
R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the field,
they also are masters of exposition. I am sure that every serious computer scientist

will find this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the field.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scientific studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the first half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded figures and code
n An all-new chapter introducing analytic combinatorics
n Simplified derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the field’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the field of analytic combinatorics;
having solved numerous difficult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

Computer Science ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 7/15/24 3:17  PM

1.3 LOOPS

‣while loops

‣ do–while loops

‣ for loops

‣ nested loops

‣ image processing
https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

functions libraries

loops

Basic building blocks for programming

2

graphics, sound, and image I/O

arrays

Math text I/O

assignment statementsbuilt-in data types

conditionals

to infinity and beyond !

loops

1.3 LOOPS

‣while loops

‣ do–while loops

‣ for loops

‣ nested loops

‣ image processingR O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

The while loop

Goal. Repeat a certain statement (or statements).

・Evaluate a boolean expression. If true,
– execute sequence of statements in code block
– repeat

4

while (<boolean expression>) {
 <statement 1>
 <statement 2>

<statement >

}

⋮
n

while loop

loop-continuation condition

while loop flow chart

boolean
expression

false

statement n

statement 1

start

end

⋮

statement 2

true

Goal. Recreate percussive beat from Queen’s “We Will Rock You.”

effect audio file sound

stomp stomp.wav

clap clap.wav

silence rest.wav

An infinite while loop

public class StompStompClap {
 public static void main(String[] args) {

 while (true) {
 StdAudio.play("stomp.wav");
 StdAudio.play("stomp.wav");
 StdAudio.play("clap.wav");
 StdAudio.play("rest.wav");
 }

 }
}

5

an infinite loop

~/cos126/loops> java-introcs StompStompClap

 [plays stomp-stomp-clap beat]

    


Stomp ClapStomp

<Ctrl–C> to break out of infinite loop

Goal. Repeat a ringtone n times.

Counting from 1 to n

public class Ringtone {
 public static void main(String[] args) {
 String filename = args[0];
 int n = Integer.parseInt(args[1]);

 int i = 0;
 while (i < n) {
 StdAudio.play(filename);
 i++;
 }

 }
}

6

~/cos126/loops> java-introcs Ringtone marimba.wav 1

 [plays marimba ringtone once]

~/cos126/loops> java-introcs Ringtone marimba.wav 3

 [plays marimba ringtone three times]

~/cos126/loops> java-introcs Ringtone sonar.wav 2

 [plays sonar ringtone twice]
repeat n times

shorthand for
 i = i + 1;

Goal. Repeat a ringtone n times.
Trace. Show values of variables at end of each iteration of while loop.

public class Ringtone {
 public static void main(String[] args) {
 String filename = args[0];
 int n = Integer.parseInt(args[1]);

 int i = 0;
 while (i < n) {
 StdAudio.play(filename);
 i++;
 }

 }
}

Counting from 1 to n

7

filename n i

"marimba.wav" 3 0

"marimba.wav" 3 1

"marimba.wav" 3 2

"marimba.wav" 3 3

a trace of variables
(values at end of each loop iteration)

before loop

after loop

public class Mystery {
 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 int i = 0;
 int value = 0;

 while (value <= n) {
 System.out.println(value);
 value += 2 * i + 1;
 i++;
 }

 }
}

Loops: quiz 1

What does the following program do when ?

A. Prints 0 to 10 .

B. Prints even numbers, from 0 to 10.

C. Prints squares, from 0 to 10 .

D. Prints powers of 2 , from 20 to 210.

E. None of the above.

n = 10

8

shorthand for value = value + (2 * i + 1)

Examples of while loops

9

computation while loop

print integers
from n down to 1

int i = n;
while (i >= 1) {
 System.out.println(i);
 i--;
}

infinite loop
while (true) {
 StdAudio.play("heartbeat.wav");
}

number of decimal digits
in positive integer x

int digits = 0;
while (x > 0) {
 x = x / 10;
 digits++;
}

curly braces are optional here
since only one statement in body of loop

(but better style to use curly braces)

integer division

shorthand for
i = i - 1

Goal. Check if repeated applications of the Collatz transformation yield the number 1.
 
 
 
 
 
 
 
 
 
 
 
 
 
Tested up to — larger than Long.MAX_VALUE! (But still don’t know if always true.)268

public class Collatz {
 public static void main(String[] args) {
 long n = Long.parseLong(args[0]);

 System.out.println(n);
 while (n != 1) {
 if (n % 2 == 0)
 n /= 2;
 else
 n = n * 3 + 1;
 System.out.println(n);
 }

 }
}

The Collatz conjecture

10

LOOPS

‣while loops

‣ do–while loops

‣ for loops

‣ nested loops

‣ image processingR O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

The do–while loop

Another repetition structure.

・Execute a sequence of statements.

・Repeat until some boolean expression is true.

12

do {
 <statement 1>
 <statement 2>

<statement >

} while (<boolean expression>);

⋮
n

do–while loop do-while loop flow chart

boolean
expression

true false

statement n

statement 1

start

end

⋮

statement 2

while loop starts
here instead

Wile E. Coyote and Road Runner

13

while (!edge) {
 run();
}

do {
 run();
} while (!edge);

Random point in unit circle

Goal. Generate a random point in unit circle.  

Rejection sampling.

・Generate a random point in 2-by-2 square centered at origin.

・If point is inside circle, use that point;  
otherwise, repeat.

14

double x, y;
do {
 x = 2.0 * Math.random() - 1.0;
 y = 2.0 * Math.random() - 1.0;
} while (x*x + y*y > 1.0);
System.out.println("(" + x + ", " + y + ")");

do–while loop

must be declared outside block

random (x, y) in square

repeat until it’s in the circle

x

y

in

(0, 0)

(1, 1)

out

LOOPS

‣while loops

‣ do-while loops

‣ for loops

‣ nested loops

‣ image processingR O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

A for loop (in C)

16

Copyright 2004, FoxTrot by Bill Amend

https://www.gocomics.com/foxtrot/2003/10/03

The for loop

An alternative repetition structure.

・Perform an initialization step.

・Evaluate a boolean expression. If true,
– execute sequence of statements in code block
– perform an update step
– repeat

17

for (<init>; <boolean expression>; <update>) {
 <statement 1>
 <statement 2>

<statement >

}

⋮
n

for loop template

typically, declaring and initializing the value of a variable

typically, updating the value of a variable

boolean
expression

true false

statement n

statement 1

initialization

update end

start

for loop flowchart

⋮

Counting from 1 to n

Goal. Play a WAV file n times.

public class MusicLoop {
 public static void main(String[] args) {
 String filename = args[0];
 int n = Integer.parseInt(args[1]);

 for (int i = 0; i < n; i++) {
 StdAudio.play(filename);
 }

 }
}

18

repeat n times

~/cos126/loops> java-introcs MusicLoop heartbeat.wav 1

 [plays heartbeat once]

~/cos126/loops> java-introcs MusicLoop heartbeat.wav 9999999

 [plays heartbeat repeatedly]

~/cos126/loops> java-introcs MusicLoop AmenBreak.wav 10

 [plays The Winstons "Amen Break" drum break 10 times]

identical behavior
as Ringtone.java

among most sampled tracks
in music history

Examples of for loops

19

computation for loop

factorial
(1 × 2 × 3 × … × n)

int product = 1;
for (int i = 2; i <= n; i++) {
 product *= i;
}

print integers
from n down to 1

for (int i = n; i > 0; i--) {
 System.out.println(i);
}

infinite loop
for (;;) {

 StdAudio.play("heartbeat.wav");
}

curly braces are optional since
if body consists of only one statement
(but better style to include)

empty initialization and update
(but better style to use while loop)

Loops: quiz 2

Q. Which value does the following program print when ?

A. 8

B. 64

C. 256

D. 512

E. 1024

n = 3

20

public class AnotherMystery {
 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);

 long result = 2;
 for (int i = 0; i < n; i++)
 result = result * result;

 System.out.println(result);
 }
}

n i result

3 2

3 0 4

3 1 16

3 2 256

3 3 256

before loop

after loop

28 = 223

while vs. for loops

Fact. Any while loop can be replaced with a for loop, and vice versa.  

Q. Which one should I use?
A. Guiding principle: use loop construct that leads to clearer code.
 
Rule-of-thumb. Use a for loop when you know the number of iterations ahead of time.

21

int i = 0;
while (i < n) {
 StdAudio.play(filename);
 i++;
}

while loop

for (int i = 0; i < n; i++) {
 StdAudio.play(filename);
}

equivalent for loop
(except i not accessible after loop)

code controlling loop
localized to one place

LOOPS

‣while loops

‣ do-while loops

‣ for loops

‣ nested loops

‣ image processingR O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Loops: quiz 3

Suppose and . How many lines of output does the following program produce?

A. 4

B. 7

C. 13

D. 28

E. 32

m = 4 n = 7

23

public class YetAnotherMystery {
 public static void main(String[] args) {
 int m = Integer.parseInt(args[0]);
 int n = Integer.parseInt(args[1]);

 for (int i = 0; i < m; i++) {
 for (int j = 0; j < n; j++) {
 System.out.println(i + “, " + j);
 }
 }
 }
}

for loop nested
within a for loop

mn

LOOPS

‣while loops

‣ do-while loops

‣ for loops

‣ nested loops

‣ image processingR O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Image processing

A picture is a width-by-height grid of pixels; each pixel has a color.
 
 
 
 
 
 
 
 
 
 
 
 
Image-processing conventions.

・Pixel (i, j) means column i and row j.

・Pixel (0, 0) is upper–left.
25

arch.jpgmandrill.jpg

warning: different conventions from
matrices and Cartesian coordinates

!"#$%
!&'%()*'+"

+",-.

!"#$%
!/()/"

.$"0.-
&'%

*'+

!"#$%
!&'%1#()*'+$#"

RGB color model

Color is a sensation in the eye from electromagnetic radiation.  

RGB color model. Popular format for representing color on digital displays.

・Color is composed of red, green, and blue components.

・Each color component is an integer between 0 to 255.

26

name red green blue color

red 255 0 0

green 0 255 0

blue 0 0 255

black 0 0 0

white 255 255 255

yellow 255 255 0

magenta 255 0 255

cyan 0 255 255

book blue 0 64 128

Grayscale

Goal. Convert color image to grayscale.

・RGB color is a shade of gray when R = G = B.

・To convert RGB color to grayscale, use luminance for R, G, and B values:

27

lum gray

76

150

29

0

255

226

105

179

52

Y = 0.299 R + 0.587 G + 0.114 B

Y = 0.299 R + 0.587 G + 0.114 B

 = 0.299 (0) + 0.587 (64) + 0.114 (128)

 = 52.16

fundamental operation
in computer graphics and vision

name red green blue color

red 255 0 0

green 0 255 0

blue 0 0 255

black 0 0 0

white 255 255 255

yellow 255 255 0

magenta 255 0 255

cyan 0 255 255

book blue 0 64 128

not the same as in ColorContrast!

Standard picture library

StdPicture. Our library for manipulating images.

28

public class StdPicture

static void read(String filename) initialize picture from filename

static void save(String filename) save picture to filename

static int width() width of picture

static int height() height of picture

static int getRed(int col, int row) red component of pixel (col, row)

static int getGreen(int col, int row) green component of pixel (col, row)

static int getBlue(int col, int row) blue component of pixel (col, row)

static void setRGB(int col, int row,
 int r, int g, int b) set color of pixel (col, row) to (r, g, b)

 ⋮ ⋮

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

available with javac-introcs
and java-introcs commands

supported file formats:
JPEG, PNG, GIF, TIFF, BMP

RGB layers negative

Image processing: color image filters

29

sepia duotoneoriginal grayscale

brighter darker

Grayscale filter

30

public class Grayscale {
 public static void main(String[] args) {
 String filename = args[0];
 StdPicture.read(filename);
 int width = StdPicture.width();
 int height = StdPicture.height();

 for (int col = 0; col < width; col++) {
 for (int row = 0; row < height; row++) {
 int r = StdPicture.getRed(col, row);
 int g = StdPicture.getGreen(col, row);
 int b = StdPicture.getBlue(col, row);
 int y = (int) (Math.round(0.299*r + 0.587*g + 0.114*b));
 StdPicture.setRGB(col, row, y, y, y);
 }
 }

 StdPicture.show();
 }
}

~/> java-introcs Grayscale arch.jpg

luminance formula
(Y = 0.299 R + 0.587 G + 0.114 B)

read picture from file
and get dimensions

display picture in window

iterate over
all pixels

get RGB values

Compute the negative: demo

Goal. Find the negative of an image (where light colors become dark and vice-versa).
 
Algorithm. For each pixel with color values , replace it with .(r, g, b) (255 − r, 255 − g, 255 − b)

31

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) (5, 0)

(0, 1) (1, 1) (2, 1) (3, 1) (4, 1) (5, 1)

(0, 2) (1, 2) (2, 2) (3, 2) (4, 2) (5, 2)

(0, 3) (1, 3) (2, 3) (3, 3) (4, 3) (5, 3)

original image

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) (5, 0)

(0, 1) (1, 1) (2, 1) (3, 1) (4, 1) (5, 1)

(0, 2) (1, 2) (2, 2) (3, 2) (4, 2) (5, 2)

(1, 3) (2, 3) (3, 3) (4, 3) (5, 3)

negative image

(0, 3)

Compute the negative: implementation

Goal. Find the negative of an image (where light colors become dark and vice-versa).

Algorithm. For each pixel with color values , replace it with .(r, g, b) (255 − r,255 − g,255 − b)

32

for (int row = 0; row < height; row++) {
 for (int col = 0; col < width; col++) {
 int r = StdPicture.getRed(col, row);
 int g = StdPicture.getGreen(col, row);
 int b = StdPicture.getBlue(col, row);

 StdPicture.setRGB(col, row, 255 - r, 255 - g, 255 - b);
 }
}
StdPicture.show();

~/> java-introcs Negative arch.jpg

Loops: quiz 4

What image does the following code fragment produce?

A. Original image.

B. Negative.

C. Red channel.

D. Blue channel.

E. Green channel.

33

for (int col = 0; col < width; col++) {
 for (int row = 0; row < height; row++) {
 int r = StdPicture.getRed(col, row);
 int g = StdPicture.getGreen(col, row);
 int b = StdPicture.getBlue(col, row);

 StdPicture.setRGB(col, row, r, 0, 0);
 }
}
StdPicture.show();

for loops in reverse order

different arguments to setRGB

Brighten: demo

Goal. Increase the brightness of every pixel.
 
Algorithm. For each pixel with color values , replace it with .(r, g, b) (255 + r

2
,

255 + g
2

,
255 + b

2)

34

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) (5, 0)

(0, 1) (1, 1) (2, 1) (3, 1) (4, 1) (5, 1)

(0, 2) (1, 2) (2, 2) (3, 2) (4, 2) (5, 2)

(0, 3) (1, 3) (2, 3) (3, 3) (4, 3) (5, 3)

original image brighter image

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) (5, 0)

(0, 1) (1, 1) (2, 1) (3, 1) (4, 1) (5, 1)

(0, 2) (1, 2) (2, 2) (3, 2) (4, 2) (5, 2)

(0, 3) (1, 3) (2, 3) (3, 3) (4, 3) (5, 3)

Brighten: implementation

Goal. Increase the brightness of every pixel.
 
Algorithm. For each pixel with color values , replace it with .(r, g, b) (255 + r

2
,

255 + g
2

,
255 + b

2)

35

for (int row = 0; row < height; row++) {
 for (int col = 0; col < width; col++) {
 int r = Math.round((StdPicture.getRed(col, row) + 255) / 2.0);
 int g = Math.round((StdPicture.getGreen(col, row) + 255) / 2.0);
 int b = Math.round((StdPicture.getBlue(col, row) + 255) / 2.0);

 StdPicture.setRGB(col, row, r, g, b);
 }
}
StdPicture.show();

~/> java-introcs Brighten arch.jpg

Summary

Iteration. Use while and for loops to repeat code in a program.
Nested iteration. Body of loop contains another loop.
Image processing. An image is a 2D grid of pixels, each of which has r, g and b color levels.

36

control flow with conditionals and loops

Lecture Slides © Copyright 2024 Robert Sedgewick, Kevin Wayne and Marcel Dall'Agnol

Credits

media source license

Russian Nesting Dolls Adobe Stock education license

Image Processing Icon Adobe Stock education license

Mandrill USC SIPI Image Database

Johnson Arch Danielle Alio Capparella by photographer

RGB Color Model Wikimedia Kopimi

LGBTQ+ Eye Wikimedia CC BY 2.0

https://stock.adobe.com/images/russian-nesting-dolls-babushka-half-open/23095299
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/image-processing-flat-icon/420702399
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://sipi.usc.edu/database/database.php?volume=misc
https://reunions.princeton.edu/project/campus/
https://commons.wikimedia.org/wiki/File:RGB_color_model.svg
https://en.wikipedia.org/wiki/Piratbyr%C3%A5n#Kopimi
https://commons.wikimedia.org/wiki/File:LGBTQ+_Eye_(49620315828).jpg
https://creativecommons.org/licenses/by/2.0/

