
R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the field,
they also are masters of exposition. I am sure that every serious computer scientist

will find this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the field.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scientific studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the first half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded figures and code
n An all-new chapter introducing analytic combinatorics
n Simplified derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the field’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the field of analytic combinatorics;
having solved numerous difficult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

Computer Science ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 8/5/24 5:26  PM

1.5 INPUT AND OUTPUT

‣ standard input and output

‣ redirection and piping

‣ standard MIDI

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Basic building blocks for programming

2

arrays

Math text I/O

assignment statementsprimitive data types

graphics, sound, and image I/O

conditionals loops
interact with the outside world

text I/O

graphics, sound, and image I/O

functions libraries

Input and output

Goal. Write Java programs that interact with the outside world via input and output devices.  
 

Input devices.
 
 
 
 
 
 
Output devices.

3

storage network webcamtrackpad microphone

storage network braille displayearbuds

keyboard

video display

1.5 INPUT AND OUTPUT

‣ standard input and output

‣ redirection and piping

‣ standard MIDI

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Our approach.

・Define input and output abstractions.

・Use operating system (OS) functionality to connect our Java programs to physical devices.

Input–output abstractions (so far)

5

command-line
arguments standard output

standard
input

standard input command-l ine
arguments

standard output

standard drawing

standard audio

standard picture

standard input command-l ine
arguments

standard output

standard drawing

standard audio

standard picture

Review: terminal

Terminal. A text-based interface for interacting with programs, files, and devices.

6

VT-100 terminal emulator

output to standard output input from command line

Review: command-line arguments

Command-line arguments. Provide text input to a program.
 
Basic properties.

・Arguments provided to a program by typing after program name.

・Arguments provided to program before execution.

・Java: string arguments available in main() as args[0], args[1], …

7

public class HelloGoodbye {
 public static void main(String[] args) {
 StdOut.print("Hello ");
 StdOut.println(args[0] + ".");
 StdOut.print("Goodbye ");
 StdOut.println(args[1] + ".");
 }
}

~/cos126/io> java HelloGoodbye Kevin Alan
Hello Kevin.
Goodbye Alan.

~/cos126/io> java HelloGoodbye Arya Zahara
Hello Arya.
Goodbye Zahara.

~/cos126/io> java HelloGoodbye Aðalbjörg "Hua Fei"
Hello Aðalbjörg.
Goodbye Hua Fei.

args[0] args[1]

use quotes

command-line arguments

replaces System.out.println()

Review: standard output

Standard output stream. An abstraction for an output sequence of text.
 
Basic properties.

・The call System.out.println()/StdOut.println() appends text to the standard output stream.

・By default, the standard output stream is connected to the terminal.

・No limit on amount of output.

8

public class PrintSquares {
 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 int square = 0;
 for (int i = 0; i < n; i++) {
 square += 2 * i + 1;
 StdOut.println(square);
 }
 }
}

~/cos126/io> java PrintSquares 4
0
1
4
9

~/cos126/io> java PrintSquares 10000
0
1
4
9
16
...

produces
lots of output

Input–output abstractions: standard input

Next step. Add a text input stream.

9

command-line
arguments standard output

standard
input

standard input command-l ine
arguments

standard output

standard drawing

standard audio

standard picture

standard input command-l ine
arguments

standard output

standard drawing

standard audio

standard picture

Standard input

Standard input stream. An abstraction for an input sequence of text.
 
Advantages over command-line arguments:

・No limit on the amount of input.

・Conversion to primitive types is explicitly handled.

・Can provide input interactively, while the program is executing.

10

standard
input

Standard input library

StdIn. Our library for reading strings and numbers from standard input.

11

public class StdIn description

static boolean isEmpty() true if no more values, false otherwise

static int readInt() read a value of type int

static double readDouble() read a value of type double

static boolean readBoolean() read a value of type boolean

static String readString() read a value of type String

 ⋮ ⋮

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

available with javac-introcs
and java-introcs commands

reads next token (sequence of non-whitespace characters)
and attempts to parse as specified type

Standard output library

StdOut. Our library for printing strings and numbers to standard output.
 
 
 
 
 
 
 
 
 
 
 
 
 
Q. How different from System.out.println() ?
A. Mostly the same, but output is independent of system and locale.

12

we’ll use StdOut from now on

public class StdOut description

static void print(String s) print s on the output stream

static void println() print a newline on the output stream

static void println(String s) print s, then a newline on the stream

static void printf(String f, ...) print formatted output

⋮ ⋮

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

available with javac-introcs
and java-introcs commands

Twenty Questions

Goal. Find a secret number between 1 and 1,000,000 in twenty guesses (with feedback).

13

public class TwentyQuestions {
 public static void main(String[] args) {
 int secret = (int) Math.random() * 1_000_000;

 StdOut.print(“I’m thinking of a number ”);
 StdOut.println(“between 1 and 1,000,000”);
 int guess = 0;

 while (guess != secret) {
 StdOut.print(“What’s your guess? ”);
 guess = StdIn.readInt();

 if (guess < secret) StdOut.println(“Too low”);
 else if (guess > secret) StdOut.println(“Too high”);
 else StdOut.println(“You win!”);

 }
 }
}

Add numbers on the standard input stream

Goal. Read a stream of numbers (from standard input) and print their sum (to standard output).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Remark. No limit on amount of input.

14

public class Sum {
 public static void main(String[] args) {
 double sum = 0.0;

 while (!StdIn.isEmpty())
 sum += StdIn.readDouble();

 StdOut.println(sum);
 }
}

~/cos126/io> java-introcs Sum
1.0
2.0
4.0
2.0
<Ctrl-D>
9.0

~/cos126/io> java-introcs Sum
10.0 5.0 6.0 3.0
7.0 32.0
<Ctrl-D>
63.0

signifies end of standard input
(<Ctrl–Z><Enter> on Windows)

values separated
by whitespace

“streaming algorithm”
(avoids storing data)

Goal. Read a stream of numbers and print their squares.

public class SquareAll {
 public static void main(String[] args) {

 while (!StdIn.isEmpty()) {
 double x = StdIn.readDouble();
 StdOut.println(x * x);
 }
 }
}

Square every number

15

~/cos126/io> java-introcs SquareAll
1.0
1.0
2.0
4.0
4.0
16.0
<Ctrl-D>

signifies end of standard input
(<Ctrl–Z><Enter> on Windows)

Goal. Read from command line and print the numbers from stream to the power .n n

public class RaiseAll {
 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);

 while (!StdIn.isEmpty()) {
 double x = StdIn.readDouble();
 StdOut.println(Math.pow(x, n);
 }
 }
}

Power every number

16

~/cos126/io> java-introcs RaiseAll 3
1.0
1.0
2.0
8.0
4.0
64.0
<Ctrl-D>

signifies end of standard input
(<Ctrl–Z><Enter> on Windows)

Goal. Read from the command line, a of stream numbers and print their ratio by .n n

public class DivideAll {
 public static void main(String[] args) {
 int n = Double.parseDouble(args[0]);

 while (!StdIn.isEmpty())
 StdOut.println(StdIn.readDouble() / n);
 }
}

Divide every number

17

~/cos126/io> java-introcs DivideAll 10
1.0
0.1
2.0
0.2
4.0
0.4
<Ctrl-D>

signifies end of standard input
(<Ctrl–Z><Enter> on Windows)

Average

Goal. Read a stream of numbers (from standard input) and print their average (to standard output).

18

~/cos126/io> java-introcs Average
1.0
2.0
4.0
2.0
<Ctrl-D>
2.25

~/cos126/io> java-introcs Average
10.0 5.0 6.0 3.0
7.0 32.0
<Ctrl-D>
10.5

signifies end of standard input
(<Ctrl–Z><Enter> on Windows)

values separated
by whitespace

public class Average {
 public static void main(String[] args) {
 double sum = 0.0;
 int n = 0;

 while (!StdIn.isEmpty()) {
 double x = StdIn.readDouble();
 sum += x;
 n++;
 }

 StdOut.println(sum / n);
 }
}

What does the following program do with the given input?

A. Prints "A", "B", and "C".

B. Throws an error.

C. Both A and B.

D. Neither A nor B.

Input and output: quiz 1

19

public class Mystery {
 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 for (int i = 0; i < n; i++) {
 String s = StdIn.readString();
 StdOut.println(s);
 }
 }
}

~/cos126/io> java-introcs Mystery 5
A B C
<Ctrl-D>
A
B
C
Exception in thread "main"
java.util.NoSuchElementException: attempts to
read a 'String' value from standard input,
but no more tokens are available

The printf() method

Print with formatting. Choose number of characters and precision.
 
 
 
 
 
 
 
 
 
 
 
 
 
Remark 1. Needs \n (newline character) to go to next line.
Remark 2. In %x.yf, x is a floor: if number takes more, same as %.yf. (Likewise for %s, %d, etc.)

20

~/cos126/io> java-introcs LotsOfPrints
An integer: 10
A double: 10.26
Another double: 100.26
2 + 2 = 4
A string: blah
pi is approximately 3.141592653589793000000000000000

public class LotsOfPrints {
 public static void main(String[] args) {

StdOut.printf("An integer: %5d\n", 10);
StdOut.printf("A double: %5.2f\n", 10.255);
StdOut.printf("Another double: %5.2f\n", 100.255);
StdOut.printf("%d + %d = %d\n", 2, 2, 4);
StdOut.printf("A string: %10s\n", "blah");
StdOut.printf("pi is approximately %.20f\n", Math.PI);

}
}

What does the following program print?

A. “1.2 / 1.2 = 1.0”

B. “1.25 / 1.25 = 1.0”

C. “1.3 / 1.25 = 1.0”

D. Throws an error.

Input and output: quiz 2

21

public class AnotherMystery {
 public static void main(String[] args) {

double a = Double.parseDouble(args[0]);
double b = Double.parseDouble(args[1]);

 StdOut.printf("%.1f / %.2f = %.1f\n", a, b, a / b);
 }
}

~/cos126/io> java-introcs AnotherMystery 1.25 1.25

What does the following program print?

A. “1.25 is larger than 1.20 by 4.1666667%”

B. “1.3 is larger than 1.2 by 4.1666667%”

C. “1.20 = 1.25”

D. Throws an error.

Input and output: quiz 3

22

public class YetAnotherMystery {
 public static void main(String[] args) {

double a = Double.parseDouble(args[0]);
double b = Double.parseDouble(args[1]);

 if (a > b) StdOut.printf("%.2f is larger than %.2f by %f%\n", a, b, 100 * (a / b - 1.0));
else if (b > a) StdOut.printf("%.1f is larger than %.1f by %f%", b, a, 100 * (b / a - 1.0));
else StdOut.printf("%.2f = %.2f", a, b);

 }
}

~/cos126/io> java-introcs YetAnotherMystery 1.2 1.25

1.5 INPUT AND OUTPUT

‣ standard input and output

‣ redirection and piping

‣ standard MIDI

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Redirecting standard output

Terminal. By default, standard output is connected to the terminal.
 
Redirecting standard output. Send standard output to a file (instead of the terminal).

24

~/cos126/io> java-introcs PrintNumbers 100 > data.txt
[no output]

~/cos126/io> more data.txt
1
2
3
4
5
...

redirect
standard output

filename

display content
of a file

command-line
arguments

standard
output

standard
input

file

Redirecting standard input

Terminal. By default, standard input is connected to the terminal.  

Redirecting standard input. Read standard input from a file (instead of the terminal).

25

~/cos126/io> more data.txt
1
2
3
4
5
...

~/cos126/io> java-introcs Sum < data.txt
5050

redirect
standard input filename

command-line
arguments

standard
input file

standard
output

Piping

Piping. Connect standard output of one program to standard input of another program.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Remark. No limit within programs on amount of data to process.

26

~/cos126/io> java-introcs PrintNumbers 3 | java-introcs SquareAll
1
4
9
~/cos126/io> java-introcs PrintNumbers 100 | java-introcs Average
50.5

pipe operator

standard
output

PrintNumbers
standard

input
standard
output

SquareAll
standard

input

What is the output of the following command? 
 
 

A. Integers from 1 to 100.

B. Squares of integers from 1 to 100.

C. Ratios by 100 of integers from 1 to 100.

D. 50.5.

E. None of the above.

Input and output: quiz 4

27

Output of java-introcs PrintNumbers 100

> java-introcs PrintNumbers 100 | java-introcs DivideAll 100 | java-introcs Sum

Output of java-introcs PrintNumbers 100 | java-introcs SquareAll

Output of java-introcs PrintNumbers 100 | java-introcs SquareAll | java-introcs DivideAll 100

1.5 INPUT AND OUTPUT

‣ standard input and output

‣ redirection and piping

‣ standard MIDI

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Standard MIDI library

StdMidi. Our library for manipulating music in MIDI format.

29

public class StdMidi description

static void play() plays the specified MIDI file

static void setInstrument() sets the MIDI instrument to the specified value

static void setTempo() sets the tempo to the specified number of beats per minute

static void playNote() plays the specified note for the given duration (measured in beats)

static void noteOn() turns the specified note on

static void pause() pauses for the specified duration

static void noteOff() turns specified note off

⋮ ⋮ ⋮

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

available with javac-introcs
and java-introcs commands

Play MIDI notes

30

public class PlayMidiNotes {
 public static void main(String[] args) {
 int instrument = Integer.parseInt(args[0]);

StdMidi.setInstrument(instrument);

 while (!StdIn.isEmpty()) {
 int note = StdIn.readInt();

StdMidi.playNote(note);
}

 }
}

~/cos126/io> java-introcs PlayMidiNotes 1
60 62 64 65 67 69 71 72
<Ctrl-D>

~/cos126/io> java-introcs PlayMidiNotes 50
60 62 64 65 65 65 60 62 60 62 62 62 60 67
65 64 64 64 60 62 64 65 65 65
<Ctrl-D>

Our standard libraries

StdPicture. For manipulating images.
StdAudio. For playing, reading and saving digital audio.
StdIn. For reading strings and numbers from standard input.
StdOut. For printing strings and numbers to standard output.
StdMidi. For manipulating music in MIDI format.
StdDraw. For creating drawings and animations.

31

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

not used here, but will be in COS 126!

Input–output abstractions

Summary. Input and output for text, pictures, drawings, and audio.

32

command-line
arguments standard output

standard
input

standard input command-l ine
arguments

standard output

standard drawing

standard audio

standard picture

standard input command-l ine
arguments

standard output

standard drawing

standard audio

standard picture

Lecture Slides © Copyright 2024 Robert Sedgewick, Kevin Wayne and Marcel Dall'Agnol

Credits

media source license

Computer Monitor iStock standard license

DEC VT100 Terminal Wikimedia CC BY-SA 4.0

Mandrill USC SIPI Image Database

Pipe Adobe Stock Education License

https://www.istockphoto.com/photo/computer-monitor-gm157330848-6030817
https://www.istockphoto.com/legal/license-agreement
https://commons.wikimedia.org/wiki/File:DEC_VT100_terminal_transparent.png
https://creativecommons.org/licenses/by-sa/4.0/
https://sipi.usc.edu/database/database.php?volume=misc
https://stock.adobe.com/images/plumbing-isolated-icons-pipes-and-tubes-crane-and-piping/322775680?prev_url=detail

