C O1nN p uter S C 1 cCnce ROBERT SEDGEWICK | KEVIN WAYNE

4.1 PERFORMANCE

» Intro

> empirical analysis

COMPUTER » mathematical analysis

S CIENCE
e > notable examples

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

4.1 PERFORMANCE

> Intro

~empirical analysis

COMPUTER
| | oA -ﬁtéro!’isc’iplindrylApproqchl . nOfabIe examples

. ROBERT SEDGEWICK |
KEVIN WAYNE"

» mathematical analysis

httpsi//introcs.cs:princeton.edu

https://introcs.cs.princeton.edu

Performance: quiz 1

Which of the options below best describes “an efficient algorithm” to you?

A. A.java processes 1MB in 1 second.

B.

C.
D

B.java processes 1GB in 10 seconds.

C.java processes x MB in 10,000x seconds.

D.java processes x MB in x? seconds.
2X

E.java processes x MB in seconds.

100,000

The runtime function

Suppose Program. java can be executed on inputs of arbitrarily large size.

T(n): time (in seconds) taken to run Program. java on input of n bytes.

T7(2% =1
7(2°) = 10
T(n) = 10,000 - n

T(n) = n?

2l’l

T —
) = 250,000

o 0O

m

A.java processes 1MB in 1 second.
B.Jjava processes 1GB in 10 seconds.
C.java processes x MB in 10,000x seconds.
D.java processes x MB in x* seconds.

Nx

E.java processes x MB in seconds.
100,000

?

What performance could mean

Fixed-length input. Input always has length s.
A is better than B if T,(s) < Tx(s).

Bounded-length input. Input always has length <s.
A is better than B if T,(n) < Ty(n) for all n < s.

Unbounded-length input. Input has any length n > 0.
A is better than B if T,(n) < Tx(n) for all n > 0.

Rate of growth — see next slide!

Many, many more:
« space complexity;

« polynomial vs. superpolynomial;

Intro: what performance does mean (for us)

Rate of growth: leading-order term of T(n), dropping constants.

Examples.
T(n) = 10,000 - n > C. (C.java processes x MB in 10,000x seconds. -« Rate of growth: n
T(n) = n? > D. D.java processes x MB in x? seconds. < Rate of growth: n?
2” 2.1C
T(n) = > E. E.java processes x MB in seconds. < f h: 2"
(n) 100.000] P X 700,000 Rate of growt

?

RoG of T(n) = n? — 100n is n”;

RoG of T(n) = 10n> — 600n? + 20n — 10,000 is n°>.

Intro: what performance does mean (for us)

Rate of growth: leading-order term of T(n), dropping constants.

Rate of growth, illustrated. s(n) = size of n x n PNG image

File size (bytes)

Image dimensions (pixels)

100 x 100
2 (
200 x 200
2 (
400 x 400
2 (
800 x 800
2 (
< 1600 x 1600
X 2
< 3,200 x 3,200
X 2
< 6,400 x 6,400
X 2
12,800 x 12,800
2 (

25,600 x 25,600

366
/736
1,886
5,585
18,600
67,136

252,917
984,103
3,878,458

X 2.01
X 2.56
X 2.96
X 3.33
X 3.61
X 3.77
X 3.89
X 3.94

2 N A N4 A A N7 4

1E+07
1E+06
1E+05
1E+04
1E+03
1E+02
1E+01
1E+00

s(n)
T =1
n) = +—
150
100 400 1600 6400

Remark. Table measures space, not time. But often connected, as we’ll see soon!

256000

Comparing rates of growth

Suppose Program. java can be executed on inputs of arbitrarily large size.

T(n): time taken to run Program. java on input of n bytes.

T(n) = n?
T(n) =2"
/ I(n) =n

1 2 3

Comparing rates of growth

Suppose Program. java can be executed on inputs of arbitrarily large size.

T(n): time taken to run Program. java on input of n bytes.

T(n) =2"

f T(n) = n?
T(n) =n

Comparing rates of growth

Suppose Program. java can be executed on inputs of arbitrarily large size.

T(n): time taken to run Program. java on input of n bytes.

=

1 2 3 4 5 o6 7 8 9 10 11 12

T(n) = 2"

T(n) = n?
T(n)=n

10

Comparing rates of growth

Suppose Program. java can be executed on inputs of arbitrarily large size.

T(n): time taken to run Program. java on input of n bytes.

=

1 2 3 4 5 o6 7 8 9 10 11 12
Caveats.

* Input size constrained by hardware & software;
« Runtime varies (a lot) depending on language;
« Time fluctuates across runs on same input;

Solution. Mathematical formalism.

T(n) = 2"

T(n) = n?
T(n)=n

11

Common orders of growth

formal notation includes ©®,
but we’ll drop it for simplicity

order of
growth

- (1)

Oog n)
O(n)
O log n)
O(n*)
O(n°)
O(n'°2"
O(1.17)
2"
On!)

constant
logarithmic
linear
linearithmic
quadratic
cubic
quasipolynomial
exponential
exponential

factorial

12

4.1 PERFORMANCE

» Infro

N » empirical analysis
COMPUTER ' » mathematical analysis
- SCIENCE

N E—— ~notable examples

. ROBERT SEDGEWICK |
~ KEVIN WAYNE'

% & +

httpsi//introcs.cs:princeton.edu

https://introcs.cs.princeton.edu

Checkerboard generator

public class Checkerboard {
public static void main(String[] args) {
int MIN_LEVEL = 0, MAX_LEVEL = 255;
int side = Integer.parselnt(args|[0]);

StdPicture.init(side, side): < initialize side-by-side

pixel picture

for (int col = 0; col < side; col++) {
boolean black = (col % 2 == 0); <
for (int row = 0; row < side; row++) {
1t (black)
StdPicture.setRGB(col, row, MIN_LEVEL, MIN_LEVEL, MIN_LEVEL):;
else
StdPicture.setRGB(col, row, MAX_ LEVEL, MAX_ LEVEL, MAX_LEVEL):
black = !'black;

first pixel of even/odd
cols set to black/white

}

StdPicture.save(side + “xX” + side +

: AN

} save picture to PNG file

l.png!!);

<

<

set to black

set to white

14

Checkerboard generator

T(n) = time taken to generate an n x n PNG checkerboard.

Image dimensions (pixels) Elapsed time (sec)

100 x 100
200 x 200
400 x 400
800 x 800
1600 x 1600
3,200 x 3,200
6,400 x 6,400
12,800 x 12,800
25,600 x 25,600

Remark. Here n is the input itself, not size; difference can

be important, but we’ll ignore for now.

java-introcs

java-introcs

java-introcs

java-introcs

java-introcs

java-introcs

java-introcs

java-introcs

java-introcs

Checkerboard

Checkerboard

Checkerboard

Checkerboard

Checkerboard

Checkerboard

Checkerboard

Checkerboard

Checkerboard

15

The doubling method

Assumption. T(n) is a polynomial (can be written as

an*+a_n*!' + - + an + a, for some k).

1. Choose an initial input.

2. Repeat until it takes too long: The math behind it:

- Run program on the current input.
1(2n) 2kaknk + -+ 2an + q

- Record the time elapsed in the run.

. T(n) anf+ - +an+a
- Double the input. () k : 0
. . LY I 2y 4o 24 _|_@
3. Divide longest by second-longest time, call the result r. s hTT BpErEL
o a,._ a a
4. Rate of growth is n*, where 2% is the power of 2 closest to r. Ay + ;1 Tt n,il +n—2
k
I’l—>02 2 ak _ 2k
Ay

Variants. Can multiply by another number b instead of 2;

then find power of b closest to r.

Nested for loops

Applying the doubling method.

n Elapsed time (hanoseconds)

long start = System.nanoTime(); 106
for (int 1 = 0; 1 < n; 1++) {

2 - 106

// some code 4 - 106

¥ 8 - 106
long elapsed = (double) (System.nanoTime() - start) / 1_000_000_000; 16 . 106

System.out.printin(“Elapsed time: + elapsed + sec.”);

32 - 106

Nested for loops

Applying the doubling method.

long start = System.nanoTime(); n Elapsed time (nanoseconds)

for (int 1 =0; 1 < n; 1++) { 2,000
for (int j = 0; j < n; j++) { 4.000
// some code 8,000

} 16,000

s 32,000
long elapsed = (double) (System.nanoTime() - start) / 1_000_000_000; 647000

System.out.printin(“Elapsed time: + elapsed + “ sec.”);

Nested for loops

Applying the doubling method.

long start = System.nanoTime();

for (int 1 = 0; 1 < n; 1++) { n Elapsed time (nanoseconds)

for (int j = 0; j < n; j++) { 50
for (int k = 0; k < n; k++) { 100

: // some code 200

: 400

) 800
long elapsed = (double) (System.nanoTime() - start) / 1_000_000_000; 1,600

System.out.printin(“Elapsed time: + elapsed + sec.”’);

Nested for loops

Applying the doubling method.

long start = System.nanolime() ;
for (int 1 = 0; 1 < n; i++) {

for (int j = 0; j < n; j++) { n Elapsed time (nanoseconds)

for (int k = 0; k < n; k++) { 10
for (int 1 =0; 1 < n; T++) { 20
// some code 40
5 80

¥
} 160
320

}
long elapsed = (double) (System.nanoTime() - start) / 1_000_000_000;

System.out.printin(“Elapsed time: 7 + elapsed + sec.”’);

Performance: quiz 2

As n grows, what does ratio converge to?

O; 1 < n; 1++) {
=0; jJ <n; j++t) {

// some code

A. 2

B. 3 for (int i =
C 4 for (int 3
D. 9 :

E. 16

21

Performance: quiz 3

As n grows, what does ratio converge to?

A. 2

B. 3 for (int 1 =0; i <n; i++) {
C 4 : // some code

D. 9 for (int J = 0; J < n; J++) {

// some code

E. 16 :

22

4.1 PERFORMANCE

» Infro

N ~empirical analysis
COMPUTER ' » mathematical analysis
- SCIENCE

N E—— ~notable examples

. ROBERT SEDGEWICK |
~ KEVIN WAYNE'

% & +

httpsi//introcs.cs:princeton.edu

https://introcs.cs.princeton.edu

Mathematical analysis

not elementary: StdPicture.read(),
StdAudio.play(), etc.

Elementary operations: <
« Declaring/assigning variable;
* Printing fixed-length string;

« Arithmetic operation;

Count # of elementary operations. Program tracing!

for (Aint 1 =0; 1 <n; 1++) {
// some elementary operations

of iterations

24

Mathematical analysis

Elementary operations:
« Declaring/assigning variable;
* Printing fixed-length string;
« Arithmetic operation;

Count # of elementary operations. Program tracing!

1 # of 1terations
for (int 1 = 1; 1 <=n; 1 *= 2) { 1 1
// some elementary operations s >
¥
4 3
8 4
n 1 +logon

25

Mathematical analysis

Elementary operations:

1 J # of 1terations
« Declaring/assigning variable;) 0 1
* Printing fixed-length string; 1 2
« Arithmetic operation; n iterations < : :
. 3 4
\ n
. . (1 0]
Count # of elementary operations. Program tracing! o
n iterations < L Beir
L 2n
>
2 0) 2n + 1
n iterations < : : :
: : : : 3
for (int 1 = 0; 1 < n; 1++) { = "
for (int j = 0; j < n; j++) { | | 0 3n:|—]
// some elementary operations n iterations < .
4n
} x
}
n iterations { n?

26

Mathematical analysis

Elementary operations:
« Declaring/assigning variable;
* Printing fixed-length string;

« Arithmetic operation;

Count # of elementary operations. Program tracing!

n? iterations

for (Aint 1 =0; 1 <n; 1++) {
for (int j =0; j < n; j++) {
// some elementary operations

of 1terations

e W N R O |

A~ w N

n+ 1

n+ 2

2n

2n + 1

n

n+ 1

4dn

27

Mathematical analysis

Elementary operations:
- Declaring/assigning variable; €
 Printing fixed-length string;

. Arithmetic operation; n iterations <

hYdS

Count # of elementary operations. Program tracing!

n— 1 iterations <

N

n—2 iterations <

for (int 1 = 0; 1 < n; 1++) {
for (int j =1; j < n; j++) {

Y4

// some elementary operations n— 3 Iterations

| iteration {

of 1terations

e W N R O |

A~ w N

n+ 1

n+ 2

2n - 1

2n

n-2

n -1

4dn - 3

(n? - n)/2

28

Mathematical analysis

The math behind it: i J # of iterations
Cal N=n+m-1)+--+2+1. / 0 0 1
1 2
_ 2 3
Then 2N = no+ n—1+ + 2 4 1=n-(n—1).
+ 1 + 2 + - 4+ n-1 + n 3 4
n-(n-—1 ' Y '
Therefore, N = n-1 " "
2 1 1 n+ 1
2 n+ 2
iterations . o
2 2 2n
for (int i = 0; i < n; i++) { n-1 3 -2
for (int j = 1; j < n; j++) { : ? 3n:]
// some elementary operations : : :
} n-1I 4n - 3
}
\ n-1 n-1 (n2-n)/2

4.1 PERFORMANCE

» Infro

N ~empirical analysis
COMPUTER ' > mathematical analysis
- SCIENCE

= R > notable examples

. ROBERT SEDGEWICK |
~ KEVIN WAYNE'

% & +

httpsi//introcs.cs:princeton.edu

https://introcs.cs.princeton.edu

Integer factorization

Goal. Given a positive integer n, find its prime factorization.

08 = 2x7x7 37757208 = 2x2x2x7x13x13x 397

Grade-school factoring algorithm.

FACTOR(n)

Consider each potential divisor d between 2 and n:
e while d is a divisor of n:
— printd

— n<mnld

1,111,111, 111,111,111 = 2,071,723 x 5,363,222,357

o : - security of internet commerce relies on
Critical b pl cation. Cryptograp hy. g%) difficulty of factoring very large integers

31

Integer factorization

public class Factors ~/cos126/loops> java Factors

public static void main(String[] args 2 77

long n Long.parselLong(args|0O

~/cosl26/loops> java Factors 3757208

for (long d 2; d n; d < quﬂ}mmmbkz 2 227 13 13 397
_ divisors d
while (n d 0
System out pr'-| nt(d wen ~/Cc0s126/1oops> java Factors
h=n/d ~__ 97
if dis a divisor, ~/cos126/Toops> java Factors 11111111111111111
Jactor it out 2071723 536322235

System.out.printlin S~

takes a few seconds

Remark. Way too slow to break cryptography. (Input size is # of digits, so exponential runtime!)

32

How difficult can it be?

Imagine a galactic computer...
« With as many processors as electrons in the universe.
« Each processor having the power of today’s supercomputers.

« Each processor working for the lifetime of the universe.

quantity estimate
electrons in universe 107
instructions per second 10'8
age of universe in seconds 10"

Q. Could galactic computer run Factors. java on a 1,000-digit (prime) number?
A. Not even close: 109 >> 107 -10'¢ - 107 = 104,

Lesson. Exponential growth dwarfs technological change.

33

Fast Fourier Transform

Critical application. Signal processing. - P

“the most important numerical algorithm of our lifetime” — Gilbert Strang

34

Fast Fourier Transform

Critical application. Signal processing.

In computational math: Multiplying n-digit numbers.
4

3 2

O O O

& 5§ % ¥

¥ 7 % 4 1
54 9 00 7

- Grade-school algorithm: »n? time.

« Schonhage-Strassen (SS) algorithm: n - logn - loglogn time!

¥
&
4-
O
4-
o
7
¥
o

0 O M 0 0 % X
oI~ 0 0P v

& 4 3 4 7 8

W

Implemented in scientific computing libraries.
Faster starting at 10,000-100,000 digits.

y-cruncher: computed 202 Algorithm m

trillion (!) digits of n
Grade school 12
y o .. Y : 1.59
Java’s BigInteger uses efficient multiplication (but not SS). Karatsuba n
Lots and lots of clever algorithms! Toom-Cooke nl 46

Schdénhage-Strassen n]()g n logl()g n
Harvey-van der Hoeven n l()g n

A final thought

“ The real problem is that programmers have spent far too

much time worrying about efficiency in the wrong places and at

the wrong times,; premature optimization is the root of all evil (or

at least most of it) in programming. ”

— Donald Knuth

Credits

media source license
Router Adobe Stock Education License
Fourier Transform Diagram TikZ .net
Blackboard Adobe Stock Education License
Donald Knuth IEEE Computer Society

Lecture Slides © Copyright 2024 Kevin Wayne and Marcel Dall’Agnol

https://stock.adobe.com/images/isometric-network-wi-fi-router-with-two-antennas-vector-illustration-isolated-on-white-background/286005066
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://tikz.net/fourier_transform/
https://stock.adobe.com/images/blackboard-with-wooden-frame-dirty-chalkboard/179862036
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.computer.org/profiles/donald-knuth

