COS125 - Precept 4 (Loops)

1 Tracing Loops

Write the largest value that variable counter takes on in each of the code snippets below.

Code	n=2	n = 8	n = 128
<pre>int counter = 0;</pre>			
for (int i = 0; i < n; i++)	2	8	128
<pre>counter++;</pre>			
for (int i = 0, counter = 1; $i < n$; $i++$)			
<pre>counter *= 2;</pre>			
<pre>int counter = 0;</pre>			
while (counter < n)			
counter++;			
<pre>int counter = 0;</pre>			
for (int i = 1; i <= n; i *= 2)			
<pre>counter++;</pre>			
for (int i = 0, counter = 0; i < n; i++)			
for (int $j = 0; j < n; j++$)			
counter++;			
<pre>int counter = 0;</pre>			
for (int i = 1; i <= n; i *= 2)			
for (int $j = 0; j < n; j++$)			
counter++;			

2 Computing π

Download precept4.zip from the precepts webpage. Unzip and open the project folder.

Write a program MonteCarloPi.java that computes an approximation to $\pi \approx 3.1416...$ with the following Monte Carlo simulation: reading a number of iterations n from the command line, initialize a variable hits = 0 and repeat the following n times:

- 1. Sample a (uniformly) random point (x, y) from the square $[-1, 1] \times [-1, 1]$.
- 2. Check if the point lies inside the unit disc: if $x^2 + y^2 \leq 1$, increment hits by 1.

Finally, multiply hits by $\frac{4}{n}$ and print the result.¹ (*Hint: you may find a particular lecture slide useful.*)

3 Greatest Common Divisor

Euclid's Algorithm

Create a program named Euclid.java that implements Euclid's algorithm for finding the greatest common divisor (GCD) between two numbers. Your algorithm should take two positive long command-line arguments.

Euclid's algorithm proceeds as follows: set r_1 to be the larger and r_2 the smaller between a pair (a, b) of positive integers, and generate a sequence by setting r_n to be the remainder of the division of r_{n-2} by r_{n-1} (recall that % is the Java operation for the remainder).

The algorithm terminates when $r_n = 0$, and the GCD is r_{n-1} .

Gaussian Integers (Bonus)

The GCD algorithm also works for other objects, not just integers! One example are the Gaussian integers: complex numbers ai + b such that both a and b are integers.²

Euclid's algorithm works exactly the same way once we figure out what "quotient" and "remainder" mean with respect to two Gaussian integers x and y:

- 1. Let $e + fi = \frac{x}{y}$ (a complex number that is not necessarily a Gaussian integer). Then the quotient is q = m + ni, where m is the closest integer to e and n is the closest integer to f, tiebreaking up. Formally, e and f are the (unique) integers that satisfy $-\frac{1}{2} < e m \leq \frac{1}{2}$ and $-\frac{1}{2} < f n \leq \frac{1}{2}$.
- 2. The remainder is r = x qy.

Implement Euclid's algorithm for Gaussian integers in EuclidGaussian.java. Your algorithm should take four positive long command-line arguments, and interpret them as the pair of complex numbers (ai + b, ci + d).

¹The probability of a random point in a 2 × 2 square belonging to the inscribed circle is the ratio between the area of the circle ($\pi \cdot 1^2 = \pi$) and the area of the square (4), so π is 4 times this probability.

²The formal version of this statement is that Gaussian integers form an Euclidean domain; this yields a very elegant proof of Fermat's theorem, a characterization of the integers that can be written as a sum of squares.