
R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the field,
they also are masters of exposition. I am sure that every serious computer scientist

will find this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the field.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scientific studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the first half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded figures and code
n An all-new chapter introducing analytic combinatorics
n Simplified derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the field’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the field of analytic combinatorics;
having solved numerous difficult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

Computer Science ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 8/6/24 11:50  PM

2.1 FUNCTIONS

‣ call by value

‣ recursion

‣what next?

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

functions libraries

Basic building blocks for programming

2

arrays

Math text I/O

assignment statementsprimitive data types

graphics, sound, and image I/O

functions loopsdivide a program
into functions

functions libraries

Summary

Functions. Provide a fundamental way to change flow of control of program.

・Java evaluates the arguments and passes by value to function.

・Function initializes parameter variables with corresponding argument values.

・Function computes a single return value and returns it to caller.
 
Applications.

・Scientists use mathematical functions to calculate formulas.

・Programmers use functions to build modular programs.

・You use functions for both.
 
Last lecture. Write your own functions.
Last precept. Build reusable libraries of functions.
This lecture. How Java passes arguments, and self-referential functions.

3

function f (x)
side

effects

input x

output f (x)

2.1 FUNCTIONS

‣ call by value

‣ recursion

‣what next?

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Java uses call by value to pass arguments to methods.

・Java evaluates each argument expression to produce a value.

・Java assigns each value to the corresponding parameter variable.

Call by value

5

for primitive types, the value is the data-type value;
for arrays (and other non-primitive types),

the value is an “object reference”

public static void main(String[] args) {

 int a = 100;

 int b = 26;

 int max = Math.max(a, 4 * b);

 ...

}

public static int max(int x, int y) {

 if (x >= y) return x;

 return y;

}
parameter
variables

argument values

return value

104

100 104

argument
expressions

What does the following program print? 

A. -126

B. 126

C. Compile-time error.

D. Run-time error.

public class Mystery {

 public static void negate(int a) {

 a = -a;

 }

 public static void main(String[] args) {

 int a = 126;

 negate(a);

 StdOut.println(a);

 }

}

Functions: quiz 1

6

negate() cannot change the value
stored in the variable a in main()

primitive variable
in main()

a

uninitialized126

primitive variable
in negative()

a

uninitialized126-126

What does the following program print? 

A. 12 6

B. -12 -6

C. Compile-time error.

D. Run-time error.

public class AnotherMystery {

 public static void negate(int[] b) {

 for (int i = 0; i < b.length; i++)

 b[i] = -b[i];

 }

 public static void main(String[] args) {

 int[] a = { 12, 6 };

 negate(a);

 StdOut.println(a[0] + " " + a[1]);

 }

}

Functions: quiz 2

7

negate() cannot change the value
stored in the variable a[] in main()

(e.g., length or type of a[])

but negate() can change the array
elements that a[] references

12 6
reference variable

in main()

a[]

reference variable
in negate()

b[]

-12 -6

Side effects with arrays

Functions and arrays.

・A function can have the side effect of changing the elements in an argument array.

・But the function cannot change the argument array itself.

8

public class Mutate {

 public static void shuffle(String[] a) {
 int n = a.length;
 for (int i = 0; i < n; i++) {
 int r = (int) (Math.random() * (i + 1));
 String temp = a[r];
 a[r] = a[i];
 a[i] = temp;
 }
 }

 public static void main(String[] args) {
 shuffle(args);
 for (int i = 0; i < args.length; i++)
 StdOut.println(args[i]);
 }
}

~/cos125/functions> java-introcs Mutate A B C D
C
A
B
D

~/cos125/functions> java-introcs Mutate A B C D
B
A
C
D

~/cos125/functions> java-introcs Mutate COS 125
125
COS

to refer to a different array (e.g., of a different length or type)

shuffle, reverse, sort, shift, ...

swaps a[r] and a[i]

a[] and args[] refer
to the same array

Mechanics of function calls

9

public class Polynomial {
 public static void scalarMultiply(int[] a, int scalar) {
 for (int i = 0; i < a.length; i++)
 a[i] *= scalar;
 }

 public static void main(String[] args) {
 int[] a = { 1, 3 };
 scalarMultiply(a, 3);
 StdOut.println(a[0] + " " + a[1]);
 }
}

a scalar i

3

3 0

3 1

args a

variable trace in main()

variable trace in
scalarMultiply()

1 3

~/cos125/functions> java-introcs Polynomial
3 9

3 9

Copying an array

Beware of common bugs!

10

public static int[] copy(int[] a) {
 return a;
}

public static int[] copy(int[] a) {
 int[] b = new int[a.length];
 for (int i = 0; i < a.length; i++)
 b[i] = a[i];
 return a;

}

public static int[] copy(int[] a) {
 int[] b = new int[a.length];
 for (int i = 0; i < a.length; i++)
 b[i] = a[i];
 return b;

}

public static void copy(int[] a, int[] b) {
 b = a;
}

public static void copy(int[] a, int[] b) {
 for (int i = 0; i < a.length; i++)
 b[i] = a[i];

}

public static void copy(int[] a, int[] b) {
 b = new int[a.length];
 for (int i = 0; i < a.length; i++)
 b[i] = a[i];

}

✗

✗

✗

✗✔

✔

if calling code ran b = new int[a.length]

Procedural decomposition

Decomposition. Break up a complex programming problem into smaller functional parts.
Procedural decomposition. Implement each part as a separate function.
 
Example. Find the root of a polynomial.

・Approximate until convergence.

・Apply the Newton-Raphson iteration.

・Compute the derivative of a polynomial.

・Evaluate a polynomial at a point.
 
 
Benefits. Supports the 3 Rs:

・Readability: understand and reason about code.

・Reliability: test, debug, and maintain code.

・Reusability: reuse and share code.

11

2.1 FUNCTIONS

‣ call by value

‣ recursion

‣what next?

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Recursion is when something is specified in terms of itself.
 
 
Why learn recursion?

・Powerful programming paradigm.

・Insight into the nature of computation and math.
 
 
Many computational artifacts are naturally self-referential.

・File system with folders containing folders.

・Binary trees.

・Divide-and-conquer algorithms.

・⋮

Overview

13

self-reference

proofs by induction,
incompleteness theorems Drawing Hands,

by M. C. Escher

A recursive function calls itself.

・Base case: if the argument is “simple,” compute directly.

・Reduction step: if the argument is “complicated,” call function
on simpler argument and “update.”

 
 
Example: Factorial function .

・Base case: (by definition).

・Reduction step: .

n! = n ⋅ (n − 1)⋯2 ⋅ 1

0! = 1

n! = (n − 1)! ⋅ n

Recursive functions

14

simpler
argument

update
(multiply by) n

public static int factorial(int n) {
 if (n == 0) return 1;
 else return n * factorial(n - 1);

}

Recursive function calls

15

public static int factorial(int n) {
 if (n == 0)
 return 1;
 else
 return n * factorial(n - 1);

}

public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 StdOut.println(factorial(n));
}

~/cos125/functions> java-introcs Factorial 5
120

function-call stack

main(["5"])

factorial(5)

factorial(4)

factorial(3)

factorial(2)

factorial(1)

factorial(0)

parseInt("5")println(120)

What does the following program print when ?  

A. 120

B. 24

C. Compile-time error.

D. Run-time error.

n = 4

public class YetAnotherMystery {
 public static int factorial(int n) {
 return n * factorial(n - 1);
 }

 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 StdOut.println(factorial(n));
 }
}

Functions: quiz 3

16

2.1 FUNCTIONS

‣ call by value

‣ recursion

‣what next?

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Goal. Place numbers of -integer array in sorted order.
Solution. Mergesort: recursive with runtime order of growth!

・Base case: if array has length 1, return it.

・Reduction step: divide array in half; sort both halves then merge.

n

n log n

Sorting algorithms

18

public static void sort(int[] a, int lo, int hi) {
 if (hi <= lo) return;
 int mid = (lo + hi) / 2;
 sort(a, lo, mid);
 sort(a, mid + 1, hi);
 merge(a, lo, mid, hi);

}

Data type. A set of values and a set of operations on those values.
Java class. Java’s mechanism for defining a new data type.
 
Object. An instance of a data type that has

・State: value from its data type.

・Behavior: actions defined by the data type’s operations.

・Identity: unique identifier (e.g. memory address).

Object-oriented programming

19

public class PrintPoly{
 public static void main(String[] args) {
 Polynomial p = new Polynomial(1.0, 1.0);
 double[] c = new double[] {1.0, -1.0};
 Polynomial q = new Polynomial(c);
 p.multiplyBy(q);
 p.print();
 }

}

~/cos125/functions> java-introcs PrintPoly
1.0 * X^2 - 1.0

Scenario 1. You just wrote a program that solves
Problem A. You’re feeling proud (as you should),
and think your program is the best.
 
Can you prove it’s the best solution for Problem A?

Theory of computing

20

Scenario 2. You spent hours and hours trying to
solve Problem B, but didn’t get there. You’re smart
and know it — so Problem B looks like the issue.
 
Can you prove Problem B is really hard to solve?

Q1. What is an algorithm?
Q2. What is an efficient algorithm?
Q3. Which problems can be solved efficiently?

Fundamental questions

21

A Turing machine

Day: August 14th
Place: McDonnell 105
Time: 1:30pm to 2:50pm
 
8 quiz-type questions (so 10min/question, on average).
 
Closed book, but can bring “cheatsheet:”

・8.5-by-11 paper, one side, in your own handwriting.
 
Study material:

・Review quiz

・Textbook

・Ed

Final exam

22

Good luck!

Lecture Slides © Copyright 2024 Robert Sedgewick, Kevin Wayne and Marcel Dall'Agnol

Credits

media source license

Gears Adobe Stock education license

Function Gradient Adobe Stock education license

Function Machine Wvbailey public domain

Gödel, Escher, Bach cover Amazon

Drawing Hands Wikipedia

Happy Programmer Adobe Stock education license

Frustrated Programmer Adobe Stock

Cartoon of Turing Machine Tom Dunne

https://stock.adobe.com/images/vector-gears/12539996
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/function-gradient-icon/555415810
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://commons.wikimedia.org/wiki/File:Function_machine2.svg
https://wiki.creativecommons.org/wiki/public_domain
https://m.media-amazon.com/images/I/51zU0Zk9zLL._SL1000_.jpg
https://en.wikipedia.org/wiki/File:DrawingHands.jpg
https://stock.adobe.com/images/person-celebrating-happy-female-programmer-celebrating-success-in-front-of-computer-screen-displaying-code-in-an-office-blurred-background/900517058?prev_url=detail
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/puzzled-woman-freelancer-in-glasses-spreading-hands-shocked-by-problems-in-work-error-on-laptop/534922946?prev_url=detail

