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[Sedgewick and Flajolet] are not only worldwide leaders of the field,  
they also are masters of exposition. I am sure that every serious computer scientist 

will find this book rewarding in many ways.     
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing  
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to 
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary 
techniques and results in the field.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer 
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data 
structures. They emphasize the mathematics needed to support scientific studies that can serve as the basis for 
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the first half of the book include recurrences, generating functions, asymptotics, and 
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings, 
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of 
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded figures and code 
n An all-new chapter introducing analytic combinatorics 
n Simplified derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the field’s challenges, prepare them 
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of 
Computer Programming books—and provide the background they need to keep abreast of new research. 
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The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created  
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis 
of algorithms; having systematized and developed powerful new methods in the field of analytic combinatorics; 
having solved numerous difficult, open problems; and having lectured on the analysis of algorithms all over 
the world. Dr. Flajolet was a member of the French Academy of Sciences. 
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Performance: quiz 1

Which of the options below best describes “an efficient algorithm” to you?

A. A.java processes 1MB in 1 second. 

B. B.java processes 1GB in 10 seconds. 

C. C.java processes  MB in  seconds. 

D. D.java processes  MB in  seconds. 

E. E.java processes  MB in  seconds.

x 10,000x

x x2

x
2x

100,000

3



The runtime function

Suppose Program.java can be executed on inputs of arbitrarily large size. 
: time (in seconds) taken to run Program.java on input of  bytes.T(n) n

4

T(26) = 1

T(29) = 10

T(n) = 10,000 ⋅ n

T(n) = n2

T(n) =
2n

100,000



What performance could mean

Fixed-length input. Input always has length . 
 is better than  if  .  

Bounded-length input. Input always has length . 
 is better than  if  for all .  

Unbounded-length input. Input has any length . 
 is better than  if  for all . 

Rate of growth — see next slide!  
 

Many, many more: 

・space complexity; 

・polynomial vs. superpolynomial; 

・

s

A B TA(s) < TB(s)

≤ s

A B TA(n) < TB(n) n ≤ s

n > 0

A B TA(n) < TB(n) n > 0

…

5

P vs. NP



Intro: what performance does mean (for us)

Rate of growth: leading-order term of , dropping constants.  

Examples.  
 
 
 
 
 
 
 
RoG of  is ;  

RoG of  is .

T(n)

T(n) = n2 − 100n n2

T(n) = 10n3 − 600n2 + 20n − 10,000 n3

6

T(n) = 10,000 ⋅ n

T(n) = n2

T(n) =
2n

100,000

Rate of growth: n

Rate of growth: n2

Rate of growth: 2n



Intro: what performance does mean (for us)

Rate of growth: leading-order term of , dropping constants.  

Rate of growth, illustrated. size of  PNG image  
 
 
 
 
 
 
 
 
 
 
 

Remark. Table measures space, not time. But often connected, as we’ll see soon!

T(n)

s(n) = n × n

7

Image dimensions (pixels) File size (bytes)

100 x 100 366

200 x 200 736

400 x 400 1,886

800 x 800 5,585

1600 x 1600 18,600

3,200 x 3,200 67,136

6,400 x 6,400 252,917

12,800 x 12,800 984,103

25,600 x 25,600 3,878,458

× 2 × 2.01

× 2 × 2.56

× 2 × 2.96

× 2 × 3.33

× 2 × 3.61

× 2 × 3.77

× 2 × 3.89

× 2 × 3.94 1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

100 400 1600 6400 25600

s(n)

T(n) =
n2

150

Loglog plot of side (y axis) vs. dimension (x axis)



Comparing rates of growth

Suppose Program.java can be executed on inputs of arbitrarily large size. 
: time taken to run Program.java on input of  bytes.T(n) n

8

1 2 3

T(n) = n2

T(n) = 2n

T(n) = n3

T(n) = n



Comparing rates of growth

Suppose Program.java can be executed on inputs of arbitrarily large size. 
: time taken to run Program.java on input of  bytes.T(n) n

9

T(n) = n2
T(n) = 2n

1 2 3 4 5

T(n) = n3

T(n) = n



Comparing rates of growth

Suppose Program.java can be executed on inputs of arbitrarily large size. 
: time taken to run Program.java on input of  bytes.T(n) n

10

T(n) = n2

T(n) = 2n

T(n) = n3

T(n) = n
1 2 3 4 5 6 7 8 9 10 11 12



Comparing rates of growth

Suppose Program.java can be executed on inputs of arbitrarily large size. 
: time taken to run Program.java on input of  bytes. 

 
 
 
 
 
 
 
 
Caveats. 

・Input size constrained by hardware & software; 

・Runtime varies (a lot) depending on language; 

・Time fluctuates across runs on same input; 

・   
Solution. Mathematical formalism.

T(n) n

…

11

T(n) = n2

T(n) = 2n

T(n) = n3

T(n) = n
1 2 3 4 5 6 7 8 9 10 11 12



Common orders of growth

12

Θ(1)
Θ(log n)

Θ(n)
Θ(n log n)

Θ(n2)
Θ(n3)

Θ(nlog n)
Θ(1.1n)
Θ(2n)
Θ(n!)

order of 
growth name

constant

logarithmic

linear

linearithmic

quadratic

cubic

quasipolynomial

exponential

exponential

factorial

formal notation includes , 
but we’ll drop it for simplicity 

Θ



4.1  PERFORMANCE

‣ intro 

‣ empirical analysis 

‣mathematical analysis 

‣ notable examples
R O B E R T  S E D G E W I C K  

K E V I N  W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu


Checkerboard generator

14

public class Checkerboard { 
   public static void main(String[] args) { 
      int MIN_LEVEL = 0, MAX_LEVEL = 255; 
      int side = Integer.parseInt(args[0]); 
      StdPicture.init(side, side); 

      for (int col = 0; col < side; col++) { 
         boolean black = (col % 2 == 0); 
         for (int row = 0; row < side; row++) { 
            if (black) 
               StdPicture.setRGB(col, row, MIN_LEVEL, MIN_LEVEL, MIN_LEVEL); 
            else 
               StdPicture.setRGB(col, row, MAX_LEVEL, MAX_LEVEL, MAX_LEVEL); 
            black = !black; 
         } 
      } 
      StdPicture.save(side + “x” + side + “.png”); 
   } 
}

initialize side-by-side
pixel picture

save picture to PNG file

first pixel of even/odd 
cols set to black/white

set to black

set to white



time taken to generate an  PNG checkerboard. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Remark. Here  is the input itself, not size; difference can 
be important, but we’ll ignore for now.

T(n) = n × n

n

Checkerboard generator

15

~/> java-introcs Checkerboard 100 

~/> java-introcs Checkerboard 200 

~/> java-introcs Checkerboard 400 

~/> java-introcs Checkerboard 800 

~/> java-introcs Checkerboard 1600 

~/> java-introcs Checkerboard 3200 

~/> java-introcs Checkerboard 6400 

~/> java-introcs Checkerboard 12800 

~/> java-introcs Checkerboard 25600

Image dimensions (pixels) Elapsed time (sec)

100 x 100

200 x 200

400 x 400

800 x 800

1600 x 1600

3,200 x 3,200

6,400 x 6,400

12,800 x 12,800

25,600 x 25,600



The doubling method

Assumption.  is a polynomial (can be written as 
 for some ).  

1. Choose an initial input. 
2. Repeat until it takes too long: 
– Run program on the current input. 
– Record the time elapsed in the run. 
– Double the input. 

3. Divide longest by second-longest time, call the result . 
4. Rate of growth is , where  is the power of 2 closest to . 

 
 
 
Variants. Can multiply by another number  instead of ;  
then find power of  closest to .

T(n)

aknk + ak−1nk−1 + ⋯ + a1n + a0 k

r

nk 2k r

b 2

b r

16

The math behind it: 
 
 
 
  

T(2n)
T(n)

=
2kaknk + ⋯ + 2a1n + a0

aknk + ⋯ + a1n + a0

=
2kak +

2k−1ak−1

n + ⋯ + 2a1

nk−1 +
a0

nk

ak + ak−1

n + ⋯ + a1

nk−1 + a0

nk

n→∞ 2kak

ak
= 2k



Nested for loops

Applying the doubling method.

17

long start = System.nanoTime(); 
for (int i = 0; i < n; i++) { 
   // some code 
} 
long elapsed = (double) (System.nanoTime() - start) / 1_000_000_000; 
System.out.println(“Elapsed time: ” + elapsed + “ sec.”);

n Elapsed time (nanoseconds)
106

2 · 106

4 · 106

8 · 106

16 · 106

32 · 106



Nested for loops

Applying the doubling method.
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n Elapsed time (nanoseconds)
2,000
4,000
8,000

16,000
32,000
64,000 

long start = System.nanoTime(); 
for (int i = 0; i < n; i++) { 
   for (int j = 0; j < n; j++) { 
      // some code 
   } 
} 
long elapsed = (double) (System.nanoTime() - start) / 1_000_000_000; 
System.out.println(“Elapsed time: ” + elapsed + “ sec.”);



Nested for loops

Applying the doubling method.

19

n Elapsed time (nanoseconds)
50

100
200
400
800

1,600

long start = System.nanoTime(); 
for (int i = 0; i < n; i++) { 
   for (int j = 0; j < n; j++) { 
      for (int k = 0; k < n; k++) { 
         // some code 
      } 
   } 
} 
long elapsed = (double) (System.nanoTime() - start) / 1_000_000_000; 
System.out.println(“Elapsed time: ” + elapsed + “ sec.”);



Nested for loops

Applying the doubling method.

20

n Elapsed time (nanoseconds)
10
20
40
80

160
320

long start = System.nanoTime(); 
for (int i = 0; i < n; i++) { 
   for (int j = 0; j < n; j++) { 
      for (int k = 0; k < n; k++) { 
         for (int l = 0; l < n; l++) { 
            // some code 
         } 
      } 
   } 
} 
long elapsed = (double) (System.nanoTime() - start) / 1_000_000_000; 
System.out.println(“Elapsed time: ” + elapsed + “ sec.”);



Performance: quiz 2

As  grows, what does ratio converge to?

A. 2 

B. 3 

C. 4 

D. 9 

E. 16

n

21

for (int i = 0; i < n; i++) { 
   for (int j = 0; j < n; j++) { 
      // some code 
   } 
}

doubling  multiplies # 
of iterations by 

n
2 ⋅ 2 = 4



Performance: quiz 3

As  grows, what does ratio converge to?

A. 2 

B. 3 

C. 4 

D. 9 

E. 16

n

22

doubling  multiplies 
# of iterations by 2

n

for (int i = 0; i < n; i++) { 
   // some code 
} 
for (int j = 0; j < n; j++) { 
   // some code 
}
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Mathematical analysis

Elementary operations: 

・Declaring/assigning variable; 

・Printing fixed-length string; 

・Arithmetic operation; 

・… 
 
Count # of elementary operations. Program tracing!

24

for (int i = 0; i < n; i++) { 
   // some elementary operations 
}

⋮ ⋮

i # of iterations

0 1

1 2

2 3

3 4

n - 1 n

not elementary: StdPicture.read(),
StdAudio.play(), etc.



Mathematical analysis

Elementary operations: 

・Declaring/assigning variable; 

・Printing fixed-length string; 

・Arithmetic operation; 

・… 
 
Count # of elementary operations. Program tracing!

25

for (int i = 1; i <= n; i *= 2) { 
   // some elementary operations 
}

⋮ ⋮

i # of iterations

1 1

2 2

4 3

8 4

n 1 + log2 n 



Mathematical analysis

Elementary operations: 

・Declaring/assigning variable; 

・Printing fixed-length string; 

・Arithmetic operation; 

・… 

Count # of elementary operations. Program tracing!

26

for (int i = 0; i < n; i++) { 
   for (int j = 0; j < n; j++) { 
      // some elementary operations 
   } 
}

⋮ ⋮ ⋮

⋮ ⋮ ⋮

⋮ ⋮ ⋮

⋮ ⋮ ⋮

⋮ ⋮ ⋮

i j # of iterations

0 0 1

0 1 2

0 2 3

0 3 4

0 n - 1 n

1 0 n + 1

1 1 n + 2

1 n - 1 2n

2 0 2n + 1

2 n - 1 3n

3 0 3n + 1

3 n - 1 4n

n - 1 n - 1 n2

 iterationsn

 iterationsn

 iterationsn

 iterationsn

 iterationsn



Mathematical analysis

Elementary operations: 

・Declaring/assigning variable; 

・Printing fixed-length string; 

・Arithmetic operation; 

・… 

Count # of elementary operations. Program tracing!

27

for (int i = 0; i < n; i++) { 
   for (int j = 0; j < n; j++) { 
      // some elementary operations 
   } 
}

⋮ ⋮ ⋮

⋮ ⋮ ⋮

⋮ ⋮ ⋮

⋮ ⋮ ⋮

⋮ ⋮ ⋮

i j # of iterations

0 0 1

0 1 2

0 2 3

0 3 4

0 n - 1 n

1 0 n + 1

1 1 n + 2

1 n - 1 2n

2 0 2n + 1

2 n - 1 3n

3 0 3n + 1

3 n - 1 4n

n - 1 n - 1 n2

 iterationsn2



Mathematical analysis

Elementary operations: 

・Declaring/assigning variable; 

・Printing fixed-length string; 

・Arithmetic operation; 

・… 

Count # of elementary operations. Program tracing!
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for (int i = 0; i < n; i++) { 
   for (int j = i; j < n; j++) { 
      // some elementary operations 
   } 
}

⋮ ⋮ ⋮

⋮ ⋮ ⋮

⋮ ⋮ ⋮

⋮ ⋮ ⋮

⋮ ⋮ ⋮

i j # of iterations

0 0 1

0 1 2

0 2 3

0 3 4

0 n - 1 n

1 1 n + 1

1 2 n + 2

1 n - 1 2n - 1

2 2 2n

2 n - 1 3n - 2

3 3 3n - 1

3 n - 1 4n - 3

n - 1 n - 1 (n2 - n)/2

 iterationsn

 iterationsn − 1

 iterationsn − 2

 iterationsn − 3

 iteration1



Mathematical analysis

29

for (int i = 0; i < n; i++) { 
   for (int j = i; j < n; j++) { 
      // some elementary operations 
   } 
}

Elementary operations: 

・Declaring/assigning variable; 

・Printing fixed-length string; 

・Arithmetic operation; 

・… 

Count # of elementary operations. Program tracing!

The math behind it: 
Call .  
 
Then .  
 
Therefore, .

N = n + (n − 1) + ⋯ + 2 + 1

2N = n + n − 1 + ⋯ + 2 + 1
+ 1 + 2 + ⋯ + n − 1 + n

= n ⋅ (n − 1)

N =
n ⋅ (n − 1)

2

⋮ ⋮ ⋮

⋮ ⋮ ⋮

⋮ ⋮ ⋮

⋮ ⋮ ⋮

⋮ ⋮ ⋮

i j # of iterations

0 0 1

0 1 2

0 2 3

0 3 4

0 n - 1 n

1 1 n + 1

1 2 n + 2

1 n - 1 2n - 1

2 2 2n

2 n - 1 3n - 2

3 3 3n - 1

3 n - 1 4n - 3

n - 1 n - 1 (n2 - n)/2

 iterations
n2

2
−

n
2
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Integer factorization

Goal.  Given a positive integer n, find its prime factorization. 
 
 
 
Grade-school factoring algorithm. 
 
 
 
 
 
 
 
 
 
Critical application.  Cryptography.

31

3,757,208  =  2 × 2 × 2 × 7 × 13 × 13 × 39798  =  2 × 7 × 7 11,111,111,111,111,111  =  2,071,723 × 5,363,222,357

security of internet commerce relies on 
difficulty of factoring very large integers

Consider each potential divisor d between 2 and n:

• while d is a divisor of n:

– print d

– n  ← n / d

FACTOR(n)



Integer factorization

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Remark.  Way too slow to break cryptography. (Input size is # of digits, so exponential runtime!)

32

public class Factors { 
   public static void main(String[] args) { 
      long n = Long.parseLong(args[0]); 

      for (long d = 2; d <= n; d++) {   
         while (n % d == 0) {   
            System.out.print(d + " "); 
            n = n / d;   
         } 
      } 
      System.out.println(); 

   } 
}

~/cos126/loops> java Factors 98 
2 7 7 

~/cos126/loops> java Factors 3757208 
2 2 2 7 13 13 397 

~/cos126/loops> java Factors 97 
97 

~/cos126/loops> java Factors 11111111111111111 
2071723 536322235

can be sped up substantially by stopping 
when  (but still way too slow)d > n

takes a few seconds

try all possible
divisors d

if d is a divisor,
factor it out



How difficult can it be?

Imagine a galactic computer… 

・With as many processors as electrons in the universe. 

・Each processor having the power of today’s supercomputers. 

・Each processor working for the lifetime of the universe. 
 
 
 
 
 
 
 
 
Q. Could galactic computer run Factors.java on a 1,000-digit (prime) number? 
A. Not even close: 101000  >>  1079  ⋅ 1018  ⋅ 1017  =  10114. 

 
Lesson.  Exponential growth dwarfs technological change.

33

quantity estimate

electrons in universe 1079

instructions per second 1018

age of universe in seconds 1017



Fast Fourier Transform

Critical application. Signal processing.

34

including Wi-Fi, 5G, JPEG, MP3…

“the most important numerical algorithm of our lifetime” — Gilbert Strang



Fast Fourier Transform

Critical application. Signal processing.  

In computational math: Multiplying -digit numbers. 

・Grade-school algorithm:  time. 

・Schönhage-Strassen (SS) algorithm:  time! 
 
 
Implemented in scientific computing libraries.  
Faster starting at 10,000-100,000 digits.  
 

 
Java’s BigInteger uses efficient multiplication (but not SS). 
Lots and lots of clever algorithms!

n

n2

n ⋅ log n ⋅ log log n

35

-cruncher: computed 202 
trillion (!) digits of 

γ
π

Algorithm Runtime

Grade school n2

Karatsuba n1.59

Toom-Cooke n1.46

Schönhage-Strassen n log n loglog n
Harvey-van der Hoeven n log n

1 0 9 8 0 1 5 9 6 0
x 5 8 6 0 3 4 8

8 7 8 4 1 2 7 6 8 0
4 3 9 2 0 6 3 8 4 0

3 2 9 4 0 4 7 8 8 0
0 0 0 0 0 0 0 0 0 0

6 5 8 8 0 9 5 7 6 0
8 7 8 4 1 2 7 6 8 0

5 4 9 0 0 7 9 8 0 0

6 4 3 4 7 5 5 6 3 5 1 5 4 0 8 0



A final thought

36

 “  The real problem is that programmers have spent far too 
much time worrying about efficiency in the wrong places and at 
the wrong times; premature optimization is the root of all evil (or 
at least most of it) in programming.  ”

                          — Donald Knuth
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