PRINCETON UNIv. F’24 COS 597B: RECENT ADVANCES IN GRAPH ALGORITHMS

Lecture 10: Decremental Strongly Connected Components and
Single-Source Reachability in Near-Linear Time

Lecturer: Ilya Maier, Ijay Narang, Baris Onat Scribe: Hareton Song

Introduction and Problem Statement

e Goal: Maintain Strongly Connected Components (SCCs) of a directed
graph G while supporting edge deletions.

— The paper aims to maintain SCCs in a directed graph G while
supporting edge deletions dynamically. SCCs are essential struc-
tures in graph theory, where each SCC represents a subset of
vertices such that there is a directed path between any pair of
vertices within the same subset. Efficiently maintaining SCCs is
critical for dynamic graph applications.

— In dynamic graphs, where edges are deleted over time (known
as decremental graphs), SCCs need to be continuously updated.
The challenge is to do this efficiently, avoiding the costly recom-
putation of SCCs after each deletion. The goal of this work is
to develop an algorithm that supports these updates efficiently,
especially in large-scale networks or systems.

e Operations:

— Delete(u, v):

+ This operation removes a directed edge from vertex u to ver-
tex v in the graph. After the deletion, SCCs must be updated
to reflect the possible new disconnection or subdivision of ex-
isting SCCs.

* The complexity of handling this deletion efficiently is one of
the core focuses of the paper.

— Query(u, v):

x This operation checks if two vertices u and v are still part
of the same SCC after one or more edge deletions. Efficient
querying after a series of updates is crucial for maintaining
the dynamic structure of the graph in real-time applications.



x The paper provides an efficient way to answer such queries
in near-optimal time.

e Main Result: Achieve this in O(m) total time, where O hides poly-
logarithmic factors.

— The paper presents an algorithm that achieves these operations in
O(m) total time, where m is the number of edges in the graph and
O hides polylogarithmic factors. This means the algorithm scales
well with large graphs and achieves nearly linear time complexity
when handling both deletions and queries.

— This result represents a significant improvement over previous
methods, which either had higher time complexity or could not
handle general decremental graphs efficiently.

Definitions

e SCC: A maximal subgraph where each vertex is reachable from every
other vertex.

e Condensation: Contract each SCC into a single vertex, resulting in
a DAG.

e Diameter of Subgraph: Maximum distance between any two ver-
tices within the subgraph.

Dynamic SCC Maintenance

e Challenge: Edge deletions may split SCCs, making efficient updates
difficult without recalculating everything.

— One of the central challenges in maintaining SCCs dynamically
lies in handling edge deletions. When an edge is deleted from a
directed graph, it can cause an SCC to split into smaller com-
ponents. If this happens, recalculating the SCC structure from
scratch would be computationally expensive, especially in large
graphs. The goal is to efficiently update the SCCs without re-
computing them entirely after each deletion.

— Why is this hard for directed graphs? Unlike undirected
graphs, where connectivity is symmetric (if a node is reachable



from another, the reverse is also true), directed graphs have a
one-way notion of connectivity. This directional constraint means
that the removal of a single edge can dramatically affect the reach-
ability between vertices, which makes SCC maintenance more
complex and costly in terms of computation.

e Previous Work: Efficient for undirected graphs; directed graphs
have additional complexity due to directional constraints.

— Algorithms for maintaining connectivity under edge deletions have
been well-studied for undirected graphs, where methods can more
easily handle updates. For undirected graphs, approaches like
dynamic tree structures or union-find algorithms allow efficient
connectivity maintenance.

— Directed graphs, however, introduce additional complexities be-
cause the directed nature of edges introduces more nuanced changes
in SCC structures upon deletions. As a result, maintaining SCCs
in directed graphs has historically been more challenging, and
previous algorithms have been either less efficient or less general
in their approach to handling arbitrary deletions.

— Earlier work on dynamic graph problems either focused on undi-
rected graphs or failed to achieve optimal performance for large,
decremental directed graphs. The need for an efficient method
specifically tailored to decremental directed graphs—where only
edge deletions are allowed, not insertions—has been a long-standing
open problem.

Approach Overview

e Use Hierarchical Decomposition of the graph to maintain SCCs
efficiently:

— The graph is decomposed into multiple levels Go, G1, . .., Glog n+1,
with each level containing a subset of the graph’s edges. The
SCCs at each level are incrementally condensed into smaller nodes,
creating a more simplified version of the graph at higher levels.
This structure allows the algorithm to handle updates at different
levels of granularity.

— Why Hierarchical Decomposition Works:



* By partitioning the graph and condensing SCCs into smaller
components, the algorithm avoids global recomputation. At
each level, updates only affect a localized subset of the graph,
making the algorithm more efficient.

* The idea of condensing SCCs into single nodes at higher levels
helps reduce the problem size. Since fewer edges and nodes
remain at higher levels, the algorithm can process updates
more quickly. This is crucial for large graphs where recalcu-
lating reachability globally would be prohibitively expensive.
When an edge is deleted, the updates only need to affect the
specific SCCs at lower levels. The hierarchy helps localize
these updates to the relevant subgraph, minimizing the need
for global changes.

e Maintain low-diameter SCCs at each level to ensure efficient updates.
Generalized ES Trees (GES Trees):

— The GES Trees are an extension of the traditional Even-Shiloach
Trees (ES Trees). They help maintain reachability information
for condensed nodes at different levels in the hierarchy. GES
Trees maintain shortest-path trees for both in-reachability and
out-reachability. When an edge is deleted, GES Trees help update
the reachability information for all vertices in the affected SCC.
The trees dynamically adjust to reflect the new structure of the
graph without recalculating reachability from scratch.

— S-Distance: GES Trees utilize a modified metric called S-Distance,
which is used to calculate the shortest paths between condensed
nodes. The S-Distance considers both forward and backward
paths, ensuring that reachability is maintained efficiently across
the condensed SCCs.

+ How S-Distance Works: S-Distance computes distances
between condensed nodes, ensuring that the trees can effi-
ciently update reachability information across all levels of
the hierarchy. It modifies the classical notion of distance to
incorporate both in-reachability and out-reachability within
a condensed SCC, which is critical for efficient SCC mainte-
nance.



Key Components:

1. ES Trees (Even-Shiloach Trees):

— Maintain reachability information within SCCs dynamically.
— Use two ES trees per SCC: in-tree and out-tree for managing
incoming and outgoing edges, respectively.
2. Generalized ES Trees (GES Trees):

— Extend ES Trees to handle condensed nodes at various levels.
— Introduce S-Distance: A modified metric to manage dis-
tances between condensed nodes.
3. Separators:
— Separators are used to split large SCCs when their diameter
exceeds a threshold.

— Ensures SCCs remain small and manageable, facilitating ef-
ficient updates.

Handling Edge Deletions:

— Deletion Workflow:

1. Remove the Edge: When an edge (u,v) is deleted, the
algorithm first removes the edge from the graph.

2. Update GES Trees: After the edge removal, the GES Trees
are updated to reflect the new reachability information. The
algorithm checks whether the deletion affects the SCC by
recalculating the in-tree and out-tree for the affected vertices.

3. SCC Splitting: If the deletion causes the SCC to split into
smaller SCCs, the separator mechanism is triggered. This
ensures that any large SCC that has grown beyond a man-
ageable size is split into smaller, low-diameter SCCs.

4. Recompute the GES Trees: Once the SCCs are split,
new GES Trees are constructed for each of the newly formed
SCCs. This allows the algorithm to efficiently maintain the
updated reachability information.

— Separator Lemma: Guarantees that SCCs can be split effi-
ciently while maintaining low diameter.

* Separators in SCC Maintenance:



- A separator is a small set of vertices that, when removed,
breaks an SCC into smaller components. The Separator
Lemma guarantees that any SCC whose diameter exceeds
a set threshold can be efficiently split into smaller SCCs.
The algorithm uses separators to keep SCCs small and
manageable, ensuring that updates remain efficient even
after large changes to the graph.

* Separator Lemma Guarantees:

- The Separator Lemma states that after removing a small
set of vertices (the separator), the remaining SCCs will
have low diameter, making it easier to maintain reacha-
bility and efficiently handle further deletions.

Algorithmic Highlights:

— Hierarchy Construction:

* Start with the original graph.

* Incrementally add edges and form SCCs, then condense them
into nodes at each level.

This ensures that the graph structure is maintained efficiently as
the algorithm progresses through different levels of granularity.
— GES Tree Operations:

x Node Splitting: When SCCs split, corresponding nodes in
the GES Tree are split, and paths are recalculated. The
algorithm reassigns the vertices to new nodes, ensuring that
the reachability information remains consistent.

x Distance Maintenance: Use S-Distance to ensure consistency
in shortest paths among SCCs. This allows the system to
handle the changes efficiently without recalculating the entire
graph structure.

Complexity:

Overall Summary of Complexity:

— Total update time is O(m), which is near-linear and efficient for
large-scale applications.



— The hierarchical approach avoids the need for global recalculation
after each edge deletion, which would be impractical for large
graphs.

Details of this section:

The total update time for the algorithm is O(m), which is nearly
linear. This makes the approach highly efficient for large-scale graphs,
especially those where edges are frequently deleted. The hierarchical
decomposition ensures that the algorithm only updates the necessary
parts of the graph after each deletion, avoiding the need for global
recomputation.

Key Complexity Insights:

— The GES Tree operations are efficient because they focus on lo-
calized updates within each SCC.

— Separators are used to keep the SCCs small, reducing the over-
head of maintaining large, complex SCCs.

— The hierarchical structure minimizes the number of nodes and
edges that need to be recalculated, contributing to the overall
efficiency.

Applications:

— Network Resilience: Maintaining connectivity in communica-
tion networks when links fail.

— Dependency Management: Tracking interdependencies in soft-
ware modules as components are updated or removed.

— Social Networks: Analyzing community structures as relation-
ships change.

Conclusion:

— The hierarchical approach, combined with specialized data struc-
tures like Generalized ES Trees and separators, enables efficient
maintenance of SCCs under edge deletions.

— Future work may include handling fully dynamic graphs (both
insertions and deletions) and improving deterministic solutions
for SCC maintenance.



Some Q& As in the Lecture

1. Q: How does reachability update when an edge is deleted?

[\

ot

— A: ES Trees are updated for both in-tree and out-tree to de-

termine which nodes are still connected. If an SCC splits,
each new component is restructured with its own ES Tree.
This ensures that reachability within each new SCC is main-
tained efficiently.

. Q: When do you decide to split an SCC using separators?
— A: An SCC is split if its diameter exceeds a set threshold.

In such cases, a separator is identified to divide the SCC into
smaller parts, which are more manageable. This helps keep
the system efficient, ensuring no SCC becomes too complex.

. Q: Can this approach be applied to software dependency
analysis?

— A: Yes, SCCs in a dependency graph represent tightly inter-

connected modules. If a dependency (edge) is removed, the
approach helps determine which modules are still functional
or if they are isolated from the rest. It’s an effective way to
manage module dependencies during system changes.

. Q: What is the practical implication of maintaining low
diameter in SCCs?

— A: Keeping SCCs with low diameter ensures that reachabil-

ity queries and updates are efficient. In practice, it means
that the subgraphs remain small and easy to manage, which
is critical for performance in large-scale systems.

. Q: How scalable is this approach for large graphs?

— A: The near-linear runtime O(m) makes it highly scalable,

especially for large, sparse graphs. The hierarchical decom-
position ensures that only parts of the graph are updated
at each deletion, preventing the need for full recomputation.
Practical concerns include managing memory for ES Trees
and ensuring separators are efficiently handled.

. Q: What are the limitations of this approach for highly
dynamic graphs?

— A: The current decremental focus means it’s best suited for

scenarios where edges are only removed. Extending it to han-
dle frequent insertions would require different strategies, as



maintaining SCCs in a fully dynamic setting is significantly
more complex. Practical application in environments with
frequent insertions remains an open area for research.



