
Princeton Univ. F’24 COS 597b: Recent Advances in Graph Algorithms

Lecture 12, 13: Distributed MST & Routing in Almost Mixing Time
[GKS17]

Lecturer: Huacheng Yu Scribe: Haichen Dong

1 Background

CONGEST Model In graph G = (V,E), each node only knows its neighbors. In each
synchronous round, each node can send an O(log n)-bit message to each of its neighbors.

Our goal is to minimize the number of rounds to solve some task, specifically, we focus
on the following two problems:

• Distributed Routing. Given a set of requests R = {ri := (si, ti)}i, it is required to
send messages from si to ti for every ri = (si, ti) ∈ R.

• Distributed Minimum Spanning Tree (MST).

We first focus on the routing problem, and then we will see how to use the routing
algorithm to solve the MST problem. Throughout the note, we use denote n as the number
of nodes in the graph, and m as the number of edges in the graph.

1.1 Random Walks

Lazy random walks. In this paper, we implicitly assume the use of lazy random walks
defined as follows. In every step, the walk remains at the current node with probability 1/2
and it transitions to a uniformly random neighbor otherwise. In case of multi-graphs, the
transision is on a uniformly chosen random edge.

Definition 1 (Mixing time). Consider graph G = (V,E), and let ptv ∈ [0, 1]n be the distri-
bution over nodes after t steps starting from v. The mixing time of graph G is the minimal
t > 0 such that for all u, v ∈ V , ∣∣∣∣ptv(u)− dG(v)

2m

∣∣∣∣ ≤ dG(v)

2mn
.

Note that in a stationary distribution, the probability at some node v ∈ V is exactly
dG(v)/2m.

2 Distributed Routing

Main result. There is a randomized distributed algorithm that can deliver all messages
in time τmix(G) · 2O(

√
logn log logn), w.h.p.

Let β = 2O(
√
logn log logn) for simplicity, note that β < nα for any fixed α > 0. Fur-

thermore, for graphs with τmix(G) ≤ β, the time complexity is dominated by β, including
graphs with degree at most β and edge expansion at least β−1.

1

2

To begin with, we present the following helper lemma about the number of rounds
needed to perform parallel random walks:

Lemma 1. Let G = (V,E) with |V | = n, and let k ≥ 1 be a positive integer. Assume that
evrry v ∈ V initiates at most k · dG(v) random walks for T = nO(1) steps. Then, with high
probability, those T steps of all random walks can be completed in O(T · (k+ log n)) rounds.

Proof. Let v ∈ V , the expected number of random walks at v is at most k · dG(v). By
Chernoff bound, with high probability, after each parallel step, there are at most O(kdG(v)+
log n) random walks at each node v ∈ V .

By definition, each edge (v, t) ∈ E is chosen with probability 1/dG(v). Therefore, the
expected number of walks going through every edge is upper bounded by O(k + log n).
Again, by Chernoff bound, with high probability, the number of walks going through each
edge is at most O(k + log n).

As a result, the total number of rounds needed is O(T · (k + log n)).

At a high-level, the idea of distributed routing algorithm is to build a hierarchical
structure (G,G0, G1, · · · , Gk) of the graph with k = log n/ log β.

2.1 Preprocessing: G → G0

The preprocessed graph G0 has 2m nodes, where each node v ∈ G simulates dG(v) nodes
in G0. The graph G0 will be an Erdős-Rényi G0 = ER(2m, p) graph, where we set

p =
100 log n

m
.

The edges in G0 are sampled as follows:

• We start 2mp independent random walks from each node v ∈ G′ (which implies
2mpdG(v) random walks from each G-node) for τmix(G) steps.

• If the random walk ends at v′ ∈ G0, we add an edge (v, v′) in G0.

Lemma 2. For each node v ∈ G0, the number its neighbors is Θ(log n) with high probability.

Lemma 3. Each round in G0 can be emulated in O(τmix(G) poly log n) rounds in G.

As a result, every simgle communication round inG0, i.e., sending one message from each
G0-node to each of its Θ(log n) many G0-neighbors, can be simulated in O(τmix poly log n)
rounds in G.

2.2 Recursive Construction: Gi → Gi+1

The hierarchical structure of the graph consists of k levels. Now we construct Gi recursively
on Gi−1 for i ∈ [k].

Given graph G0 = (V0, E0), recall that |V0| = 2m. The vertex set of G1 = (V1, E1)
remains the same, i.e., V1 = V0. We partition nodes V0 into β disjoint sets A1, A2, · · · , Aβ

such that for each i, we have |Ai| = Θ(m/β).
Furthermore, we want every level of the graph remains a random graph with edge prob-

ability p uniformly at random, which requires every node of G1 to have Θ(log n) neighbors.
The edges E1 are constructed as follows:

3

• For each vertex v1 ∈ Ai ⊆ V1, we start O(β log n) many random walks in G0 for
τmix(G0) steps after adding ∆− dG0(v0) self-loops to each node V0 ∈ G0, where ∆ is
the maximum degree.

• If the random walk ends at v′1 ∈ V1 where v′1 is in the same disjoint set Ai, we add
and edge (v1, v

′
1) in E1.

Figure 1: An illustration of three levels of the hierarchical subsets. We have one random
graph on each ball and random graphs of balls of each level can be implemented in O(log2 n)
rounds of one of the balls of the lower layer. Thus, for instance, we can run one round of
graphs of B11, B21, B31, and B41 all in O(log2 n) rounds of the graph of A1.

Lemma 4. For each node v ∈ Ai, the number its neighbors is Θ(log n) with high probability.

Lemma 5. For k > 0, each round in Gk+1 can be emulated in O(log2 n) rounds in Gk.

2.3 Adding Portals

In subsection 2.2, we discussed on how to transmit messages within the same cluster. Now
we discuss on how to transmit messages between different clusters by adding portals.

Take the first level G1 as an example. For each pair i, j ∈ [β], we are looking for a
portal pij ∈ Ai such that pij has a G0-neighbor in Aj . Furthermore, we require that pij is
chosen uniformly random among nodes in Ai that has a G0-neighbor in Aj . We construct
the portals as follows:

• We fix some Aj first. For each node s ∈ Ai we start O(β) random walks on G1 for
O(log n) steps, simutaniously for all Ai.

4

• If the random walk ends at s′ ∈ Ai where s′ has a G0-neighbor in Aj , we identify s′

as the portal to Aj .

Therefore, when s ∈ Ai tries to send messsages to t ∈ Aj in graph G1. It first send the
message to the portal pij ∈ Ai, then to its G0-neighbor p

′
ij ∈ Aj , and finally to t ∈ Aj . This

requires twice the time of transmitting messages within the same cluster.

Lemma 6. For each pair of clusters, there are Θ(log n) portals indentified with high prob-
ability.

2.4 Routing Algorithm

Here we can analyze the round complexity of the routing algorithm.

Theorem 7. If each node of G is the source and the destination of at most dG(v) ·
2O(

√
logn log logn) messages, the round complexity of the hierarchical routing algorithm is

2O(
√
logn log logn) rounds of G0, which means τmix(G) · 2O(

√
logn log logn) rounds of the base

network G.

Proof. Let T (m) be the round complexity of the routing algorithm on a graph with m
nodes. We have

T (m) = 2 · T (m
β
) ·O(log2 n) +O(log n).

The first term comes from the 2 recursive calls to the subgraphs with a O(log2 n) overhead
of communication, and the second term comes from the communication between disjoint
subsets. We can verify that the depth of recursion is k = logβ m.

To solve such recursion, we can expand the equation to

T (m) = 2k · T (m
βk

) ·O(log2 n)k + k ·O(log n)

= 2k ·O(1) ·O(log2 n)k +O(k · log n)
= O(2k) ·O((log2k n))

= 2O(
√
logn log logn) = β.

Combine with the overhead of preprocessing, the overall round complexity becomes
τmix(G) · β for the original graph G.

3 Distributed MST

In this section, we show how to use the routing algorithm to solve the distributed MST
problem for graph G = (V,E).

Bor̊uvka’s algorithm. We start with an empty spanning forest. In each iteration, we
add all edges with minimal weights that connect different components to the MST. The al-
gorithm requires O(log n) iterations since the number of components reduce at least by half
in each iteration. In this paper, for simplicity, we make a slight modification to Bor̊uvka’s
algorithm that in each round, every component can only either “merge to some other com-
ponent” or “be merged from other components” with equal probability 1/2, independently.

5

3.1 Virtual Tree

In order to apply distributed rounting algorithm to find the minimum weight outgoing edge
for each component C, we maintain a virtual tree T (C). Start with the leaves, all nodes send
aggregated messages to their parent nodes, ending at the root with the minimum weight
outgoing edge among all nodes. Every level of aggregation can be done in O(τmix(G) · β)
rounds by Theorem 7.

Properties. We design T (C) with following properties and their implications:

• Each virtual node v′ ∈ T (C) knows its parent in the virtual tree: Every node knows
its message destination.

• Each node v ∈ C has at most dG(v) · O(log n) edges in T (C): This ensures the
condition of Theorem 7, that every node v transmits at most dG(v) · β messages.

• The depth of the virtual tree is at most O(log2 n): We aggregate for O(log2 n) levels.
Therefore, the overall round complexity becomes

O(log2 n) ·O(τmix(G) · β) = O(τmix(G) · β).

After finding the minimum outgoing edge, we can transmit such information back to
every node in the component, especially the chosen outgoing node, using the same amount
of rounds.

Merging and Maintaining Properties. Suppose ei = (s, t) be the minimum outgoing
edge from Ci to C0, and let s′ ∈ T (Ci), t

′ ∈ T (C0) be the respective virtual tree nodes.
We set the parent of the root of T (Ci) to be t′. Since this adds at most dG(v) edges
for v, which accumulates to at most dG(v) · O(log n) through O(log n) rounds. Then we
balance the resulted tree as follows: we create a token for any newly-connected virtual nodes
v′i ∈ T (C0), and upcast towards the root. Once two tokens arrive simutaneously at some
node v ∈ T (C0), we merge them and send one merged token upwards. This ensures that
every non-leaf tree node has at least 2 children.

After such merging and balancing, each node’s in-degree grows by at most 1, maintaining
the degree property. Furthermore, the depth of the virtual tree increases by at most O(log n)
since every non-leaf node has at least 2 children, which accumulates to at most O(log2 n)
throughout the process.

References

[GKS17] Mohsen Ghaffari, Fabian Kuhn, and Hsin-Hao Su. Distributed MST and routing
in almost mixing time. In Elad Michael Schiller and Alexander A. Schwarzmann,
editors, Proceedings of the ACM Symposium on Principles of Distributed Comput-
ing, PODC 2017, Washington, DC, USA, July 25-27, 2017, pages 131–140. ACM,
2017.

