
COS125 - Precept 11 (Functions II)

1 Array Mutation

Download precept11.zip from the precepts webpage, unzip and open the project folder.

Open ReverseArray.java and implement two functions to reverse an array:

• void reverseInPlace(int[] a) reverses the array a in-place, i.e., without creating a new

array; and

• int[] reversedCopy(int[] a) copies the values of a in reverse order into a new array b,

then returns b.

Both functions should also handle invalid inputs and corner cases: if the argument is null, then

they should not throw errors, and reversedCopy() should return null. Both should also work as

expected when a.length is 0.

Also, remember to leave a comment before each function in a class!

2 Recursion

2.1 Fibonacci

The Fibonacci function (or Fibonacci sequence) f : N → N is defined as follows:

f(n) =


0, if n = 0;

1, if n = 1;

f(n− 1) + f(n− 2), otherwise.

Open Fibonacci.java and implement two functions to compute the Fibonacci function: a

recursive version, and an iterative version (that uses a for loop instead).

2.2 Collatz

The Collatz function c : N>0 → N>0 is defined as follows:1

1Strictly speaking, we don’t know if c is a well-defined function – indeed, it is well-defined if and only if the
Collatz conjecture is true (and, if so, c is identically one).

1

https://en.wikipedia.org/wiki/Fibonacci_sequence
https://en.wikipedia.org/wiki/Collatz_conjecture#Statement_of_the_problem


c(n) =


1, if n = 1;

c(3n+ 1), if n ̸= 1 is odd;

c(n/2), if n is even.

Open Collatz.java and implement two functions to compute the Collatz function: a recursive

version, and an iterative version (that uses a while loop instead).

3 Efficiency

3.1 In-place vs. copied reversion

Test reverseInPlace() and reversedCopy() with arrays of increasing size. What is the size at

which your program throws an error? (And which error is it?)

Which version is more efficient, and why? Does the ratio of the elapsed times reveal something?

3.2 Recursion vs. Iteration

What is the largest integer with which you can run fibonacciRecursive() before it takes over

10 seconds?

How long does fibonacciIterative() take to terminate in that case, and what accounts for

the difference?

Now, test collatzRecursive() and collatzIterative() with the number 837799.2 What

happens? Can you figure out and fix the problem? (Hint: print the value of n at each iteration.)

2This is the n ≤ 1, 000, 000 that requires the largest number of Collatz iterations to stabilize: 524 of them.

2



Bonus: Factorial and really large numbers

The order of growth of n! is the largest we’ve seen: it beats even 2n (and Cn for any constant C)!3

Factorials of even relatively small integers easily overflow long.

Open Factorial.java and write an iterative function to compute the factorial of a number

(using a for loop instead of recursion). Then, replace the int return type of both iterative

and recursive methods with BigInteger (and adapt the function appropriately, so it returns a

BigInteger).

What is the largest number you can run factorialRecursive() with before it throws an error?

(And which error is it?) How does its efficiency compare with that of factorialRecursive()?

3Indeed, Stirling’s approximation shows that the order of growth is
√
n ·(n/e)n, where e is the base of the natural

logarithm.

3

https://docs.oracle.com/javase/8/docs/api/java/math/BigInteger.html
https://en.wikipedia.org/wiki/Stirling's_approximation
https://en.wikipedia.org/wiki/E_(mathematical_constant)
https://en.wikipedia.org/wiki/E_(mathematical_constant)

	Array Mutation
	Recursion
	Fibonacci
	Collatz

	Efficiency
	In-place vs. copied reversion
	Recursion vs. Iteration


