Computer Science

4.1 PERFORMANCE

► intro

 empirical analysis mathematical analysis

notable examples

OMPUTER SCIENCE

An Interdisciplinary Approach

ROBERTÍSEDGEWICK KEVIN WÁYNE

https://introcs.cs.princeton.edu

978-0-321-90575-8 0-321-90575-X 5 7 9 9 9 3 2 1 9 0 5 7 9 8

ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 7/17/24 12:24PM

4.1 PERFORMANCE

► intro

empirical analysis
 mathematical analysis

notable examples

OMPUTER SCIENCE

An Interdisciplinary Approach

ROBERT SEDGEWICK Kevin Wayne

https://introcs.cs.princeton.edu

Which of the options below best describes "an efficient algorithm" to you?

- A. A.java processes 1MB in 1 second.
- **B.** B. java processes 1GB in 10 seconds.
- **C.** C. java processes *x* MB in 10,000*x* seconds.
- **D.** D. java processes x MB in x^2 seconds.
- **E.** E.java processes x MB in $\frac{2^x}{100,000}$ seconds.

Suppose Program. java can be executed on inputs of arbitrarily large size. T(n): time (in seconds) taken to run Program. java on input of n bytes.

What performance could mean

Fixed-length input. Input always has length *s*. *A* is better than *B* if $T_A(s) < T_B(s)$.

Bounded–length input. Input always has length $\leq s$. A is better than B if $T_A(n) < T_B(n)$ for all $n \leq s$.

Unbounded–length input. Input has any length n > 0. *A* is better than *B* if $T_A(n) < T_B(n)$ for all n > 0. Rate of growth — see next slide!

Many, many more:

- space complexity;

```
•
```

Intro: what performance does mean (for us)

Rate of growth: leading-order term of T(n), dropping constants. Examples.

> $T(n) = 10,000 \cdot n \longrightarrow C$. C. java processes x MB in 10,000x seconds. \leftarrow Rate of growth: n $T(n) = n^2 \longrightarrow D$. D. java processes x MB in x^2 seconds. At the second results and the second results $T(n) = n^2 \longrightarrow D$. D. java processes x MB in x^2 seconds. $T(n) = \frac{2^n}{100,000} \longrightarrow \text{E. E. java processes } x \text{ MB in } \frac{2^x}{100,000} \text{ seconds.} \longleftarrow \text{Rate of growth: } 2^n$

RoG of $T(n) = n^2 - 100n$ is n^2 ;

RoG of $T(n) = 10n^3 - 600n^2 + 20n - 10,000$ is n^3 .

Intro: what performance does mean (for us)

Rate of growth: leading-order term of T(n), dropping constants.

Rate of growth, illustrated. $s(n) = size of n \times n PNG$ image

	Image dimensions (pixels)	File size (bytes)
×2 (100 x 100	366
$\times 2$ (200 x 200	736
$\times 2$ (400 x 400	1,886
	800 x 800	5,585
×2 (1600 x 1600	18,600
$\times 2$	3,200 x 3,200	67,136
$\times 2$	6,400 x 6,400	252,917
×2 (12,800 x 12,800	984,103
×2 (25,600 x 25,600	3,878,458

Remark. Table measures *space*, not time. But often connected, as we'll see soon!

Loglog plot of side (y axis) vs. dimension (x axis)

Suppose Program. java can be executed on inputs of arbitrarily large size. T(n): time taken to run **Program. java** on input of *n* bytes.

Suppose Program. java can be executed on inputs of arbitrarily large size. T(n): time taken to run **Program. java** on input of *n* bytes.

Suppose Program. java can be executed on inputs of arbitrarily large size. T(n): time taken to run **Program. java** on input of *n* bytes.

Suppose Program. java can be executed on inputs of arbitrarily large size. T(n): time taken to run **Program. java** on input of *n* bytes.

Caveats.

- Input size constrained by hardware & software;
- Runtime varies (a lot) depending on language;
- Time fluctuates across runs on same input;

•

Solution. Mathematical formalism.

Common orders of growth

name
constant
logarithmic
linear
linearithmic
quadratic
cubic
quasipolynomial
exponential
exponential
factorial

4.1 PERFORMANCE

• intro

empirical analysis

mathematical analysis

notable examples

OMPUTER SCIENCE

An Interdisciplinary Approach

ROBERT SEDGEWICK KEVIN WAYNE

https://introcs.cs.princeton.edu

Checkerboard generator

T(n) = time taken to generate an $n \times n$ PNG checkerboard.

Image dimensions (pixels)	Elapsed time (sec)
100 x 100	
200 x 200	
400 x 400	
800 x 800	
1600 x 1600	
3,200 x 3,200	
6,400 x 6,400	
12,800 x 12,800	
25,600 x 25,600	

Remark. Here *n* is the input itself, not size; difference can be important, but we'll ignore for now.

~/> java-introcs Checkerboard	100
~/> java-introcs Checkerboard	200
~/> java-introcs Checkerboard	400
~/> java-introcs Checkerboard	800
~/> java-introcs Checkerboard	1600
~/> java-introcs Checkerboard	3200
~/> java-introcs Checkerboard	6400
~/> java-introcs Checkerboard	12800
~/> java-introcs Checkerboard	25600

Assumption. *T*(*n*) is a polynomial (can be written as $a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0$ for some *k*).

- 1. Choose an initial input.
- 2. Repeat until it takes too long:
- Run program on the current input.
- Record the time elapsed in the run.
- Double the input. —
- 3. Divide longest by second-longest time, call the result r.
- 4. Rate of growth is n^k , where 2^k is the power of 2 closest to r.

Variants. Can multiply by another number *b* instead of 2; then find power of *b* closest to *r*.

The math behind it:

$$\frac{T(2n)}{T(n)} = \frac{2^k a_k n^k + \dots + 2a_1 n + a_0}{a_k n^k + \dots + a_1 n + a_0}$$
$$= \frac{2^k a_k + \frac{2^{k-1} a_{k-1}}{n} + \dots + \frac{2a_1}{n^{k-1}} + \frac{a_0}{n^k}}{a_k + \frac{a_{k-1}}{n} + \dots + \frac{a_1}{n^{k-1}} + \frac{a_0}{n^k}}{a_k}$$
$$\xrightarrow{n \to \infty} \frac{2^k a_k}{a_k} = 2^k$$


```
long start = System.nanoTime();
for (int i = 0; i < n; i++) {
   // some code
}
long elapsed = (double) (System.nanoTime() - start) / 1_
System.out.println("Elapsed time: " + elapsed + " sec.")
```

		n	Elapsed time (nanoseconds)
		106	
		$2 \cdot 10^{6}$	
		$4 \cdot 10^{6}$	
_000_000_000;		$8 \cdot 10^{6}$	
_000_000_000,):	0_000,	$16 \cdot 10^{6}$	
7		$32 \cdot 10^{6}$	


```
long start = System.nanoTime();
for (int i = 0; i < n; i++) {
   for (int j = 0; j < n; j++) {
      // some code
   }
}
long elapsed = (double) (System.nanoTime() - start) / 1_0
System.out.println("Elapsed time: " + elapsed + " sec.");
```

	n	Elapsed time (nanoseconds)
	2,000	
	4,000	
	8,000	
	16,000	
_000_000_000;	32,000	
	64,000	
7		


```
long start = System.nanoTime();
for (int i = 0; i < n; i++) {
  for (int j = 0; j < n; j++) {
     for (int k = 0; k < n; k++) {
        // some code
long elapsed = (double) (System.nanoTime() - start) / 1_000_000_000;
System.out.println("Elapsed time: " + elapsed + " sec.");
```

n	Elapsed time (nanoseconds)
50	
100	
200	
400	
800	
1,600	


```
long start = System.nanoTime();
for (int i = 0; i < n; i++) {
  for (int j = 0; j < n; j++) {
     for (int k = 0; k < n; k++) {
        for (int l = 0; l < n; l++) {
           // some code
long elapsed = (double) (System.nanoTime() - start) / 1_000_000_000;
System.out.println("Elapsed time: " + elapsed + " sec.");
```

n	Elapsed time (nanoseconds)
10	
20	
40	
80	
160	
320	

As *n* grows, what does ratio converge to?

A. 2 **B.** 3 for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { **C.** 4 // some code } **D.** 9 **E.** 16

As *n* grows, what does ratio converge to?

Α.	2	
B.	3	for (int i = 0; i <
С.	4	<pre>// some code }</pre>
D.	9	<pre>for (int j = 0; j < // some code</pre>
Ε.	16	}

n; i++) {

n; j++) {

4.1 PERFORMANCE

▶ intro-

notable examples

OMPUTER CIENCE

An Interdisciplinary Approc

ROBERT SEDGEWICK KEVIN WAYNE

https://introcs.cs.princeton.edu

- empirical analysis

mathematical analysis

- Declaring/assigning variable;
- Printing fixed-length string;
- Arithmetic operation;
- ...

Count # of elementary operations. Program tracing!

not elementary: StdPicture.read(),
StdAudio.play(), etc.

i	<i># of iterations</i>
0	1
1	2
2	3
3	4
• •	•
n - 1	n

- Declaring/assigning variable;
- Printing fixed-length string;
- Arithmetic operation;
- ...

Count # of elementary operations. Program tracing!

i	<i># of iterations</i>
1	1
2	2
4	3
8	4
• •	•
п	$1 + \log_2 n$

- Declaring/assigning variable;
- Printing fixed-length string;
- Arithmetic operation;
- ...

Count # of elementary operations. Program tracing!

- Declaring/assigning variable;
- Printing fixed-length string;
- Arithmetic operation;
- ...

Count # of elementary operations. Program tracing!

	i	j	<i># of iterations</i>
	0	0	1
	0	1	2
	0	2	3
	0	3	4
	•	•	
	0	n - 1	n
	1	0	n + 1
	1	1	n+2
	•	•	•
n^2 iterations \langle	•	• n - 1	• 211
		11 - 1	2 <i>n</i>
	2	0	2n + 1
	•	•	
	2	n - 1	3n
	3	0	3n + 1
	•	•	•
	3	n - 1	4n
	• •	• • •	•
	n - 1	n - 1	n^2

- Declaring/assigning variable;
- Printing fixed-length string;
- Arithmetic operation;
- ...

Count # of elementary operations. Program tracing!

Mathematical analysis

The math behind it: Call $N = n + (n - 1) + \dots + 2 + 1$. Then $2N = \begin{pmatrix} n + n - 1 + \dots + 2 + 1 \\ + 1 + 2 + \dots + n - 1 + n \end{pmatrix} = n \cdot (n - 1)$. Therefore, $N = \frac{n \cdot (n - 1)}{2}$.

for (int i = 0; i < n; i++) {
 for (int j = i; j < n; j++) {
 // some elementary operations
 }
}</pre>

	i	j	<i># of iterations</i>
- 1).	0	0	1
	0	1	2
	0	2	3
	0	3	4
	•	•	•
	0	n - 1	n
	1	1	n + 1
$\frac{n^2}{2} - \frac{n}{2}$ iterations	1	2	n+2
	•	• •	•
	1	n - 1	2n - 1
	2	2	2n
	•	• •	• • •
	2	n - 1	3n - 2
	3	3	3n - 1
	•	• •	• • •
	3	n - 1	4n - 3
	• •	• •	• •
	n - 1	n - 1	$(n^2 - n)/2$

4.1 PERFORMANCE

empirical analysis
 mathematical analysis

notable examples

► intro-

OMPUTER SCIENCE

An Interdisciplinary Approach

ROBERT SEDGEWICK KEVIN WAYNE

https://introcs.cs.princeton.edu

Goal. Given a positive integer *n*, find its prime factorization.

 $98 = 2 \times 7 \times 7$ $3,757,208 = 2 \times 2 \times 2 \times 7 \times 13 \times 13 \times 397$

Grade-school factoring algorithm.

FACTOR(*n*)

Consider each potential divisor *d* between 2 and *n*:

• *while d* is a divisor of *n*:

– print d

 $- n \leftarrow n/d$

Critical application. Cryptography.

security of internet commerce relies on difficulty of factoring very large integers

Integer factorization

Remark. Way too slow to break cryptography. (Input *size* is # of digits, so exponential runtime!)

can be sped up substantially by stopping when $d > \sqrt{n}$ (but still way too slow)

try all possible divisors d

~/cos126/loops> java Factors 98 2 7 7

~/cos126/loops> java Factors 3757208 2 2 2 7 13 13 397

~/cos126/loops> java Factors 97 97

~/cos126/loops> java Factors 111111111111111111 2071723 536322235

takes a few seconds

Imagine a galactic computer...

- With as many processors as electrons in the universe.
- Each processor having the power of today's supercomputers.
- Each processor working for the lifetime of the universe.

quantity	estimate
electrons in universe	10^{79}
instructions per second	10^{18}
age of universe in seconds	10^{17}

Q. Could galactic computer run Factors.java on a 1,000-digit (prime) number? A. Not even close: $10^{1000} >> 10^{79} \cdot 10^{18} \cdot 10^{17} = 10^{114}$.

Lesson. Exponential growth dwarfs technological change.

Fast Fourier Transform

Critical application. Signal processing. ← including Wi-Fi, 5G, JPEG, MP3...

"the most important numerical algorithm of our lifetime" — Gilbert Strang

Critical application. Signal processing.

In computational math: Multiplying *n*-digit numbers.

- Grade-school algorithm: *n*² time.
- Schönhage–Strassen (SS) algorithm: $n \cdot \log n \cdot \log \log n$ time!

Implemented in scientific computing libraries. Faster starting at 10,000–100,000 digits.

> *γ-cruncher: computed 202* trillion (!) digits of π

Java's **BigInteger** uses efficient multiplication (but not SS). Lots and lots of clever algorithms!

Algorithm	Runtime
Grade school	n^2
Karatsuba	n ^{1.59}
Toom–Cooke	n ^{1.46}
Schönhage-Strassen	n log n loglog
Harvey-van der Hoeven	$n \log n$

" The real problem is that programmers have spent far too much time worrying about efficiency in the wrong places and at the wrong times; premature optimization is the root of all evil (or at least most of it) in programming."

— Donald Knuth

Credits

media

Router

Fourier Transform Diagram

Blackboard

Donald Knuth

source	license
Adobe Stock	Education License
<u>TikZ.net</u>	
Adobe Stock	Education License
IEEE Computer Society	

Lecture Slides © Copyright 2024 Kevin Wayne and Marcel Dall'Agnol