
COS125 - Precept 4 (Loops)

1 Tracing Loops

Write the largest value that variable counter takes on in each of the code snippets below.

Code n = 2 n = 8 n = 128
int counter = 0;

for (int i = 0; i < n; i++)

counter++;

2 8 128

for (int i = 0, counter = 1; i < n; i++)

counter *= 2;

int counter = 0;

while (counter < n)

counter++;

int counter = 0;

for (int i = 1; i <= n; i *= 2)

counter++;

for (int i = 0, counter = 0; i < n; i++)

for (int j = 0; j < n; j++)

counter++;

int counter = 0;

for (int i = 1; i <= n; i *= 2)

for (int j = 0; j < n; j++)

counter++;

2 Computing π

Download precept4.zip from the precepts webpage. Unzip and open the project folder.

Write a program MonteCarloPi.java that computes an approximation to π ≈ 3.1416 . . . with

the following Monte Carlo simulation: reading a number of iterations n from the command line,

initialize a variable hits = 0 and repeat the following n times:

1. Sample a (uniformly) random point (x, y) from the square [−1, 1]× [−1, 1].

2. Check if the point lies inside the unit disc: if x2 + y2 ≤ 1, increment hits by 1.

1

https://en.wikipedia.org/wiki/Monte_Carlo_method


Finally, multiply hits by 4
n
and print the result.1 (Hint: you may find a particular lecture slide

useful.)

3 Greatest Common Divisor

Euclid’s Algorithm

Create a program named Euclid.java that implements Euclid’s algorithm for finding the greatest

common divisor (GCD) between two numbers. Your algorithm should take two positive long

command-line arguments.

Euclid’s algorithm proceeds as follows: set r1 to be the larger and r2 the smaller between a

pair (a, b) of positive integers, and generate a sequence by setting rn to be the remainder of the

division of rn−2 by rn−1 (recall that % is the Java operation for the remainder).

The algorithm terminates when rn = 0, and the GCD is rn−1.

Gaussian Integers (Bonus)

The GCD algorithm also works for other objects, not just integers! One example are the Gaussian

integers: complex numbers ai+ b such that both a and b are integers.2

Euclid’s algorithm works exactly the same way once we figure out what “quotient” and “re-

mainder” mean with respect to two Gaussian integers x and y:

1. Let e + fi = x
y
(a complex number that is not necessarily a Gaussian integer). Then the

quotient is q = m+ ni, where m is the closest integer to e and n is the closest integer to f ,

tiebreaking up. Formally, e and f are the (unique) integers that satisfy −1
2
< e−m ≤ 1

2
and

−1
2
< f − n ≤ 1

2
.

2. The remainder is r = x− qy.

Implement Euclid’s algorithm for Gaussian integers in EuclidGaussian.java. Your algorithm

should take four positive long command-line arguments, and interpret them as the pair of complex

numbers (ai+ b, ci+ d).

1The probability of a random point in a 2 × 2 square belonging to the inscribed circle is the ratio between the
area of the circle (π · 12 = π) and the area of the square (4), so π is 4 times this probability.

2The formal version of this statement is that Gaussian integers form an Euclidean domain; this yields a very
elegant proof of Fermat’s theorem, a characterization of the integers that can be written as a sum of squares.

2

https://en.wikipedia.org/wiki/Euclidean_algorithm#Description
https://en.wikipedia.org/wiki/Gaussian_integer
https://en.wikipedia.org/wiki/Gaussian_integer
https://en.wikipedia.org/wiki/Euclidean_domain
https://en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of_two_squares#Dedekind's_two_proofs_using_Gaussian_integers

	Tracing Loops
	Computing 
	Greatest Common Divisor

