
R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the field,
they also are masters of exposition. I am sure that every serious computer scientist

will find this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the field.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scientific studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the first half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded figures and code
n An all-new chapter introducing analytic combinatorics
n Simplified derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the field’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the field of analytic combinatorics;
having solved numerous difficult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

Computer Science ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 7/17/24 12:24  PM

4.1 PERFORMANCE

‣ intro

‣ empirical analysis

‣mathematical analysis

‣ notable examples

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

4.1 PERFORMANCE

‣ intro

‣ empirical analysis

‣mathematical analysis

‣ notable examples
R O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Performance: quiz 1

Which of the options below best describes “an efficient algorithm” to you?

A. A.java processes 1MB in 1 second.

B. B.java processes 1GB in 10 seconds.

C. C.java processes MB in seconds.

D. D.java processes MB in seconds.

E. E.java processes MB in seconds.

x 10,000x

x x2

x
2x

100,000

3

The runtime function

Suppose Program.java can be executed on inputs of arbitrarily large size.
: time (in seconds) taken to run Program.java on input of bytes.T(n) n

4

T(26) = 1

T(29) = 10

T(n) = 10,000 ⋅ n

T(n) = n2

T(n) =
2n

100,000

What performance could mean

Fixed-length input. Input always has length .
 is better than if .  

Bounded-length input. Input always has length .
 is better than if for all .  

Unbounded-length input. Input has any length .
 is better than if for all .

Rate of growth — see next slide!  
 

Many, many more:

・space complexity;

・polynomial vs. superpolynomial;

・

s

A B TA(s) < TB(s)

≤ s

A B TA(n) < TB(n) n ≤ s

n > 0

A B TA(n) < TB(n) n > 0

…

5

P vs. NP

Intro: what performance does mean (for us)

Rate of growth: leading-order term of , dropping constants.  

Examples.
 
 
 
 
 
 
 
RoG of is ;  

RoG of is .

T(n)

T(n) = n2 − 100n n2

T(n) = 10n3 − 600n2 + 20n − 10,000 n3

6

T(n) = 10,000 ⋅ n

T(n) = n2

T(n) =
2n

100,000

Rate of growth: n

Rate of growth: n2

Rate of growth: 2n

Intro: what performance does mean (for us)

Rate of growth: leading-order term of , dropping constants.  

Rate of growth, illustrated. size of PNG image  
 
 
 
 
 
 
 
 
 
 
 

Remark. Table measures space, not time. But often connected, as we’ll see soon!

T(n)

s(n) = n × n

7

Image dimensions (pixels) File size (bytes)

100 x 100 366

200 x 200 736

400 x 400 1,886

800 x 800 5,585

1600 x 1600 18,600

3,200 x 3,200 67,136

6,400 x 6,400 252,917

12,800 x 12,800 984,103

25,600 x 25,600 3,878,458

× 2 × 2.01

× 2 × 2.56

× 2 × 2.96

× 2 × 3.33

× 2 × 3.61

× 2 × 3.77

× 2 × 3.89

× 2 × 3.94 1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

100 400 1600 6400 25600

s(n)

T(n) =
n2

150

Loglog plot of side (y axis) vs. dimension (x axis)

Comparing rates of growth

Suppose Program.java can be executed on inputs of arbitrarily large size.
: time taken to run Program.java on input of bytes.T(n) n

8

1 2 3

T(n) = n2

T(n) = 2n

T(n) = n3

T(n) = n

Comparing rates of growth

Suppose Program.java can be executed on inputs of arbitrarily large size.
: time taken to run Program.java on input of bytes.T(n) n

9

T(n) = n2
T(n) = 2n

1 2 3 4 5

T(n) = n3

T(n) = n

Comparing rates of growth

Suppose Program.java can be executed on inputs of arbitrarily large size.
: time taken to run Program.java on input of bytes.T(n) n

10

T(n) = n2

T(n) = 2n

T(n) = n3

T(n) = n
1 2 3 4 5 6 7 8 9 10 11 12

Comparing rates of growth

Suppose Program.java can be executed on inputs of arbitrarily large size.
: time taken to run Program.java on input of bytes.

 
 
 
 
 
 
 
 
Caveats.

・Input size constrained by hardware & software;

・Runtime varies (a lot) depending on language;

・Time fluctuates across runs on same input;

・
Solution. Mathematical formalism.

T(n) n

…

11

T(n) = n2

T(n) = 2n

T(n) = n3

T(n) = n
1 2 3 4 5 6 7 8 9 10 11 12

Common orders of growth

12

Θ(1)
Θ(log n)

Θ(n)
Θ(n log n)

Θ(n2)
Θ(n3)

Θ(nlog n)
Θ(1.1n)
Θ(2n)
Θ(n!)

order of
growth name

constant

logarithmic

linear

linearithmic

quadratic

cubic

quasipolynomial

exponential

exponential

factorial

formal notation includes ,
but we’ll drop it for simplicity

Θ

4.1 PERFORMANCE

‣ intro

‣ empirical analysis

‣mathematical analysis

‣ notable examples
R O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Checkerboard generator

14

public class Checkerboard {
 public static void main(String[] args) {
 int MIN_LEVEL = 0, MAX_LEVEL = 255;
 int side = Integer.parseInt(args[0]);
 StdPicture.init(side, side);

 for (int col = 0; col < side; col++) {
 boolean black = (col % 2 == 0);
 for (int row = 0; row < side; row++) {
 if (black)
 StdPicture.setRGB(col, row, MIN_LEVEL, MIN_LEVEL, MIN_LEVEL);
 else
 StdPicture.setRGB(col, row, MAX_LEVEL, MAX_LEVEL, MAX_LEVEL);
 black = !black;
 }
 }
 StdPicture.save(side + “x” + side + “.png”);
 }
}

initialize side-by-side
pixel picture

save picture to PNG file

first pixel of even/odd
cols set to black/white

set to black

set to white

time taken to generate an PNG checkerboard.
 
 
 
 
 
 
 
 
 
 
 
 
 
Remark. Here is the input itself, not size; difference can
be important, but we’ll ignore for now.

T(n) = n × n

n

Checkerboard generator

15

~/> java-introcs Checkerboard 100

~/> java-introcs Checkerboard 200

~/> java-introcs Checkerboard 400

~/> java-introcs Checkerboard 800

~/> java-introcs Checkerboard 1600

~/> java-introcs Checkerboard 3200

~/> java-introcs Checkerboard 6400

~/> java-introcs Checkerboard 12800

~/> java-introcs Checkerboard 25600

Image dimensions (pixels) Elapsed time (sec)

100 x 100

200 x 200

400 x 400

800 x 800

1600 x 1600

3,200 x 3,200

6,400 x 6,400

12,800 x 12,800

25,600 x 25,600

The doubling method

Assumption. is a polynomial (can be written as
 for some).  

1. Choose an initial input.
2. Repeat until it takes too long:
– Run program on the current input.
– Record the time elapsed in the run.
– Double the input.

3. Divide longest by second-longest time, call the result .
4. Rate of growth is , where is the power of 2 closest to .

 
 
 
Variants. Can multiply by another number instead of ;  
then find power of closest to .

T(n)

aknk + ak−1nk−1 + ⋯ + a1n + a0 k

r

nk 2k r

b 2

b r

16

The math behind it:
 
 
 

T(2n)
T(n)

=
2kaknk + ⋯ + 2a1n + a0

aknk + ⋯ + a1n + a0

=
2kak +

2k−1ak−1

n + ⋯ + 2a1

nk−1 +
a0

nk

ak + ak−1

n + ⋯ + a1

nk−1 + a0

nk

n→∞ 2kak

ak
= 2k

Nested for loops

Applying the doubling method.

17

long start = System.nanoTime();
for (int i = 0; i < n; i++) {
 // some code
}
long elapsed = (double) (System.nanoTime() - start) / 1_000_000_000;
System.out.println(“Elapsed time: ” + elapsed + “ sec.”);

n Elapsed time (nanoseconds)
106

2 · 106

4 · 106

8 · 106

16 · 106

32 · 106

Nested for loops

Applying the doubling method.

18

n Elapsed time (nanoseconds)
2,000
4,000
8,000

16,000
32,000
64,000

long start = System.nanoTime();
for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 // some code
 }
}
long elapsed = (double) (System.nanoTime() - start) / 1_000_000_000;
System.out.println(“Elapsed time: ” + elapsed + “ sec.”);

Nested for loops

Applying the doubling method.

19

n Elapsed time (nanoseconds)
50

100
200
400
800

1,600

long start = System.nanoTime();
for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 for (int k = 0; k < n; k++) {
 // some code
 }
 }
}
long elapsed = (double) (System.nanoTime() - start) / 1_000_000_000;
System.out.println(“Elapsed time: ” + elapsed + “ sec.”);

Nested for loops

Applying the doubling method.

20

n Elapsed time (nanoseconds)
10
20
40
80

160
320

long start = System.nanoTime();
for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 for (int k = 0; k < n; k++) {
 for (int l = 0; l < n; l++) {
 // some code
 }
 }
 }
}
long elapsed = (double) (System.nanoTime() - start) / 1_000_000_000;
System.out.println(“Elapsed time: ” + elapsed + “ sec.”);

Performance: quiz 2

As grows, what does ratio converge to?

A. 2

B. 3

C. 4

D. 9

E. 16

n

21

for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 // some code
 }
}

doubling multiplies #
of iterations by

n
2 ⋅ 2 = 4

Performance: quiz 3

As grows, what does ratio converge to?

A. 2

B. 3

C. 4

D. 9

E. 16

n

22

doubling multiplies
of iterations by 2

n

for (int i = 0; i < n; i++) {
 // some code
}
for (int j = 0; j < n; j++) {
 // some code
}

4.1 PERFORMANCE

‣ intro

‣ empirical analysis

‣mathematical analysis

‣ notable examples
R O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Mathematical analysis

Elementary operations:

・Declaring/assigning variable;

・Printing fixed-length string;

・Arithmetic operation;

・…
 
Count # of elementary operations. Program tracing!

24

for (int i = 0; i < n; i++) {
 // some elementary operations
}

⋮ ⋮

i # of iterations

0 1

1 2

2 3

3 4

n - 1 n

not elementary: StdPicture.read(),
StdAudio.play(), etc.

Mathematical analysis

Elementary operations:

・Declaring/assigning variable;

・Printing fixed-length string;

・Arithmetic operation;

・…
 
Count # of elementary operations. Program tracing!

25

for (int i = 1; i <= n; i *= 2) {
 // some elementary operations
}

⋮ ⋮

i # of iterations

1 1

2 2

4 3

8 4

n 1 + log2 n

Mathematical analysis

Elementary operations:

・Declaring/assigning variable;

・Printing fixed-length string;

・Arithmetic operation;

・…

Count # of elementary operations. Program tracing!

26

for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 // some elementary operations
 }
}

⋮ ⋮ ⋮

⋮ ⋮ ⋮

⋮ ⋮ ⋮

⋮ ⋮ ⋮

⋮ ⋮ ⋮

i j # of iterations

0 0 1

0 1 2

0 2 3

0 3 4

0 n - 1 n

1 0 n + 1

1 1 n + 2

1 n - 1 2n

2 0 2n + 1

2 n - 1 3n

3 0 3n + 1

3 n - 1 4n

n - 1 n - 1 n2

 iterationsn

 iterationsn

 iterationsn

 iterationsn

 iterationsn

Mathematical analysis

Elementary operations:

・Declaring/assigning variable;

・Printing fixed-length string;

・Arithmetic operation;

・…

Count # of elementary operations. Program tracing!

27

for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 // some elementary operations
 }
}

⋮ ⋮ ⋮

⋮ ⋮ ⋮

⋮ ⋮ ⋮

⋮ ⋮ ⋮

⋮ ⋮ ⋮

i j # of iterations

0 0 1

0 1 2

0 2 3

0 3 4

0 n - 1 n

1 0 n + 1

1 1 n + 2

1 n - 1 2n

2 0 2n + 1

2 n - 1 3n

3 0 3n + 1

3 n - 1 4n

n - 1 n - 1 n2

 iterationsn2

Mathematical analysis

Elementary operations:

・Declaring/assigning variable;

・Printing fixed-length string;

・Arithmetic operation;

・…

Count # of elementary operations. Program tracing!

28

for (int i = 0; i < n; i++) {
 for (int j = i; j < n; j++) {
 // some elementary operations
 }
}

⋮ ⋮ ⋮

⋮ ⋮ ⋮

⋮ ⋮ ⋮

⋮ ⋮ ⋮

⋮ ⋮ ⋮

i j # of iterations

0 0 1

0 1 2

0 2 3

0 3 4

0 n - 1 n

1 1 n + 1

1 2 n + 2

1 n - 1 2n - 1

2 2 2n

2 n - 1 3n - 2

3 3 3n - 1

3 n - 1 4n - 3

n - 1 n - 1 (n2 - n)/2

 iterationsn

 iterationsn − 1

 iterationsn − 2

 iterationsn − 3

 iteration1

Mathematical analysis

29

for (int i = 0; i < n; i++) {
 for (int j = i; j < n; j++) {
 // some elementary operations
 }
}

Elementary operations:

・Declaring/assigning variable;

・Printing fixed-length string;

・Arithmetic operation;

・…

Count # of elementary operations. Program tracing!

The math behind it:
Call .  
 
Then .  
 
Therefore, .

N = n + (n − 1) + ⋯ + 2 + 1

2N = n + n − 1 + ⋯ + 2 + 1
+ 1 + 2 + ⋯ + n − 1 + n

= n ⋅ (n − 1)

N =
n ⋅ (n − 1)

2

⋮ ⋮ ⋮

⋮ ⋮ ⋮

⋮ ⋮ ⋮

⋮ ⋮ ⋮

⋮ ⋮ ⋮

i j # of iterations

0 0 1

0 1 2

0 2 3

0 3 4

0 n - 1 n

1 1 n + 1

1 2 n + 2

1 n - 1 2n - 1

2 2 2n

2 n - 1 3n - 2

3 3 3n - 1

3 n - 1 4n - 3

n - 1 n - 1 (n2 - n)/2

 iterations
n2

2
−

n
2

4.1 PERFORMANCE

‣ intro

‣ empirical analysis

‣mathematical analysis

‣ notable examples
R O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Integer factorization

Goal. Given a positive integer n, find its prime factorization.
 
 
 
Grade-school factoring algorithm.
 
 
 
 
 
 
 
 
 
Critical application. Cryptography.

31

3,757,208 = 2 × 2 × 2 × 7 × 13 × 13 × 39798 = 2 × 7 × 7 11,111,111,111,111,111 = 2,071,723 × 5,363,222,357

security of internet commerce relies on
difficulty of factoring very large integers

Consider each potential divisor d between 2 and n:

• while d is a divisor of n:

– print d

– n ← n / d

FACTOR(n)

Integer factorization

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Remark. Way too slow to break cryptography. (Input size is # of digits, so exponential runtime!)

32

public class Factors {
 public static void main(String[] args) {
 long n = Long.parseLong(args[0]);

 for (long d = 2; d <= n; d++) {
 while (n % d == 0) {
 System.out.print(d + " ");
 n = n / d;
 }
 }
 System.out.println();

 }
}

~/cos126/loops> java Factors 98
2 7 7

~/cos126/loops> java Factors 3757208
2 2 2 7 13 13 397

~/cos126/loops> java Factors 97
97

~/cos126/loops> java Factors 11111111111111111
2071723 536322235

can be sped up substantially by stopping
when (but still way too slow)d > n

takes a few seconds

try all possible
divisors d

if d is a divisor,
factor it out

How difficult can it be?

Imagine a galactic computer…

・With as many processors as electrons in the universe.

・Each processor having the power of today’s supercomputers.

・Each processor working for the lifetime of the universe.
 
 
 
 
 
 
 
 
Q. Could galactic computer run Factors.java on a 1,000-digit (prime) number?
A. Not even close: 101000 >> 1079 ⋅ 1018 ⋅ 1017 = 10114.

 
Lesson. Exponential growth dwarfs technological change.

33

quantity estimate

electrons in universe 1079

instructions per second 1018

age of universe in seconds 1017

Fast Fourier Transform

Critical application. Signal processing.

34

including Wi-Fi, 5G, JPEG, MP3…

“the most important numerical algorithm of our lifetime” — Gilbert Strang

Fast Fourier Transform

Critical application. Signal processing.  

In computational math: Multiplying -digit numbers.

・Grade-school algorithm: time.

・Schönhage-Strassen (SS) algorithm: time!
 
 
Implemented in scientific computing libraries.  
Faster starting at 10,000-100,000 digits.  
 

 
Java’s BigInteger uses efficient multiplication (but not SS).
Lots and lots of clever algorithms!

n

n2

n ⋅ log n ⋅ log log n

35

-cruncher: computed 202
trillion (!) digits of

γ
π

Algorithm Runtime

Grade school n2

Karatsuba n1.59

Toom-Cooke n1.46

Schönhage-Strassen n log n loglog n
Harvey-van der Hoeven n log n

1 0 9 8 0 1 5 9 6 0
x 5 8 6 0 3 4 8

8 7 8 4 1 2 7 6 8 0
4 3 9 2 0 6 3 8 4 0

3 2 9 4 0 4 7 8 8 0
0 0 0 0 0 0 0 0 0 0

6 5 8 8 0 9 5 7 6 0
8 7 8 4 1 2 7 6 8 0

5 4 9 0 0 7 9 8 0 0

6 4 3 4 7 5 5 6 3 5 1 5 4 0 8 0

A final thought

36

 “ The real problem is that programmers have spent far too
much time worrying about efficiency in the wrong places and at
the wrong times; premature optimization is the root of all evil (or
at least most of it) in programming. ”

 — Donald Knuth

Lecture Slides © Copyright 2024 Kevin Wayne and Marcel Dall'Agnol

Credits

media source license

Router Adobe Stock Education License

Fourier Transform Diagram TikZ.net

Blackboard Adobe Stock Education License

Donald Knuth IEEE Computer Society

https://stock.adobe.com/images/isometric-network-wi-fi-router-with-two-antennas-vector-illustration-isolated-on-white-background/286005066
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://tikz.net/fourier_transform/
https://stock.adobe.com/images/blackboard-with-wooden-frame-dirty-chalkboard/179862036
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.computer.org/profiles/donald-knuth

