COS125 - Precept 4 (Loops)

1 Tracing Loops

Write the largest value that variable counter takes on in each of the code snippets below.

2 Computing π

Download precept4.zip from the precepts webpage. Unzip and open the project folder.

Write a program MonteCarloPi.java that computes an approximation to $\pi \approx 3.1416...$ with the following [Monte Carlo simulation:](https://en.wikipedia.org/wiki/Monte_Carlo_method) reading a number of iterations n from the command line, initialize a variable hits = 0 and repeat the following n times:

- 1. Sample a (uniformly) random point (x, y) from the square $[-1, 1] \times [-1, 1]$.
- 2. Check if the point lies inside the unit disc: if $x^2 + y^2 \le 1$, increment hits by 1.

Finally, multiply hits by $\frac{4}{n}$ and print the result.^{[1](#page-1-0)} (*Hint: you may find a particular lecture slide* useful.)

3 Greatest Common Divisor

Euclid's Algorithm

Create a program named Euclid.java that implements [Euclid's algorithm](https://en.wikipedia.org/wiki/Euclidean_algorithm#Description) for finding the greatest common divisor (GCD) between two numbers. Your algorithm should take two positive long command-line arguments.

Euclid's algorithm proceeds as follows: set r_1 to be the larger and r_2 the smaller between a pair (a, b) of positive integers, and generate a sequence by setting r_n to be the remainder of the division of r_{n-2} by r_{n-1} (recall that % is the Java operation for the remainder).

The algorithm terminates when $r_n = 0$, and the GCD is r_{n-1} .

Gaussian Integers (Bonus)

The GCD algorithm also works for other objects, not just integers! One example are the [Gaussian](https://en.wikipedia.org/wiki/Gaussian_integer) [integers:](https://en.wikipedia.org/wiki/Gaussian_integer) complex numbers $ai + b$ such that both a and b are integers.^{[2](#page-1-1)}

Euclid's algorithm works exactly the same way once we figure out what "quotient" and "remainder" mean with respect to two Gaussian integers x and y :

- 1. Let $e + fi = \frac{x}{y}$ $\frac{x}{y}$ (a complex number that is not necessarily a Gaussian integer). Then the quotient is $q = m + ni$, where m is the closest integer to e and n is the closest integer to f, tiebreaking up. Formally, e and f are the (unique) integers that satisfy $-\frac{1}{2} < e - m \le \frac{1}{2}$ $\frac{1}{2}$ and $-\frac{1}{2} < f - n \leq \frac{1}{2}$ $\frac{1}{2}$.
- 2. The remainder is $r = x qy$.

Implement Euclid's algorithm for Gaussian integers in EuclidGaussian.java. Your algorithm should take four positive long command-line arguments, and interpret them as the pair of complex numbers $(ai + b, ci + d)$.

¹The probability of a random point in a 2×2 square belonging to the inscribed circle is the ratio between the area of the circle $(\pi \cdot 1^2 = \pi)$ and the area of the square (4), so π is 4 times this probability.

²The formal version of this statement is that Gaussian integers form an [Euclidean domain;](https://en.wikipedia.org/wiki/Euclidean_domain) this yields a very elegant proof of [Fermat's theorem,](https://en.wikipedia.org/wiki/Fermat) a characterization of the integers that can be written as a sum of squares.