
Princeton Univ. F’24 COS 597b: Recent Advances in Graph Algorithms

Lecture 1: Shortest Paths in Near-Linear Time [BNW22]

Lecturer: Huacheng Yu Scribe: Frederick Qiu

1 Problem Setting

The Shortest Paths Problem. Let G = (V,E) be a digraph with (possibly negative)
integer edge weights w. Let n = |V | and m = |E|, and let W be the magnitude of the most
negative edge weight, i.e., w(e) ≥ −W for all e ∈ E. Fix a source vertex s.

We want to output a shortest-path tree from s, or output that there exists a negative
weight cycle.

Theorem 1. There exists a randomized algorithm which either detects a negative weight
cycle or outputs the shortest-path tree from s in Õ(m logW) time.1

For simplicity, we will assume the graph is reach-able from s and that there are no
negative cycles, meaning we want to output, for all v ∈ V , the value distG,w(s, v).

2 Preliminaries

Recall that Bellman-Ford is an algorithm which solves negative-weight shortest-paths in
O(mℓ) time, where ℓ is the largest number of edges in a shortest path.

Also recall that Dijkstra’s algorithm is an algorithm which solves non-negative-weight
shortest paths in Õ(m) time.

2.1 Price Functions

Definition 1 (Price Function). Let ϕ : V → R be a price function on the vertices. Then
we define the weights wϕ by wϕ(u, v) := w(u, v) + ϕ(u)− ϕ(v).

Observation 1. For any price function ϕ and vertices u, v ∈ V , the shortest path from u
to v with respect to weights w is the same as the shortest path from u to v with respect to
weights wϕ.

Proof. Consider any path v1 → · · · → vℓ. The length of this path with respect to wϕ is

ℓ−1∑
i=1

(
w(vi, vi+1) + ϕ(vi)− ϕ(vi+1)

)
= ϕ(v1) +

(ℓ−1∑
i=1

w(vi, vi+1)

)
− ϕ(vℓ) ,

where the summation on RHS is just the length with respect to w. Therefore, the length
of any path from u to v with respect to wϕ is just the length with respect to w, plus the
constant ϕ(u)− ϕ(v), meaning the shortest path between u and v is the same with respect
to w and wϕ.

1Õ hides polylog factors.

1

2

Claim 2. There always exists ϕ such that wϕ(e) ≥ 0 for all e ∈ E.

Proof. Choose ϕ(·) = distG,w(s
′, ·) for any s′ ∈ V . Then for any edge (u, v), we have

wϕ(u, v) = w(u, v) + distG,w(s, u)− distG,w(s, v) .

Since a path from s to v is the path from s to u plus the edge (u, v), we must have
w(u, v) + distG,w(s, u) ≥ distG,w(s, v), the length of the shortest path from s to v. Thus,
wϕ(u, v) ≥ 0.

3 Proof Sketch of Main Theorem

The crux of the proof lies in the following claim:

Proposition 3. There exists a subroutine running in Õ(m) time which finds a price func-
tion ϕ such that wϕ(e) ≥ −W/2 for all e ∈ E.

The idea is then to run this subroutine on the problem instance O(log(nW)) times
in succession to ensure that the resulting edge weights are all ≥ −1/n. We then round
the remaining negative edge weights to 0 and run Dijkstra’s algorithm on the resulting
non-negative-weight graph.

Claim 4. Suppose all path lengths are integers. If all edge weights are ≥ −1/n, then
rounding all negative-weight edge weights to 0 results in a valid shortest-path tree with respect
to the original weights.

Proof. Because no path can contain n or more edges, the difference in distance of a path
before and after rounding is ≤ (n − 1)/n < 1. As all path lengths were integers before
rounding, no shortest path can become longer than a non-shortest path after rounding.

Combining this and the fact that price functions do not change shortest paths, the
output of Dijkstra’s algorithm on the modified edge weights would be a valid shortest-path
tree for the original edge weights. It therefore remains to prove Theorem 3.

3.1 Low Diameter Decomposition

Our subroutine will make use of the following concept.

Definition 2 (Low Diameter Decomposition). For a digraph H = (V,E) with weights w and
a parameter D > 0, a low diameter decomposition (LDD) is a random variable Erem ⊆ E
satisfying:

1. All strongly connected components (SCC) of H \ Erem have weak diameter at most
D, meaning for all u, v in the same SCC, the shortest path from u to v has length at
most D.

2. Pr[e ∈ Erem] ≤ Õ(max{0, w(e)}/D + n−10) for all e ∈ E. Note that these events do
not need to be independent.2

2In fact, it is impossible in some cases for these events to be independent. Consider a graph with large
cliques V1, . . . , V2D with edge weights 0. Between Vi and Vi+1 create a complete bipartite graph with edge
weights 1. Then if each edge between cliques is deleted independently w.p. 1/D, we have w.h.p. that edges
will exist between each clique, meaning the entire graph will be one SCC with diameter more than D.

3

Example 1. Suppose we have a line graph. An LDD with parameter D could generate Erem

by randomly adding one of the first D edges, then adding every Dth edge afterwards.

Lemma 5. LDD can be solved in Õ(m) time.

Proof. See next lecture.

3.2 The Subroutine (Simpler Version)

Now, let us return to the subroutine. For simplicity of notation, Let W = 2.
Define the weights w+1 by w+1(e) = w(e) + 1. Our approach will be to find a price

function ϕ such that w+1
ϕ (e) ≥ 0 for all e ∈ E. Then we have that wϕ(e) ≥ −1 for all e ∈ E,

so we will have completed the subroutine.
Next lecture, we’ll see how to execute the subroutine in Õ(m) time. This lecture, we

will give a subroutine running in Õ(m
√
n) which computes ϕ such that wϕ(e) ≥ −1 for

most edges e ∈ E.

1. Apply LDD on digraph G with weights w+1 and parameter D =
√
n.

2. Order the SCC left to right topologically (ignoring the edges Erem). Denote the edges
inside a single SCC by internal edges, the edges going from left to right across SCCs
by forward edges, and the edges going from right to left across SCCs (all such edges
are in Erem) by backward edges.

3. Attach a dummy source s′ connected to every vertex by an edge with weight 0, and
set ϕ(v) to be the distance from s′ to v using only internal edges.

4. Number the SCC from left to right, and for a vertex v in SCC i, set ϕ(v) := ϕ(v)−Wi.

Proposition 6. The above subroutine can be run in Õ(m
√
n) time and generates ϕ such

that wϕ(e) ≥ −1 for all internal and forward edges.

Proof. Notice that step (3) makes all internal edge weights non-negative (with respect to
w+1), and step (4) makes all forward edge weights non-negative (with respect to w+1)
without altering internal edge weights (because the prices for vertices within an SCC change
by the same amount), so the subroutine works as claimed.

Step (1) can be run in Õ(m) time by Theorem 5. Steps (2) and (4) are efficient book-
keeping. Step (3) can be run in O(mℓ) time, where ℓ is the largest number of edges in a
shortest path using only internal edges.

Claim 7. For any v ∈ V , the shortest path from s′ to v using only internal edges has at
most

√
n edges.

Proof. If the shortest path from s′ to v is not just the edge (s′, v), then it must start with
some edge (s′, u) for u ̸= v in the same SCC. Then the shortest path from u to v using only
internal edges must have negative length.

Suppose for contradiction that the shortest path from u to v has at least
√
n edges.

Since u, v are in the same SCC, there also exists a shortest path from v to u with length
at most

√
n (since we took an LDD with parameter D =

√
n). Therefore, there is a cycle

(with respect to w+1) from u to v to u with at least
√
n edges and length <

√
n.

4

However, this means that with respect to the original weights w, there is a negative
cycle from u to v to u, a contradiction. Therefore, the shortest path from u to v has at
most D − 1 edges, so the shortest path from s′ to v has at most D edges.

Thus, ℓ =
√
n and so Step (3) can be run in O(m

√
n) time as desired.

We will show how to handle the backward edges in the next lecture, using the second
property of LDD to show that the number of backward edges in any shortest path is low in
expectation, allowing for an efficient combination of Dijkstra’s algorithm and Bellman-Ford
to be used.

References

[BNW22] Aaron Bernstein, Danupon Nanongkai, and Christian Wulff-Nilsen. Negative-
weight single-source shortest paths in near-linear time. In 63rd IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO,
USA, October 31 - November 3, 2022, pages 600–611. IEEE, 2022.

