COS125 - Precept 5 (Performance)

1 Tracing Loops

Write the largest value that variable counter takes on in each of the code snippets below and write the function of n that corresponds to this value. You may assume that n is a power of 2.

Code	n = 2	n = 8	n = 128	f(n)
<pre>int counter = 0;</pre>				
for (int i = 0; i < n; i++)	2	8	128	n
counter++;				
for (int i = 0, counter = 1; i < n; i++)				
<pre>counter *= 2;</pre>				
<pre>int counter = 0;</pre>				
while (counter < n)				
counter++;				
<pre>int counter = 0;</pre>				
for (int i = 1; i <= n; i *= 2)				
counter++;				
for (int i = 0, counter = 0; i < n; i++)				
for (int j = 0; j < n; j++)				
counter++;				
<pre>int counter = 0;</pre>				
for (int i = 1; i <= n; i *= 2)				
for (int j = 0; j < n; j++)				
<pre>counter++;</pre>				

2 Image Processing

Download precept5.zip from the precepts webpage; unzip and open the project folder. Open Negative.java, compile and run it on the 5 images in the folder with the -Xint option.¹ Write down the elapsed time for each of them in the table below.

1.	jpg	2.jpg	3.jpg	4.jpg	5.jpg

¹Running java-introcs -Xint Negative filename.png disables optimizations by the Java Virtual Machine. This allows you to see the difference between a (non-optimized) inefficient implementation and a more efficient one.

Now, copy Negative.java into another file (choose any suitable name you like). Update this new file to use the functions StdPicture.getARGB() (which receives two arguments – integer column and row values – and returns an RGB color encoded into an int) and StdPicture.setARGB() (which receives three arguments: row and column values, as well as an RGB value encoded into an int) instead of StdPicture.getRed/Green/Blue() and StdPicture.setRGB().

Use the expression 16777215 ^ rgb to compute the negative of a color rgb encoded as an int.² Fill in the table below with the elapsed times of this alternative implementation (use the -Xint option again to get a fair comparison).

1.jpg	2.jpg	3.jpg	4.jpg	5.jpg

3 Primes & Factoring

Less-Naive Factoring

We have seen a simple but inefficient algorithm for factoring in lecture: just try to divide the input n by all numbers from 1 to n (its potential divisors), recording successful divisions.

Compile Factors.java and run it on the following long command-line arguments. Record the time taken for each one of them.

797026819	1594053611	6376214287	12752428583	25504857179

Now, copy Factors.java into another file (choose any suitable name you like). Implement the improvement, mentioned in the lecture slides, that only tries to divide by numbers up to \sqrt{n} (and if none succeed, concludes that n is the only nontrivial factor). Run it on the same sequence of inputs and record the new elapsed time for each of them.

797026819	1594053611	6376214287	12752428583	25504857179

Finally, run both versions of Factor on 2541006914742139321. Can you explain the difference in performance (or lack thereof)?

 $^{^{2}}$ rgb encodes the red channel in its 8 least-significant bits, green in bits 9 to 16, blue in 17 to 24, and alpha (which controls transparency) in bits 25 to 32. The operator 1 is the bitwise XOR, which enables subtracting 255 from all three channels (leaving alpha unchanged) in a single integer operation: the bitwise XOR with the number whose binary representation is a sequence of 24 ones, i.e., 16777215.

Repeated Squaring

An important primitive for cryptography is modular exponentiation: given a positive integer n, a base b < n and an exponent e < n, the goal is to compute $b^e \pmod{n}$ (the remainder of the division of b^e by n).³

First, fill in the program ModularExp.java so that it takes 3 long command-line arguments, interprets them as b, e and n, and computes $b^e \pmod{n}$. Notice that computing b^e may cause a long overflow, so your code should take care to avoid it. (*Hint:* a * (a % b) = (a * a) % b.)

b	e	n	$\mathbf{Time}\;(\mathrm{sec})$
35924	5000000	200830686	
28075	10000000	280308297	
605	20000000	898221318	
97658	40000000	586182711	
59377	80000000	599830768	
10798	160000000	600400252	

Write the time taken to compute $b^e \pmod{n}$ for the values in the table below.

Now, copy ModularExp. java into a new file (with any suitable name of your choice) and modify the program using the strategy of *repeated squaring*: instead of multiplying a variable by b a total of c times, multiplying the variable by *itself* k times computes b^{2^k} ; therefore, we only need $\lceil \log c \rceil$ iterations (rather than c – an *exponential* improvement!).

More precisely, the repeated squaring algorithm to compute b^e is as follows: initialize the variables **result** to 1, **power** to the base b and **e** to the exponent e. Then repeat the following as long as e > 0:

- 1. If e is odd, set result to result * power.
- 2. Set e to e/2, rounding down.
- 3. Set power to power * power.

At the end of this loop, the variable result is equal to $b^{e.4}$

Now fill in the table below with the runtimes of your new algorithm.

Fermat's "Primality" Test (Bonus)

You can now put repeated squaring strategy to good use: testing if a number is prime! (Sort of.)

The test is inspired by the following identity, known as Fermat's Little Theorem:⁵ for any prime number p and a < p, we have $a^p \equiv a \pmod{p}$.

³While modular arithmetic might look strange at first, we're all quite used to it: we know that 5 hours after 11am is 4pm because $11 + 5 \equiv 4 \pmod{12}$.

⁴This is because result is multiplied by b^{2^k} if and only if 2^k appears in the binary representation $\sum_k 2^k$ of e, so result = $\prod_k b^{2^k} = b^{\sum_k 2^k} = b^e$.

⁵Not to be confused with Fermat's *Last* "Theorem," which took 400 years to finally prove – in Princeton!

b	e	n	$\mathbf{Time}\;(\mathrm{sec})$
35924	5000000	200830686	
28075	10000000	280308297	
605	20000000	898221318	
97658	40000000	586182711	
59377	800000000	599830768	
10798	160000000	600400252	

This leads to the following strategy to check if a number n is prime: sample a random number a < n and compute $a^n \pmod{n}$: if the result is not a, then we know n cannot be prime. (However, $a^n \equiv \pmod{n}$ does not guarantee n is prime, as we'll see next.)

Write a program FermatTest.java that takes two long command-line arguments n and k, and runs k iterations of Fermat's test on the number n. Remember that even if a single test fails, ncannot be prime; and if all tests pass, n is either "special" or prime. (You may find the function StdRandom.uniformLong() useful.)

Run FermatTest on the pairs (n, k) below and report whether n passes (every) Fermat test. Then run Factor on those that passed to figure out if they're really prime or not.

n	k	Passed?
10000	10000	
986088961	10000	
986088977	10000	
1177800343	10000	
1177800481	10000	