
COS125 - Precept 5 (Performance)

1 Tracing Loops

Write the largest value that variable counter takes on in each of the code snippets below and write

the function of n that corresponds to this value. You may assume that n is a power of 2.

Code n = 2 n = 8 n = 128 f(n)
int counter = 0;

for (int i = 0; i < n; i++)

counter++;

2 8 128 n

for (int i = 0, counter = 1; i < n; i++)

counter *= 2;

int counter = 0;

while (counter < n)

counter++;

int counter = 0;

for (int i = 1; i <= n; i *= 2)

counter++;

for (int i = 0, counter = 0; i < n; i++)

for (int j = 0; j < n; j++)

counter++;

int counter = 0;

for (int i = 1; i <= n; i *= 2)

for (int j = 0; j < n; j++)

counter++;

2 Image Processing

Download precept5.zip from the precepts webpage; unzip and open the project folder. Open

Negative.java, compile and run it on the 5 images in the folder with the -Xint option.1 Write

down the elapsed time for each of them in the table below.

1.jpg 2.jpg 3.jpg 4.jpg 5.jpg

1Running java-introcs -Xint Negative filename.png disables optimizations by the Java Virtual Machine.
This allows you to see the difference between a (non-optimized) inefficient implementation and a more efficient one.

1



Now, copy Negative.java into another file (choose any suitable name you like). Update this

new file to use the functions StdPicture.getARGB() (which receives two arguments – integer col-

umn and row values – and returns an RGB color encoded into an int) and StdPicture.setARGB()

(which receives three arguments: row and column values, as well as an RGB value encoded into

an int) instead of StdPicture.getRed/Green/Blue() and StdPicture.setRGB().

Use the expression 16777215 ^ rgb to compute the negative of a color rgb encoded as an int.2

Fill in the table below with the elapsed times of this alternative implementation (use the -Xint

option again to get a fair comparison).

1.jpg 2.jpg 3.jpg 4.jpg 5.jpg

3 Primes & Factoring

Less-Naive Factoring

We have seen a simple but inefficient algorithm for factoring in lecture: just try to divide the input

n by all numbers from 1 to n (its potential divisors), recording successful divisions.

Compile Factors.java and run it on the following long command-line arguments. Record the

time taken for each one of them.

797026819 1594053611 6376214287 12752428583 25504857179

Now, copy Factors.java into another file (choose any suitable name you like). Implement the

improvement, mentioned in the lecture slides, that only tries to divide by numbers up to
√
n (and

if none succeed, concludes that n is the only nontrivial factor). Run it on the same sequence of

inputs and record the new elapsed time for each of them.

797026819 1594053611 6376214287 12752428583 25504857179

Finally, run both versions of Factor on 2541006914742139321. Can you explain the difference

in performance (or lack thereof)?

2rgb encodes the red channel in its 8 least-significant bits, green in bits 9 to 16, blue in 17 to 24, and alpha
(which controls transparency) in bits 25 to 32. The operator ^ is the bitwise XOR, which enables subtracting 255
from all three channels (leaving alpha unchanged) in a single integer operation: the bitwise XOR with the number
whose binary representation is a sequence of 24 ones, i.e., 16777215.

2

https://introcs.cs.princeton.edu/java/stdlib/javadoc/StdPicture.html#getARGB(int,int)
https://introcs.cs.princeton.edu/java/stdlib/javadoc/StdPicture.html#setARGB(int,int,int)


Repeated Squaring

An important primitive for cryptography is modular exponentiation: given a positive integer n,

a base b < n and an exponent e < n, the goal is to compute be (mod n) (the remainder of the

division of be by n).3

First, fill in the program ModularExp.java so that it takes 3 long command-line arguments,

interprets them as b, e and n, and computes be (mod n). Notice that computing be may cause a

long overflow, so your code should take care to avoid it. (Hint: a * (a % b) = (a * a) % b.)

Write the time taken to compute be (mod n) for the values in the table below.

b e n Time (sec)
35924 50000000 200830686

28075 100000000 280308297

605 200000000 898221318

97658 400000000 586182711

59377 800000000 599830768

10798 1600000000 600400252

Now, copy ModularExp.java into a new file (with any suitable name of your choice) and modify

the program using the strategy of repeated squaring : instead of multiplying a variable by b a total

of c times, multiplying the variable by itself k times computes b2
k
; therefore, we only need ⌈log c⌉

iterations (rather than c – an exponential improvement!).

More precisely, the repeated squaring algorithm to compute be is as follows: initialize the

variables result to 1, power to the base b and e to the exponent e. Then repeat the following as

long as e > 0:

1. If e is odd, set result to result * power.

2. Set e to e/2, rounding down.

3. Set power to power * power.

At the end of this loop, the variable result is equal to be.4

Now fill in the table below with the runtimes of your new algorithm.

Fermat’s “Primality” Test (Bonus)

You can now put repeated squaring strategy to good use: testing if a number is prime! (Sort of.)

The test is inspired by the following identity, known as Fermat’s Little Theorem:5 for any

prime number p and a < p, we have ap ≡ a (mod p).

3While modular arithmetic might look strange at first, we’re all quite used to it: we know that 5 hours after
11am is 4pm because 11 + 5 ≡ 4 (mod 12).

4This is because result is multiplied by b2
k

if and only if 2k appears in the binary representation
∑

k 2
k of e,

so result =
∏

k b
2k = b

∑
k 2k = be.

5Not to be confused with Fermat’s Last “Theorem,” which took 400 years to finally prove – in Princeton!

3

https://en.wikipedia.org/wiki/Modular_exponentiation
https://en.wikipedia.org/wiki/Fermat's_little_theorem
https://en.wikipedia.org/wiki/Modular_arithmetic
https://en.wikipedia.org/wiki/Binary_number#Decimal_to_binary
https://en.wikipedia.org/wiki/Fermat's_Last_Theorem#Wiles's_general_proof


b e n Time (sec)
35924 50000000 200830686

28075 100000000 280308297

605 200000000 898221318

97658 400000000 586182711

59377 800000000 599830768

10798 1600000000 600400252

This leads to the following strategy to check if a number n is prime: sample a random number

a < n and compute an (mod n): if the result is not a, then we know n cannot be prime. (However,

an ≡ (mod n) does not guarantee n is prime, as we’ll see next.)

Write a program FermatTest.java that takes two long command-line arguments n and k, and

runs k iterations of Fermat’s test on the number n. Remember that even if a single test fails, n

cannot be prime; and if all tests pass, n is either “special” or prime. (You may find the function

StdRandom.uniformLong() useful.)

Run FermatTest on the pairs (n, k) below and report whether n passes (every) Fermat test.

Then run Factor on those that passed to figure out if they’re really prime or not.

n k Passed?
10000 10000

986088961 10000

986088977 10000

1177800343 10000

1177800481 10000

4

https://en.wikipedia.org/wiki/Carmichael_number

	Tracing Loops
	Image Processing
	Primes & Factoring

