Power
Problem Set 3: Map and Caml-Mathica
Quick Links:
Objectives
In this assignment, you will be given the opportunity to practice functional decomposition of complex problems into smaller, simpler ones. More specifically, you will look at functional decomposition of list processing problems in to subproblems that can be implemented by map, reduce, fold and filter functions. Functional programmers do this all the time in day-to-day programming tasks, but it is also the basis for programming parallel applications in frameworks like Hadoop or Google's Map-Reduce (it's no coincidence the names are the same!)
In addition, you will write your own language for symbolic differentiation using OCaml. This will illustrate just how easy it is to develop your own mini-language inside a functional language like O'Caml using recursive data types and pattern matching.
Getting Started
Download the code here. Unzip and untar it:
$ tar xfz a3.tgzInside, you will see several files. The main ones you need to concern yourself with are:
mapreduce.ml
which is a self-contained series of exercises involving higher order functions.expression.ml
in which you will develop functions to perform symbolic differentiation of algebraic expressions. Support code can be found in ast.ml and expressionLibrary.ml.
A few important things to remember before you start:
- This assignment must be done individually.
- As in the previous assignment, all of your programs must compile. Programs that do not compile will receive an automatic zero. Make sure that the functions you are asked to write have the correct names and the number and type of arguments specified in the assignment.
- In this problem set, it is important to use good style (style will factor in to your grade). Style is naturally subjective, but the COS 326 style guide provides some good rules of thumb. As always, think first; write second; test and revise third. Aim for elegance.
- Testing: When it comes to testing solutions to part 1, follow the model shown in 1.2.a, of putting the tests just below the function being tested.
- Compilation:
- make mapreduce compiles only Part 1.
- make expression compiles only Part 2.
- make and make all compile everything. These two commands are exactly the same, so it doesn't matter which one you use.
Part 1: Higher Order Functions (mapreduce.ml)
Map, filter and fold are functions that capture extremely common recursion patterns over lists. A good functional programmer uses these functions to construct solutions to interesting problems using very little code. In this part, you will get practice with higher-order functions by using map and fold to write a number of functions.
- map is implemented in O'Caml by the function
List.map
. - filter is implemented in Ocaml by the function
List.filter
. - fold is implemented in OCaml by the function
List.fold_right
. However, the standard O'Camllibrary function has its arguments in a dumb order. Thus, we have provided you with the function "reduce" which computes identically to fold_right but takes arguments in a different order (discuss with your TA in precept why one ordering is more useful than another).
All instructions for Part 1 can be found in mapreduce.ml
Part 2: A Language for Symbolic Differentiation (expression.ml)
In the Summer of 1958, John McCarthy (recipient of the Turing Award in 1971) made a major contribution to the field of programming languages. With the objective of writing a program that performed symbolic differentiation of algebraic expressions in a effective way, he noticed that some features that would have helped him to accomplish this task were absent in the programming languages of that time. This led him to the invention of LISP (published in Communications of the ACM in 1960) and other ideas, such as list processing (the name Lisp derives from "List Processing"), recursion and garbage collection, which are essential to modern programming languages, including Java. Nowadays, symbolic differentiation of algebraic expressions is a task that can be conveniently accomplished on modern mathematical packages, such as Mathematica and Maple.
The objective of this part is to build a language that can differentiate and evaluate symbolically represented mathematical expressions that are functions of a single variable. Symbolic expressions consist of numbers, variables, and standard math functions (plus, minus, times, divide, sin, cos, etc).
Conceptual OverviewTo get you started, we have provided
the datatype that defines the abstract syntax tree for such expressions in ast.ml
.
(* abstract syntax tree *) (* Binary operators. *) type binop = Add | Sub | Mul | Div | Pow ;; (* Unary operators. *) type unop = Sin | Cos | Ln | Neg ;; type expression = | Num of float | Var | Binop of binop * expression * expression | Unop of unop * expression ;;
Var
represents an occurrence of the single variable "x".
Unop(Ln, Var)
represents the natural logarithm of x
.
Neg
is negation, and is denoted by the "~" symbol
("-" is only used for subtraction). The rest should be
clear what they refer to.
Mathematical expressions can be constructed using the
constructors in the above datatype definition. For example, the expression
"x^2 + sin(~x)"
can be
represented as:
Binop(Add, Binop(Pow, Var, Num(2.0)), Unop(Sin, Unop(Neg, Var)))
This represents a tree where nodes are the type constructors and the children of each node are the specific operator to use and the arguments of that constructor. Such a tree is called an abstract syntax tree (or AST for short).
How to Compile and Test Part 2
The code you will be editing is in expression.ml
.We have
used modules to keep this file clean and easy to navigate.
There are several ways to compile and test your code.
Documentation on how to use the O'Caml toplevel environment is
here.
Use it to understand how toplevel directives like #use
and
#load
work. Changing #print_depth
can also be useful
when debugging sometimes.
Easiest Way (Short Story)
- Type
make expression
in your shell (or justmake
). - Load
expression.ml
in to emacs. Type (C-c C-b) in that buffer.
Also Easy
- Type
make expression
in your shell (or justmake
). - Run the compiled code with ./expression.
Emacs (Longer Story)
- When in the
expression.ml
buffer, compile your code by typing (C-c C-c) and then executemake -k
. - Alternatively, use your shell and type
make
ormake expression
. (Use the latter if you just want to compile part 2 and not part 1 of the assignment.) - Note: "nothing to be done for all" is not an error. It is a blessing - it means that all has compiled and that nothing has changed since the last compilation.
- Note: If you see an error message like this one:
File "expression.ml", line 3, characters 0-8: Error: Unbound module Ast
It probably means you forgot to compileast.ml
andexpressionLibrary.ml
prior to loadingexpression.ml
in to the toplevel environment. (You can see if you compiledast.ml
andexpressionLibrary.ml
by checking whether filesast.cmo
andexpressionLibrary.cmo
appear in your directory. If they don't appear, then the respective files weren't compiled.) - If after making some changes to your code, you wish to test it again,
first kill your current top level by using the command (C-c C-k).
(If you don't kill your toplevel and start fresh, there could be some residual functions/values
left in the toplevel from the last time you tried to compile and test your code.)
Then open a new toplevel and compile your code by typing the command (C-c C-b)
from within the
expression.ml
buffer. - Altenatively, type (C-c C-s) to start a new
top-level inside emacs. Type
#load "expressionLibrary.cmo";;
to load the expression library executable. Note: you actually need to type the pound sign (#), so there will be two pound signs. Then you can type (C-c C-b) in theexpression.ml
buffer or you can type#use "expression.ml";;
in the toplevel.
Testing through expressiontop We have also created an executable that allows a custom toplevel just for testing part 2.
- Compile the whole thing via the shell (ie: in your shell,
navigate to appropriate directory and then execute
make
ormake expressiontop
). Note: "nothing to be done for all" is not an error. It is a blessing - it means that all has compiled and that nothing has changed since the last compilation. - type
$ ./expressiontop
You should see at the top "Objective Caml version 3.11.0" - Type in
open Ast;;
andopen ExpressionLibrary;;
. These let you use ast and expressionLibrary functions without typingAst.___
- Type in
#use "expression.ml";;
. This loads in all of the expression functions you have written.
We have provided some functions to
create and manipulate expression
values. checkexp
is contained
in expression.ml. The others are contained in expressionLibrary.ml.
parse
: translates a string in infix form (such as"x^2 + sin(~x)"
) into anexpression
(treating "x" as the variable). Theparse
function parses according to the standard order of operations - so"5+x*8"
will be read as"5+(x*8)"
.to_string
: prints expressions in a readable form, using infix notation. This function adds parentheses around every binary operation so that the output is completely unambiguous.to_string_smart
: prints expressions in an even more readable form, only adding parentheses when there may be ambiguity.make_exp
: takes in a length l and returns a randomly generated expression of length at most 2l.rand_exp_str
: takes in a length l and returns a string representation of length at most 2l.checkexp
: takes in a string expression and an x value and prints the results of calling every function to be tested except find_zero.
to_string
and to_string_smart
:
let e = Binop(Add,Binop(Pow,Var,Num 2.0),Unop(Sin,Binop(Div,Var,Num 5.0))) to_string(e) = "((x^2.)+(sin((x/5.))))" to_string_smart(e) = "x^2.+sin(x/5.)"
Problem Instructions
Instructions for problems 2.1 and 2.2 are in expression.ml.
Problem 2.3: DerivativesNext, we want to develop a function that takes an expression
e
as its argument and returns an expression
e'
representing the derivative of the expression with
respect to x. This process is referred to as symbolic differentiation.
Do not worry: You really don't have to remember any calculus to
do this assignment. Your prof can't remember his freshman calculus
very well either!
Note that there two cases provided for calculating the derivative of f(x) ^ g(x)
,
one for where g(x) = h
does not contain any variables, and one for the general case.
The first is a special case of the second, but it is useful to treat them separately, because when
the first case applies, the second case produces unnecessarily complicated expressions.
Your task is to implement the derivative
function.
The type of this function is expression -> expression
.
The result of
your function must be correct, but need not be expressed in the simplest form.
Take advantage of this in order to keep the code in this part as short
as possible. You can implement this function in as little
as 20–30 lines of code.
To help you, we provide a function, checkexp
,
which checks parts 2.1-2.3 for a given input. The portions of the function that
require your attention read failwith "Not implemented"
.
Do not attempt to run the function until you have replaced all of the
failwith
expressions with valid code.
One application of the derivative of a function is to find zeros of a function. One way to do so is Newton's method. The function should take an expression, a starting guess for the zero, a precision requirement, and a limit on the number of times to repeat the process. It should return None
if no zero was found within the desired precision by the time the limit was reached, and Some r
if a zero was found at r
within the desired precision.
Your task is to implement the find_zero:expression ->
float -> float -> int -> float option
function. Note that there are
cases where Newton's method will fail to produce a zero, such as for
the function x1/3. You are not
responsible for finding a zero in those cases,
but just for the correct implementation of Newton's method.
Note: If the expression that find_zero
is operating on is 'f(x)
' and the precision is
epsilon
, we are asking you to find a value
x
such that |f(x)| < epsilon
. That is, the
value that the expression evaluates to at x
is "within
epsilon
" of 0.
We are not requiring you to find an x
such that |x -
x0| < epsilon
for some x0
for
which f(x0) = 0
.
The function you wrote above allows you to find the zero (or a zero) of most
functions that can be represented with our AST. This makes it quite
powerful. However, in addition to numeric solving like this,
Mathematica and many similar programs can perform symbolic
algebra. These programs can solve equations using techniques similar
to those you learned in middle and high school (as well as more
advanced techniques for more complex equations) to get exact, rather
than approximate answers. For example, given the expression 3x-1,
your find_zero
function might return something like
0.33333, depending on your value of epsilon. The exact solution,
however is 1/3, and this answer can be found by a program that
solves equations symbolically.
Performing symbolic manipulation on complex expressions is quite difficult, and we do not expect you to do it. However, there is one type of expression for which this is not so difficult. These are expressions that can be simplified to the form ax + b. You likely learned how to solve equations of the form ax + b=0 years ago, and can apply the same skills in writing a program to solve these.
More specifically,
for the purposes of this question, a
- contains only Add, Sub, Mul, and Neg operators (nested arbitrarily), and
- and can be simplified to the form ax + b.
Write a function, find_zero_exact
which will exactly find the zero of
those degree-one expressions that do have zeros.
More specifically, for degree-one expressions that do have zeros
your function should return Some
of an expression that
- contains no variables
- evaluates to the zero of the given expression and
- is exact.
find_zero_exact (parse "3*x-1")
might return
Binop (Div, Num 1., Num 3.)
or
Unop(Neg, Binop (Div, Num -1., Num 3.))
but should not
return Num 0.333333333
as this is not exact.
Note: degree one expressions need not be as simple as ax + b. Something like 5x - 3 + 2(x - 8) is also a degree-one expression since it can be turned into ax + b by distributing and simplifying. You will need to think about how to handle these types of expressions. You will also need to think about how to determine whether an expression is degree one.
Note: you may assume that operations +., -., *. on floating point values do not overflow and are exact.
Handin Instructions
This problem set is to be done individually.
You must hand in these files to dropbox (see link on assignment page):
-
mapreduce.ml
-
expression.ml
Final Warning: Before you submit, be sure to compile your code one last time with "make" and then to test that no assertions fail by running the mapreduce and expression executables produced by using make. Assignments that do not compile will receive a zero. It is much better to turn in an assignment that compiles but is incomplete than to turn in an assignment that does not compile. Document in a comment anything you tried or any problems you had with a particular portion of the assignment.