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Abstract

Time-resolved imaging is an emerging sensing modality that
has been shown to enable advanced applications, includ-
ing remote sensing, fluorescence lifetime imaging, and even
non-line-of-sight sensing. Single-photon avalanche diodes
(SPADs) outperform relevant time-resolved imaging tech-
nologies thanks to their excellent photon sensitivity and supe-
rior temporal resolution on the order of tens of picoseconds.
The capability of exceeding the sensing limits of conven-
tional cameras for SPADs also draws attention to the photon-
efficient imaging area. However, photon-efficient imaging un-
der degraded conditions with low photon counts and low
signal-to-background ratio (SBR) still remains an inevitable
challenge. In this paper, we propose a spatio-temporal trans-
former network for photon-efficient imaging under low-flux
scenarios. In particular, we introduce a view-interweaved at-
tention mechanism (VIAM) to extract both spatial-view and
temporal-view self-attention in each transformer block. We
also design an adaptive-weighting scheme to dynamically ad-
just the weights between different views of self-attention in
VIAM for different signal-to-background levels. We exten-
sively validate and demonstrate the effectiveness of our ap-
proach on the simulated Middlebury dataset and a specially
self-collected dataset with real-world-captured SPAD mea-
surements and well-annotated ground truth depth maps.

Introduction
Time-resolved imaging, or the time-tagging of the optical
response of a scene to transient illumination, allows it to
exceed the sensing boundaries beyond conventional frame-
based intensity imaging and analyze the temporal informa-
tion of light transport. Time-resolved measurements pro-
vide superior temporal resolutions and rich temporal cues
for scene understanding and are engaged in practical appli-
cations, e.g., health care and life sciences (e.g. fluorescence
lifetime imaging), robotics and autonomous driving, mili-
tary defenses, and even non-line-of-sight imaging or ”look-
ing around a corner” (Velten et al. 2012) .

A notable approach available for recording time-resolved
measurements is the emerging technology of single-photon
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Figure 1: (a) Single-photon depth sensing system, which
contains a pulsed laser source, a TCSPC module and a SPAD
sensor and measures a spatio-temporal photon histogram
when photons are emitted by the pulsed laser into the scene
and reflected back to the SPAD sensor. (b) Our approach
can extract spatio-temporal correlations and outperform the
state-of-the-art algorithms for depth sensing tasks in real-
world applications.

avalanche diodes (SPADs). SPADs are single-photon sen-
sitive devices working in active depth sensing due to their
high sensitivity to individual photons and ability to record
time-tagged photon arrivals with picosecond timing resolu-
tion (Rochas 2003). By employing a pulsed laser with pi-
cosecond duration, a single photon depth sensing system il-
luminates the targets with abundant pulses and collects the
scattered photons to the SPAD detector. A spatio-temporal
histogram is then constructed via the time-of-arrival of mul-
tiple collected photons to infer the target depth in a time-
of-flight format. The histogram approximates the amounts
of the returning photons and enables recovery distance, re-
flectance, and 3D geometry.

However, robustly sensing depth from raw photon his-
tograms under degraded conditions remains a significant
challenge. The back-reflected signal photons are weak
and contaminated with strong noise photons from ambi-
ent light, resulting in low photon counts and low signal-
to-background ratio (SBR). This phenomenon brings severe
distortions into the raw single-photon measurements, lead-
ing to poor depth reconstruction quality, especially in long-



distance scenarios. Therefore, high-performance depth re-
construction algorithms are essential for promoting the prac-
ticability of single-photon depth sensing systems under low
SBR scenarios.

Several heuristic algorithms have been proposed to pro-
cess single-photon measurements with noisy photon counts
(Kirmani et al. 2014; Shin et al. 2015, 2016; Rapp and
Goyal 2017). However, such approaches demand strict re-
strictions, need many user-defined parameters, and meet per-
formance drops when applied to diverse sensing conditions
in real-world scenarios. Recent learning-based works (Lin-
dell, O’Toole, and Wetzstein 2018; Peng et al. 2020, 2022)
achieve quite promising results on the single-photon depth
sensing task, they still fail to recover single-photon his-
togram cubes under photon-starved regimes, and the net-
work structures lack specific designs to correlate with the
characteristics of photon-efficient measurements.

Recent works (Peng et al. 2020, 2022) explore long-range
correlations on both spatial and temporal dimensions, when
the spatial-view correlations are more inclined to seek struc-
ture similarities and depth discontinuities, and the temporal-
view correlations focus more on the clustering characteris-
tics in the temporal domain. However, sparse binary signal
photons suppressed by massive noisy background photons
make it challenging to find spatio-temporal correlations as
SBR decreases. Exploring the relationship between long-
range correlations in different views and SBR levels and
designing a reasonable adaptive-fusion strategy would natu-
rally benefit more for the single-photon depth sensing tasks.

Based on such motivation, we propose a 3D spatio-
temporal transformer for single photon depth sensing
(SPSD-STFormer) to extract information from the input
measurements and their inter-relation to construct the spa-
tial and temporal correlations globally. To exploit the dif-
ferences in long-range correlations between different SBR
levels, we propose a view-interweaved attention mechanism
(VIAM) in every 3D transformer block to learn both spatial-
view and temporal-view long-range correlations among sin-
gle photon measurements and adaptively fuse the outputs
from both spatial and temporal self-attention blocks. We also
propose an adaptive-weighting scheme to learn the global
feature of SBR conditions to regulate the fusion weights in
a self-modulated strategy. As a result, the proposed compo-
nents can work together to effectively explore and excavate
global and local cues for the depth sensing task. We perform
extensive experiments to demonstrate the superiority of our
method over previous state-of-the-art methods under differ-
ent SBR conditions and validate that our approach can gen-
eralize on a real-world single-photon depth sensing system
(shown in Fig. 1).

Our contributions can be summarized as:

• We propose a 3D spatial-temporal transformer for sin-
gle photon depth sensing (SPDS-STFormer), to address
the degraded performance for 3D single-photon measure-
ments under low photon counts and low SBR conditions.

• We introduce a view-interweaved attention mechanism to
adaptively fuse spatial-view self-attention and temporal-
view self-attention in each transformer block, which can

learn global features of SBR conditions by an adaptive-
weighting scheme.

• We validate and demonstrate that our approach outper-
forms state-of-the-art methods. Our ablation study evi-
dences the effectiveness of each key component of our
approach.

• We validate the generalizability and robustness on a
novel single-photon depth sensing system, which cap-
tures 128 × 128 SPAD-based measurements with cor-
responding well-annotated depth maps.

Related Work
Single-photon Sensors. Single-photon avalanche diodes
(SPADs) are an emerging pixel technology with ultra-high
sensitivity down to individual photons (Cova et al. 1996;
Fossum et al. 2016). SPADs are reverse-biased photodiodes
that operate above their breakdown voltage, i. e., in Gieger-
mode (Aull et al. 2002).

Every photon incident on a SPAD has a probability
of triggering an electron avalanche and records a times-
tamped event, providing a temporal resolution from ten
to hundreds of picoseconds. By recording and combining
the timestamped photon events returning from a pulsed
illumination source, which often operates at MHz rates,
a spatio-temporal photon counts histogram can be accu-
mulated to characterize the reflectance and 3D geometry
to be recovered. SPADs have received wide attention due
to their excellent single-photon sensitivity and have been
commonly used for a wide range of applications in optical
telecommunication, fluorescence lifetime imaging (Castello
et al. 2019), and remote sensing systems (e.g., LIDAR)
(Kirmani et al. 2014; Tinsley et al. 2016) for their superior
timing resolution and excellent photon efficiency. The
supplemental materials include the imaging principles of
SPAD sensors.

Depth Sensing. Depth sensing is a technology that mea-
sures the distance between a sensor and a target surface and
is commonly employed in virtual reality, augmented reality,
autonomous driving, and other computer vision applications
(Geiger et al. 2013; Cabon, Murray, and Humenberger 2020;
Mei et al. 2021; Zhang et al. 2023a). Below is an overview
of the most important methods of depth sensing, including
passive depth sensing, active depth sensing, and a combina-
tion of passive and active sensing.

Passive Depth Sensing. Passive depth sensing systems
utilize available ambient light or artificial lighting to illumi-
nate the object and infer depth information by capturing and
analyzing naturally occurring environmental cues or ambi-
ent light variations. Representative technologies about pas-
sive depth sensing include stereo vision (Hirschmuller 2007;
Furukawa et al. 2009) and structure from motion (Han et al.
2015; Lowe 2004). Stereo vision methods leverage multi-
ple cameras to capture a scene from slightly different view-
points and rely upon an optimal correspondence matching
between pixels on epipolar lines in the left and right im-
ages to concatenate depth features and compute/aggregate
the matching cost (Li et al. 2021; Guo et al. 2022; Zhang



et al. 2023b). Structure from motion recovers 3D structure
from a sequence of 2D images taken from different view-
points as the scene or camera moves and exploits multi-view
photometric or feature-metric constraints to enforce the re-
lationship between dense depth and the camera pose in net-
work while simultaneously estimating scene depth, camera
poses, and intrinsic parameters (Wei et al. 2020; Chawla
et al. 2022; Chen, Kumar, and Yu 2023). However, with
advantages such as less power consumption, passive depth
sensing technology has limitations in low-light conditions.
It achieves low accuracy, especially in complex scenes with
varying lighting conditions and surface textures.

Active Depth Sensing. Active depth sensing systems
employ an active light source, projecting random patterns
onto the visible scene, measuring the time it takes for the
signals to return, and calculating the distances of the ob-
jects in the scene. Representative technologies about active
depth sensing include Time-of-flight (ToF) (Lange and Seitz
2001; Zhang 2012) and light detection and ranging (LiDAR)
(Wandinger 2005; Baek and Heide 2022). ToF imaging mea-
sures the time it takes for a signal, typically a pulse of light,
to travel to an object and back to the sensor. Direct ToF
(dToF) (Padmanabhan, Zhang, and Charbon 2019; Sun et al.
2023) refers to emitting a single pulse and calculating the
distance based on the time difference between the emitted
pulse and the received reflection. In contrast, indirect ToF
(iToF) (Qiu et al. 2019; Meuleman et al. 2022) uses a con-
tinuous modulated/ coded stream of light. LiDAR is usually
used to describe a unique scanning-based ToF technology.
The scanning process is repeated up to millions of times per
second, producing a precise 3D point cloud of the environ-
ment (Jiang et al. 2021; Liu et al. 2022). However, with ad-
vantages such as higher accuracy, active depth sensing tech-
nology has spatial resolution limitations and a key prerequi-
site for accumulating enough photons under various adver-
sary conditions.

In this paper, our SPAD-based depth sensing measure-
ments belong to active sensing technology. With superior
photon efficiency and excellent timing resolution, SPAD-
based systems have the capability to sense depth information
in low-flux scenarios.

SPAD-based Depth Sensing. SPADs are highly sensitive
to low levels of light, allowing for the detection of sin-
gle photons and enabling depth sensing in low-light condi-
tions. Additionally, SPADs have fast response times, mak-
ing them suitable for real-time depth sensing applications.
Recent works on SPAD-based LiDAR are also rapidly be-
coming commercially available (Corporation 2021; Europe
2023). However, SPADs are susceptible to noise, including
dark counts and afterpulsing, which can affect the accuracy
of depth measurements, especially in low-light conditions.
A significant amount of related work is currently dedicated
to addressing this problem for SPADs. Shin et. al. (Shin
et al. 2013) provide a spatiotemporally regularized estima-
tion of the depth maps based on accurate physical modeling
of the time-inhomogeneous photon detection process. Kir-
man et. al. (Kirmani et al. 2014) introduce a low-flux imag-
ing technique which exploits spatial correlations in real-

world scenes and recovers 3D structure and reflectivity from
the first detected photon per pixel. Shin et. al. (Shin et al.
2015, 2016) utilize both the transverse smoothness and lon-
gitudinal sparsity of natural scenes to reconstruct depth and
intensity in low-light environments. Rapp et. al. (Rapp and
Goyal 2017) recover depth and intensity by unmixing the
contributions from signal and noise sources with an adap-
tive temporal window. Lindell et. al. (Lindell, O’Toole, and
Wetzstein 2018) propose a deep-learning based method to
reconstruct depth maps with high-resolution intensity im-
ages. Recent works (Peng et al. 2020, 2022) introduce long-
range correlations in spatial and temporal views, where the
spatially neighbourhoods have similar geometry would have
similar depth values with high possibilities, and signal pho-
tons are supposed to cluster together near the true depth.
Lee et. al. (Lee et al. 2023) collaboratively exploit both lo-
cal and non-local correlations in the spatio-temporal photon
measurements and estimate scene properties reliably even
under very challenging lighting conditions. However, these
spatial and temporal correlations change drastically when
the number of signal photons decreases, and the number of
background photons increases. The non-local blocks (Peng
et al. 2020, 2022) can only exploit the global information
in the spatial dimensions but ignore the long-range correla-
tions in the temporal domain. These fixed non-local architec-
tures also cannot effectively describe spatio-temporal corre-
lated features according to different SBR levels, and their
performance degrades under low photon counts and SBR.
We also focus on spatial and temporal information among
photon-efficient measurements, and our network designs an
adaptive-weighting strategy to study the proportion between
long-range correlations in spatial and temporal dimensions
in different SBR conditions.

Methodology
Single-photon measurements have superior temporal infor-
mation and photon sensitivity, which also results in de-
graded performance when signal photons are flooded by
background noise photons under low SBR scenarios.

To address this challenge, we propose SPDS-STFormer,
a 3D spatio-temporal transformer to reconstruct depth maps
from 3D single photon histogram cubes (128 × 128 × 1024
for our depth sensing system) utilizing ViT (Dosovitskiy
et al. 2020) structures. In the following, we first show the
overview of the network architecture and then describe the
details of the main components.

Network Overview
As illustrated in Fig. 2, the architecture of SPDS-STFormer
consists of a 3D feature extractor, a U-shaped encoder-
decoder transformer structure , and a 3D decoder. We follow
(Peng et al. 2022) to utilize a 3D version of dilated dense
fusion block as the 3D local feature extractor.

We then design a hierarchical multi-scale 3D spatio-
temporal transformer to not only reduce the computational
burden but also perceive contextual information in a larger
field of view. Each transformer block is composed of a
3D convolution layer for tokenizing, a view-interweaved
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Figure 2: (a) Overview of our SPDS-STFormer and its main building blocks: (b) a 3D Spatio-Temporal Transformer Block,
(c) a View-interweaved Attention Mechanism, (d) an Adaptive-weighting Scheme, (e) a Temporal-View Global-Guided Self-
Attention Block and (f) a Spatial-View Multi-Head Self-Attention Block.

attention mechanism (VIAM) using an adaptive-weighting
scheme for adaptively fusing spatial-view and temporal-
view self-attention, and a self-modulated feed-forward net-
work (SM-FFN) (Lai, Yan, and Fu 2023) for amplifying the
activation of regions with high information density and im-
prove the reconstruction quality for high-frequency compo-
nents. The overall process of each transformer block can be
expressed as:

X̂ = BN(Conv3D(X)),

Y = SM-FFN(VIAM(X̂)),
(1)

where X ∈ RC×L×H×W and Y ∈ RC×L×H×W refer to the
input features and output features, BN denotes batch normal-
ization, and Conv3D denotes the 3D convolution operation.

In the decoder branch, we simply leverage several 3D de-
convolutions to recover the denoised histograms from fea-
tures and generate prediction maps.

View-interweaved Attention Mechanism
In each 3D transformer block of SPDS-STFormer, the core
component is the View-interweaved Attention Mechanism
(VIAM), which not only models a Spatial-View Multi-Head
Self-Attention (SV-MHSA) module to achieve long-range
spatial-correlated features, but also introduces a Temporal-
View Global-Guided Self-Attention (TV-GGSA) module to
extract features with long-range temporal correlations. Both
features are integrated into different views.

In our SV-MHSA module, we apply original multi-head
self-attention process (Vaswani et al. 2017) in a 3D version
to obtain the heads QS ,KS ,VS ∈ RC×L×N of query, key

and value with the same dimensions by linear projection op-
erations, respectively, where N = H × W . We further ap-
ply a linear projection WS ∈ RC×C to obtain the spatial-
correlated long-range features FS ∈ RC×L×H×W :

Attn(QS ,KS ,VS) = Softmax(
QS ·KT

S√
dhead

)VS ,

FS = WS · Attn(QS ,KS ,VS).

(2)

In our TV-GGSA module, for computational simplicity, we
perform the global average pooling on input features Fin ∈
RC×L×H×W to obtain the global features, i.e. QT ,KT ∈
RC×L instead of linear projections for query and key fea-
tures in conventional self-attention block (Vaswani et al.
2017). We only linearly project value VT ∈ RC×L×H×W

from Fin in our TV-GSSA module.

Attn(QT ,KT ,VT ) = VT · Softmax(KT ·QT ),

FT = WT · Attn(QT ,KT ,VT ),
(3)

where we perform another linear projection WT ∈ RC×C

to better transform the features to the output
FT ∈ RC×L×H×W .

In our proposed method, the two operations are imple-
mented in parallel, and the output features FS and FT are
combined as follows to obtain the output of the VIAM:

Ffuse = α · FS + (1− α) · FT , (4)

where the weighting parameter α ∈ [0, 1] are learned
from an adaptive-weighting scheme. Details about the
adaptive-weighting scheme will be introduced below.



Adaptive-weighting Scheme
To alleviate the contamination by noisy background photons
and keep awareness of illumination changes, we propose
an adaptive weighting scheme to extract the re-calibrated
features of global illumination information and signal-to-
background levels. The detailed procedures of the adaptive
weighting scheme are depicted in Fig. 2. Given the input 3D
features F ∈ RC×L×H×W , our adaptive-weighting scheme
aims to mix global attention weights to guarantee that our
learnable weights are concrete illumination-aware to sup-
press the influence from noisy photons.

We first calculate the global attention weights in channel
and spatio-temporal dimensions. The channel attention cal-
culates a channel-wise vector Fc ∈ RC×1×1×1 by a 3D ver-
sion of the channel recalibration (Hu, Shen, and Sun 2018).
The spatio-temporal attention calculates a spatio-temporal
importance map Fst ∈ RC×L×H×W to indicate the impor-
tance levels of different volumes adaptively.

We compute the corresponding weights Fc and Fst by fol-
lowing,

Fst = C7×7×7([F
st
GAP , F

st
GMP ]),

Fc = C1×1×1(max(C1×1×1(F
c
GAP ))),

(5)

where F st
GAP , F st

GMP , F c
GAP denote the features extracted

from global average pooling across the spatio-temporal di-
mensions, global max pooling across the spatio-temporal di-
mensions, and global average pooling across the channel di-
mensions, respectively.

Then we fuse Fst and Fc via an addition operation to
obtain coarse global illumination-aware features Fia ∈
RC×L×H×W . In order to achieve finer features to model il-
lumination and SBR information, we then utilize a 3D ver-
sion of channel shuffle operation (Zhang et al. 2018) on Fia

and F . Finally, we calculate the average and obtain the learn-
able weights α.

Fia = Fst + Fc,

α =
1

N

N∑
n=1

(σ(CS([Fia(n), F (n)]))),
(6)

where σ denotes the sigmoid operation, CS(·) denotes the
channel shuffle operation and N denotes the total element
number, respectively.

Loss Function
For the depth sensing task, we apply a combination of
Kullback-Leibler (KL) divergence, L2 loss, and total vari-
ation (TV) loss as the loss function for supervised training
of SPDS-STFormer. The supplemental materials include the
details of loss functions.

Assessment
Implementation Details. We implement our method in Py-
Torch (Paszke et al. 2019). Following previous literature
(Lindell, O’Toole, and Wetzstein 2018; Peng et al. 2020,
2022), for training set, we simulate SPAD histogram mea-
surements using RGB-D images from the NYU v2 dataset

by sampling the inhomogeneous Poisson process. Each mea-
surement has 1,024 temporal bins to construct the histogram
with a bin size of 80 ps and a detected illumination pulse
with a full width at half maximum (FWHM) of 400 ps.
To vary the signal and background noise levels across the
dataset, we simulate an average of 2, 5, and 10 signal pho-
tons detected per pixel, with 2, 10, and 50 background pho-
tons at each signal level. A total of 13,500 measurements
are produced for training and 2,800 for validation using the
NYU v2 dataset, respectively.
Evaluation Metrics. The evaluation metric for depth sens-
ing tasks is the commonly used root-mean-square-error
(RMSE) between the reconstruction depth map and the
ground truth.

Qualitative and Quantitative Evaluation
We first compare the effectiveness of our approach to exist-
ing photon-efficient depth sensing methods relying on SPAD
measurements only from the simulated Middlebury stereo
dataset (Scharstein and Pal 2007). We report the RMSE val-
ues averaged across 8 Middlebury test scenes with a large
spatial resolution of 576 × 704 and a uniform temporal
resolution of 1024 over a number of simulated signal and
noise levels (10:2, 5:2, 2:2, 10:10, 5:10, 2:10, 10:50, 5:50,
2:50) generally reported in previous literatures to ensure a
fair comparison with baseline approaches. It is worth not-
ing that our method is designed independently of temporal
resolution. As shown in Tab. 1, our SPDS-STFormer outper-
forms the state-of-the-art methods on the simulated Middle-
bury Dataset. Compared with other learning-based methods
(Lindell, O’Toole, and Wetzstein 2018; Peng et al. 2022)
degrade dramatically when SBR levels change, our SPDS-
STFormer behaves much better with an elegant degradation,
which indicates the effectiveness of our network under ex-
tremely low photon counts and low SBR.

Fig. 3 further qualitatively illustrates the effectiveness of
SPDS-STFormer. The existing methods recover decent maps
under a high SBR of 10:2, but their performances degrade
severely when the SBR gets as low as 2:50. The log-matched
filter method produces a noisy depth map, and Shin et. al.
(Shin et al. 2016) estimate an out-of-range result due to this
overwhelming background noise levels. Rapp et. al. (Rapp
and Goyal 2017) and Lindell et. al. (Lindell, O’Toole, and
Wetzstein 2018) cannot even recover the main structures of
the scene when signal photons are flooded with background
photons. Peng et. al. (Peng et al. 2022) has the capability
to reconstruct main structures; however,it cannot avoid pre-
diction errors caused in background regions. Our proposed
SPDS-STFormer not only succeeds in reconstructing main
structures and fine details but also suppresses the contami-
nation by the noisy background photons.

Ablation Study
We validate the impact of each component in SPDS-Former
by disabling one or more components and comparing the
performance on the Middlebury test set (Tab. 2).

Effectiveness of VIAM components. Experiments (A),
(B) gauge the impact of the VIAM components. Experiment



Intensity Map LM Filter Shin [2016] Rapp [2017] Lindell [2018] Peng [2022] Ours Depth GT

Under SBR=10:2 Conditions

Under SBR=2:50 Conditions

Figure 3: The visual comparisons of different methods in single-photon depth sensing for the Art (the upper image) and Reindeer
(the lower image) on different SBR levels: 10:2 and 2:50. Over these previous methods, Lindell et. al. [2018] (Lindell, O’Toole,
and Wetzstein 2018) and Peng et. al. [2022] (Peng et al. 2022) are learning-based methods for estimating the depth maps, while
all other methods are heuristic methods that need manually-defined SBR parameters. Our approach outperforms competing
methods with less noisy artifacts and better visual performance.

Avg. Photons Avg. BG (SBR) LM Filter Shin [2016] Rapp [2017] Lindell [2018] Peng [2022] Ours
10 2 (5) 0.8362 0.0637 0.0579 0.0658 0.0634 0.0543
5 2 (2.5) 1.8912 0.0638 0.0629 0.0837 0.0631 0.0551
2 2 (1) 3.7243 0.2520 0.0668 0.1853 0.1190 0.0607

10 10 (1) 1.3173 0.2108 0.0527 0.2057 0.0900 0.0481
5 10 (0.5) 2.6531 2.1886 0.0628 0.3656 0.1063 0.0607
2 10 (0.2) 4.7607 4.3054 0.0602 1.2437 0.0786 0.0581

10 50 (0.5) 1.8511 4.3085 0.0555 0.1942 0.0790 0.0516
5 50 (0.1) 3.5602 5.0394 0.0566 0.4334 0.0678 0.0528
2 50 (0.05) 5.7798 5.4816 0.0716 1.7969 0.0935 0.0711

Table 1: Quantitative comparison of our SPDS-STFormer with state-of-the-art methods on Middlebury Dataset with different
SBR levels. All results are calculated as RMSE metrics over the test set containing 8 scenes. We highlight the best results in
bold and demonstrate that our method achieves the best performance over all SBR conditions.

Under SBR=10:2 Conditions

Under SBR=2:50 Conditions

Intensity Map Experiment (A) Experiment (B) Experiment (C) Experiment (D) Experiment (E) Experiment (F) Ours Depth GT

Intensity Map Experiment (A) Experiment (B) Experiment (C) Experiment (D) Experiment (E) Experiment (F) Ours Depth GT

Figure 4: Visual ablation comparison of different SPDS-STFormer variants.



Experiments High SBR (10:2) Low SBR (2:50)
A w/o TV-GSSA 0.0919 0.5005
B w/o SV-MHSA 0.5557 0.1240
C α fixed to 0.2 0.4740 0.3696
D α fixed to 0.5 0.1705 0.7378
E w/o ad-weighting 0.0705 0.0714
F w/o channel shuffle 0.0641 0.0713
G Ours 0.0543 0.0711

Table 2: Quantitative ablation studies on the effectiveness of
each component in our SPDS-STFormer.

RMSE LM Filter Shin [2016] Peng [2022] Ours
[mm] 96.77 45.60 11.92 9.59

Table 3: Comparison of the proposed method with state-
of-the-art methods on Real-Captured Dataset. Our method
achieves the state-of-the-art among comparison methods.

(A) only introduces the spatial-view self-attention mecha-
nism in each transformer block, experiment (B) only con-
tains the temporal-view self-attention mechanism in each
transformer block. Compared to experiment (A) and ex-
periment (B), the results of our approach in the experi-
ment (F) achieve a better performance, demonstrating that
spatial-view and temporal-view attentions are both critical
for single-photon depth sensing in different SBR levels.

From qualitative comparisons in Fig. 4, we notice that
only using spatial-view attention (Fig. 4 2nd column) can
recover details in high SBR levels but will lead to checker ar-
tifacts in low SBR levels. Meanwhile, only using temporal-
view attention (Fig. 4 3rd column) will bring out degraded
noise in high SBR conditions but perform well in low SBR
environments. Based on our reasoning, signal photons clus-
ter better than the background photons and have quantita-
tive dominance in the temporal domain under high SBR lev-
els. We infer that spatial-wise long-range correlations play a
leading role in high SBR scenarios. However, this assump-
tion collapses in the sub-photon regime, where it is hard to
locate signal photon clusters reliably, and in the high back-
ground flux regime, where noisy background photons may
appear clustered. At the same time, temporal-wise attention
leads to superior performance under low SBR scenarios.

Effectiveness of adaptive-weighting scheme. A key con-
tribution of our approach is the adaptive-weighting scheme
to adjust the fusion weights between different views of
attention. To demonstrate its importance, we remove the
adaptive-weighting scheme and fix α = 0.2, fix α = 0.5,
use a simple dynamic parameter α and utilize a differ-
ent weighting structure without channel shuffle operation
(Zhang et al. 2018) (shown in Fig. 4(4th-7th column) and
Tab. 2(C-F)). Compared to the original SPDS-STFormer,
none of the variants achieves the same quality. Notably, our
adaptive-weighting scheme extracts a global perceptive for
illumination and SBR perception, which is beneficial for ro-
bust single-photon depth sensing in different SBR levels.

GTOursPeng [2022]Shin [2016]LM FilterReal Scene

Figure 5: The visual comparisons of different methods in
real-world depth sensing for Scene Boat (the upper image)
and Scene Statue Apollo (the lower image).

Real-world Results
We also evaluate our approach on different scenes captured
by a self-developed single-photon depth sensing system. We
first collect a real-world captured dataset to quantitatively
validate the performance of our network on SPAD measure-
ments captured with our single-photon depth sensing sys-
tem. Our self-collected dataset contains 35 pairs of SPAD
measurements and corresponding ground-truth depth. Each
SPAD measurement contains 1,024 temporal bins, each with
a resolution limited to 4 ps. (More details about the pro-
totype system and our dataset can be seen in Supplemen-
tal Material. ) Different from evaluating indoor scenes cap-
tured by a single-photon imaging prototype in Lindell et.
al. (Lindell, O’Toole, and Wetzstein 2018) as real-world re-
sults in previous works, our self-captured single-photon test
set has carefully annotated ground truth depth maps to pro-
vide quantitative comparisons for different algorithms. Tab.
3 and Fig. 5 show the quantitative and qualitative compar-
isons in real-captured scenes. For LM Filter and Shin et.
al., they fail to reconstruct fine structures, and for Peng et.
al. (Peng et al. 2022), they will result in error predictions
even in main structure when sensing depth. Our approach
can achieve the minimum RMSE metrics down to a mil-
limeter scale,demonstrating that our approach has general-
izability and robustness when single-photon measurements
are captured with finer temporal resolution to even 4 ps.

Conclusion
In this paper, we propose a 3D spatial-temporal trans-
former for single photon depth sensing (SPDS-STFormer)
to address degraded performance under low photon counts
and low SBR conditions. SPDS-STFormer features a view-
interweaved attention mechanism and an adaptive-weighting
scheme. The attention mechanism adaptively fuses spatial
and temporal self-attention to model long-range correla-
tions, while the weighting scheme extracts detailed fea-
tures for dynamic fusion. Our extensive experimental re-
sults show that SPDS-STFormer can effectively estimate
the depth information from single-photon measurements.
We also validate the generalizability and robustness on our
single-photon depth sensing system. When the input mea-
surements are captured at a much finer temporal resolution
(4 ps), our approach still has the capability to recover depth
with millimeter-to-centimeter accuracy.
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Image Formation Model
Assuming that the single-photon depth sensing system con-
tains a pulse laser and a SPAD detector, the single SPAD
operates in free-running mode, and the pulsed laser is co-
axially mounted and focused on a surface patch at a distance
z. The imaged surface patch is also assumed to be Lamber-
tian. When emitting a short pulse at t = 0 from the pulsed
laser, where the laser pulse is characterized by the continu-
ous temporal impulse response function g(t) ∈ R+, which
describes the source intensity as a function of time. The tem-
porally resolved irradiance at the detector can be modeled
as:

r(t) = αg(t− 2z/c) + s, (1)

The free-running mode SPAD detects photons over a time
interval [0, T ] into the histogram mode, where the temporal
resolution of the histogram is ∆t. Throughout an acquisition
process, The SPAD detector can detect the photons with a
detection efficiency η ∈ [0, 1], non-zero dark count d. The
photon detections reported by the SPAD detector in response
to an inhomogeneous Poisson process with a rate function of

λ(t) = η(αg(t− 2z/c) + s) + d, (2)

Thus the number of detected photons within a certain time
bin can be modeled as follows:

Φ[n] =

∫ (n+1)∆t

n∆t

λ(τ)dτ, (3)

Finally, a temporal histogram is built on the detected photons
within N repetition periods as:

H[n] ∼ Poisson(N(Φ[n])), (4)

The establishment of the detection model is also based
on several other assumptions. First, after detecting a pho-
ton event, a SPAD must enter a dead time, during which
it cannot detect any photons and be quenched. We assume

*Corresponding Authors.
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that this dead time is smaller or equal to the time between
successively fired pulses. Second, we assume the detection
of photon counts in this low-flux regime can be modeled as
independent events between laser pulses. Third, SPAD mea-
surements can be well-approximated by a Poisson distribu-
tion by Equation 2.

Loss function
For the depth sensing task, we apply a combination of
Kullback-Leibler (KL) divergence, L2 loss, and total vari-
ation (TV) loss as the loss function for supervised train-
ing of SPDS-STFormer. The KL divergence LKL is com-
puted between the denoised histogram Hd and the normal-
ized ground truth histogram HGT at each spatial coordinate
(x, y)

LKL(H
d
(x,y),H

GT
(x,y)) =

∑
n

HGT
(x,y)[n] · log

HGT
(x,y)[n]

Hd
(x,y)[n]

(5)

The L2 loss L2 is computed between ground truth depth map
dGT and the recovered depth map d̂, which is obtained by
operating a differentiable argmax operator to find the bin in-
dex with the maximum value through a simple weighted sum
calculation at each pixel (x, y)

d̂ = sargmax(Hd
(x,y)) =

∑
n

n ·Hd
(x,y)[n] (6)

L2(d̂, d
GT ) = ||d̂− dGT ||2 (7)

The TV loss LTV = TV(d̂) is also applied to be com-
puted on the prediction depth map d̂ in order to suppress the
high-frequency noise components and impulse smoothness
of the prediction maps (Aly and Dubois 2005). (weighted by
λTV = 1e−4 empirically determined):

L(d̂, dGT ) = LKL(H
d,HGT )+L2(d̂, d

GT )+λTV ·LTV (d̂)
(8)

Prototype
Hardware
Our single-photon depth sensing prototype system, shown
in Figure 1, consists of a time-resolved sensor, pulsed laser,



Figure 1: Overview of our prototype hardware.

synchronization electronics, off-the-shelf illumination opti-
cal, and optomechanical components.
The sensor is a PDM SPAD from Micro Photon Devices
with a 100 µm × 100 µm active image area and 40.9
dark counts per second. A PicoQuant HydrpHarp 400 Time-
Correlated Single Photon Counting (TCSPC) module, which
can timestamp at a minimum time bin width of 1 ps, outputs
photon arrival timestamps to the computer and constructs
histograms with a histogram bin size of 4 ps.
The illumination consists of a 640nm picosecond laser
(LDH-D-C-640), a galvanometer (Thorlab GVS012), and a
set of lenses.
The laser operates at a pulse repetition rate of 80 MHz with
a peak power of 80 mW and an average power of 2 mW.
Driven by 230V, 50Hz DC stabilized power supply; the gal-
vanometer can alter the scanning laser path in both x-axis
and y-axis directions with mirrors to control the imaging po-
sition of the SPAD sensor.
The collection optics are designed to extend the field of view
of the SPAD sensor across the area scanned by the illumina-
tion source and consist of a 75 mm objective lens (THOR-
LABS AC254-075-A-ML). We measure the full width at
half maximum (FWHM) of the system to be approximately
90 ps.

Real-World Captured Dataset
We collect a real-world captured dataset to quantitatively
validate the performance of our network on SPAD measure-
ments captured with our single-photon depth sensing sys-
tem. Our self-collected dataset contains 35 pairs of SPAD
measurements and corresponding ground-truth depth. We
follow Heide et. al. (Heide et al. 2018) to acquire ground-
truth measurements by placing a 5% Neutral Density filter
(Thorlabs NE13A) in the laser path to enforce a low-flux
regime where pileup distortion can be eliminated for all cap-
tured scenes. We scan every scene at a spatial resolution of
128 × 128 laser spots. For each spot we scanned, we ac-
quired long sequences of 6 s length at a 5MHz laser repeti-

Figure 2: Some samples about captured scenes in our real-
captured dataset.

tion rate. Hence, we acquire a full reference measurement in
128 × 128 × 6 s = 27.3 h per scene. The ground truth depth
is then calculated from these clean, long-exposed measure-
ments by log-matched filtering (Shin et al. 2015) method.
For real-world validation, we acquire histogram measure-
ments from N=100,000 repetition periods without additional
filtering in the optical path, resulting in 0.02 s acquisition
time per scanning point at the 5MHz laser repetition rate.
Compared with previous work (Lindell, O’Toole, and Wet-
zstein 2018) that generates a sparse histogram with a 26 ps
temporal resolution, our prototype system can reach a his-
togram bin size of 4 ps. Our dataset maintains a superior
timing resolution and ground-truth depth maps for quantita-
tive comparison; however, it leads a larger domain gap from
simulated NYUv2 Dataset (Nathan Silberman and Fergus
2012) than previous works and proposes a more challeng-
ing benchmark for real-world single-photon depth sensing.

Assessment
We evaluate our approach on different scenes in our real-
world captured dataset. Fig. 3 and Fig. 4 show more vi-
sual comparisons on real-captured scenes. The LM Filter
and Shin methods fail to reconstruct fine structures and lead
to obvious visual errors. For Peng et. al. (Peng et al. 2022),
they will result in error predictions even in the main structure
when sensing depth (e.g. Scene Flower and Scene Cup). Our
approach can achieve the minimum RMSE metrics down to
a millimeter scale, which effectively demonstrates that our
approach has generalizability and robustness when single-
photon measurements are captured with finer temporal reso-
lution to even four ps.

Limitations
Affected by the inevitable noise components in the SPAD
measurements, our method’s effectiveness declines when in
extremely low SBR cases. Furthermore, recovering fine de-
tails from complicated material surfaces is still challenging
even under our method (e.g., complex edge information on
Scene Pipeapple and Scene Flower2.) Moreover, for real-
world capturing, we acquire long sequences of 6 s length
per spot, leading to a 27.3h collection time to capture a full
reference measurement for ground truth depth computation



Figure 3: Visual comparison of different methods on self-collected real-world scenes: Flower, Cup, and Grape.



Figure 4: Visual comparison of different methods on self-collected real-world scenes: Pineapple, Status Apollo (Front View),
and Flower2.



on each scene. It’s still very time-consuming to create a large
training dataset for further SPAD depth sensing tasks.
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