COS125 - Precept 2 (Data Types)

1 Data Types

Java Types

Form a group of 3-4. Choose <u>two</u> rows of the table below to fill in with your group. Feel free to look things up online! (You may find this website useful.)

Type	Values	A Literal	Operators	Warning!
byte				
short				
int	Integers between -2^{31} and $2^{31} - 1$.	2147483647	+, -, *, /, %	2147483647 + 1 evaluates to -2147483648!
long				
float	Same as below except $0 \le m < 2^{24}$ and $-101 \le e \le 104.$			
double	Real numbers $\pm m \cdot 2^e$ where $0 \le m < 2^{53}$ and $-1074 \le e \le 971$ are integers, plus NaN and $\pm \infty$.			
boolean				
char		'A'		
String	All sequences of characters (in practice limited by memory).			

Type Conversion

Form a group of 3-4. Choose two rows of the table below to fill in with your group.

Type conversion	Expression	Type	Value
Automatic			
System method			
Explicit cast	(long) 1.0E10		

2 Truth Tables

XOR

The XOR (eXclusive OR) operation between two booleans a and b is ! (a == b).¹ Fill in its truth table below.

a	b	!(a == b)
false	false	
false	true	
true	false	
true	true	

Download precept2.zip from the precepts webpage. Unzip and open the project folder. Compile and run XORTruthTable.java and verify that its output matches what you calculated.

Implication (Bonus)

The \implies (implies) operation between two booleans a and b is (!a) || (a && b). Fill in its truth table below.

¹In mathematics, the XOR operation is often denoted \oplus while the AND operation is denoted \cdot ; these operations behave like addition and multiplication in the so-called finite field of size 2 (often denoted \mathbb{F}_2), which has vast applications in computer science. In particular, we can do linear algebra over \mathbb{F}_2 just as well as over \mathbb{R} !

a	b	!(a)	(a	&&	b)
false	false				
false	true				
true	false				
true	true				

3 Converting Units of Measurement

Write a program called MilesToKilometers.java that converts a distance measured in miles to the corresponding distance in kilometers. Recall that a mile equals 1.609344 kilometers.

Your program should read a single double argument.

4 Complex Numbers

Norm and Angle

Open Polar. java and fill in the code so that it reads two integers a and b from the command line, interprets them as the Gaussian integer a + bi and outputs its polar representation.

Recall that the polar representation of a complex number is given by its norm $\rho = \sqrt{a^2 + b^2}$ and angle $\theta = \arctan(b/a)$.

Complex Calculator

Fill in the program ComplexOps.java that reads four integers a, b, c, and d from the command line, interprets them as the pair (a + bi, c + di) of Gaussian integers, then outputs the result of their sum, difference, product and quotient.

Recall that the product of two complex numbers is

$$(a+bi) \cdot (c+di) = (ac-bd) + (ad+bc)i,$$

which can be used to calculate the ratio too:

$$\frac{a+bi}{c+di} = \frac{a+bi}{c+di} \cdot \frac{c-di}{c-di} = \frac{(a+bi) \cdot (c-di)}{c^2+d^2}$$