, whether the analysis is
worst-case(W) or amortized(A), and whether the algorithm is deterministic(D) or random-
ized(R).

MCM Update Time W/A D/R

[BGS11] 2 O(log n) A R
[Sol16] 2 O(1) A R

[BFH19] 2 O(poly log n) W R
[NS13] 3/2 O(

√
m) W D

[BS16] 3/2 + ϵ Oϵ(m
1/4) A D

[GSSU22] 3/2 + ϵ Oϵ(m
1/4) W D

Table 1: Related works. Result of [GSSU22] is stated as Theorem 7.

High-level idea Approximate MCM ⇔ EDCS
In the following discussion, let G = (V,E) be an undirected, unweighted dynamic graph

with n = |V | and m = |E|. We will dynamically maintain a subgraph H = (V,EH). Let
∆ be an upper bound of the maximum degree in the dynamic graph. For simplicity, let
β− = (1− ϵ)β.

3.1 Part I: Update Time Oϵ(∆)

In this section, we show that an (β, β−)-EDCS can be maintained with a worst-case update
time Oϵ(∆). We define the following two types of edges:

• “Full” edge e = (u, v) if e ∈ H and w(u, v) = β;

• “Deficient” edge e = (u, v) if e ̸∈ H and w(u, v) = β−.

Furthermore, a vertex v is said to be “increase-safe” (or respectively, “decrease-safe”) if
it has no incident full (or respectively, deficient) edges.

Insertion. When inserting edge e = (u, v) into G, there are two cases:

• If w(u, v) ≥ β−: then e will not be added to H. In this case, none of the weights will
change, and the properties of EDCS will continue be satisfied.
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• Otherwise, we add e to H. In this case, both dH(u) and dH(v) will increase by 1,
which may lead incident edges to violate the EDCS properties. We focus on v ∈ V
first:

– If v is increase-safe, by definition, then we can safely increase dH(v) by 1. No
further action is needed.

– If v is not increase-safe: Let (v, p1) ∈ H be the incident full edge, and we remove
(v, p1) from H. As a result, dH(v) will remain unchanged (compared to the time
before insertion).

Such removal may also lead to violation of EDCS properties for p1 since dH(p1)
will decrease by 1. Similarly, if p1 is decrease-safe, no further action is needed.
Otherwise, we find deficient edge (p1, p2) and add it to H. We repeat such
process, updating full/deficient edges until we reach an increase-safe/decrease-
safe vertex, like finding an alternative path.

Deletion. When deleting edge e = (u, v) from G, the process is symmetric to insertion.
We alternatively delete and add edges until no EDCS properties are violated.

Analysis. It remains to show that such process will terminate quickly, i.e., such alternative
path will not be too long.

Lemma 8. For any alternative path P of full and deficient edges, we have |P | ≤ 2/ϵ.

Proof. Consider the path (p1, p2, p3, · · · , pl) that begins with a full edge, with dH(p1) +
dH(p2) ≥ β. Then (p2, p3) is a deficient edge with dH(p2) + dH(p3) ≤ β−. Therefore, we
have

dH(p3) ≤ β− − dH(p2) ≤ dH(p1) + (β− − β) ≤ dH(p1)− ϵβ.

By induction, we have dH(pl) ≤ dH(p1) − lϵβ
2 . However, dH(pl) ≥ 0 and dH(p1) ≤ β.

Therefore, we must have l ≤ 2/ϵ.

Update Time. In the implementation, we maintain for every vertex its adjacent edges,
full adjacent edges, and deficient adjacent edges. These lists should be updated in O(∆)
when the degree of the vertex changes. By the algorithm above, regardless of the length
of the alternative path, at most 2 vertices will change in their degrees. Therefore, the list
update time is O(∆). Finally, we have showed that the worst-case update time is O(∆+1/ϵ).

3.2 Part II: Improved Update Time Oϵ(
√
∆)

In this section, we improve the above algorithm to allow a better update time – instead
of updating all O(∆) neighbors, we only update 10∆

ϵβ out of its O(∆) neighbors in a cyclic

manner. It immediately follows that the new update time is O(∆ϵβ + 1/ϵ).

For (v, w) ∈ E, let d̃wH(v) be the estimated degree of v by its neighbor w. The maximum
error in estimation is the maximum number of batches a neighbor will wait until get notified,
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i.e.,

Dis(H) = max
v,w

{dH(v)− d̃wH(v)} ≤ ∆/
10∆

ϵβ
=

ϵβ

10
.

Since the update is incomplete, we need to analyze the consequences of not having
accurate degree information in the following two aspects: change of length of alternative
path, and the changed properties of EDCS.

Length of Alternative Path. We then show that the maximum length of an alternative
path remains O(1/ϵ) using the estimated degree information. For path (p1, p2, p3, · · · , pl),
similarly to the proof of Lemma 8, we have

d̃p2H (p3) ≤ β− − dH(p2) ≤ β− − d̃p1H (p2) +Dis(H)

≤ β− − β + dH(p1) +Dis(H)

≤ dH(p1)− ϵβ +
ϵβ

10
= dH(p1)−

9ϵβ

10
.

Similarly, note that dH(p1) ≤ β and dH(pl) ≥ 0, we have l ≤ 5
2ϵ .

EDCS Properties. We than argue that H will still hold weaker EDCS properties with
the estimated degree information.

Lemma 9. The modified algorithm maintains a (γ, (1− 2ϵ)γ)-EDCS with γ = β(1+ ϵ/10).

Proof. For every edge (u, v) ∈ H, consider vertex u that knows its exact degree but only
have estimation for its neighbors: the estimated weight

w(u, v) = dH(u) + d̃uH(v) ≤ dH(u) + dH(v) +Dis(H) ≤ β +
βϵ

10
= γ.

On the other hand, for some edge (u, v) ̸∈ H, we have

w(u, v) = dH(u) + d̃uH(v) ≥ dH(u) + dH(v)−Dis(H) ≥ (1− ϵ)β − βϵ

10
≥ γ(1− 2ϵ).

Therefore, the maintained H is a (γ, (1− 2ϵ)γ)-EDCS.

Furthermore, we can verify that (γ, (1 − 2ϵ)γ) satisfies the conditions in Theorem 2 to
maintain a (3/2 + ϵ)-approximate MCM.

Maintaining the MCM. By Gupta-Peng [GP13] algorithm, a (1 + ϵ)-MCM can be
maintained on top of H within O(β/ϵ2) time. Therefore, the combination yields a (1 +
ϵ)(3/2 + ϵ) ≤ (3/2 + 7

2ϵ) approximation. Putting all together, we have a deterministic
algorithm with worst-case update time

O(
∆

ϵβ
+

1

ϵ
· β
ϵ2
) = O(

∆

ϵβ
+

β

ϵ3
) = O(

√
∆

ϵ2
+ ϵ−6).

The last equality is achieved by setting β to ϵ
√
∆ if ϵ

√
∆ ≥ O(ϵ−3) (by the requirement of

Theorem 2), or to O(ϵ−3) otherwise.
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3.3 Part III: Improved Update Time Oϵ(
√
α)

Definition 2 (Arboricity). For graph G, the arboricity α(G) is the minimum number of
forests into which the edges of G can be partitioned.

Let α be the upper bound of the arboricity of the dynamic graph. In this section, we
improve the update time to Oϵ(

√
α).

One important property of arboricity is that α(G) ≤
√
m for an m-edge graph G.

Therefore, an Oϵ(
√
α) update time immediately implies an Oϵ(m

1/4) update time.

Sparsification. The matching sparsification algorithm by Solomon [Sol18] is as follows:
For a parameter η, for every vertex v ∈ V , we mark up to η arbitrary incident edges. An
edge will be added to the sparsified graph if it is marked twice. It is shown that by setting
η = 5(5/ϵ+1)2α, the resulting graph G′ is a (1− ϵ)-approximate matching sparsifier for G.

Maintaining Sparsifier. The idea is to maintain a sparsifier G′ of the dynamic graph G,
and feed G′ to the algorithm in previous sections. In fact, the following lemma is proven.

Lemma 10. One can dynamically maintain a (1+ϵ)-approximate sparcifier G′ for dynamic
graph G with constant worst-case update time and recourse bound, where ∆(G′) ≤ O(

√
m/ϵ).

Finally, we are able to show the main Theorem 7. The overall approximation ratio is
(3/2 + ϵ), and the worst-case update time is

O(

√
∆

ϵ2
+ ϵ−6) = O(m1/4 · ϵ−5/2 + ϵ−6).
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