
R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the field,
they also are masters of exposition. I am sure that every serious computer scientist

will find this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the field.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scientific studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the first half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded figures and code
n An all-new chapter introducing analytic combinatorics
n Simplified derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the field’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the field of analytic combinatorics;
having solved numerous difficult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

Computer Science ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 8/6/24 11:47  AM

2.1 FUNCTIONS

‣ flow-of-control

‣ properties

‣ call stack and scope

‣APIs and libraries

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

functions libraries

Basic building blocks for programming

2

arrays

Math text I/O

assignment statementsprimitive data types

graphics, sound, and image I/O

functions loopsdivide a program
into functions

functions

Functions

Java function (static method).

・Takes zero or more input arguments.

・Returns zero or one output value.

・May cause side effects.
 
 
Benefits. Makes code easier to read, test, debug, reuse, and extend.
 
 
Familiar examples.

・Built-in functions: Math.random(), Math.abs(), Integer.parseInt().

・Our I/O libraries: StdIn.readInt(), StdAudio.play().

・User-defined functions: main().

3

more general than
mathematical functions

function f (x)
side

effects

input x

output f (x)

To implement a Java function:

・Choose a method name.

・Declare type and name of each parameter variable.

・Specify type for return value.

・Include modifiers.

・Implement method body,
including a return statement.

public static double harmonic(int n) {

 double result = 0.0;

 for (int j = 1; j <= n; i++)

 result += 1.0 / j;

 return result;

}

Anatomy of a Java function (static method)

4

method body

method
name

return statement

return
type

method header

parameter
name

parameter
type

for now, always
public and static

modifiers

method header

Ex. Harmonic sum: .Hn = 1 +
1
2

+
1
3

+ … +
1
n

2.1 FUNCTIONS

‣ flow-of-control

‣ properties

‣ call stack and scope

‣APIs and libraries
R O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Flow of control

Mechanics of a function call.

・Control transfers from calling code to function code, passing argument values.

・Function code executes, producing a return value.

・Control transfers back to calling code.
 
 
 
 
 
 
 
 
 
 
 
Bottom line. Functions provide a useful way to control the flow of execution.

6

public class Max {
 public static void main(String[] args) {
 int a = 26;
 int b = 100;
 int max = Math.max(a, b) ;
 StdOut.println(max);
 }
}

Math.max()

26, 100

100

function call

argument
values

return value

function-call expression
evaluates to return value

Function call trace

7

public class MaxMany {

 public static int max(int a, int b) {

 if (a > b)

 return a;

 else

 return b;

 }

 public static void main(String[] args) {

 int result = Integer.parseInt(args[0]);

 for (int i = 1; i < args.length; i++)

 result = max(result, Integer.parseInt(args[i]));

 StdOut.println(result);

 }

}

a b

1 5

~/cos125/functions> java-introcs MaxMany 1 5 3
5

args i result

["1", "5", "3"]

["1", "5", "3"] 1

["1", "5", "3"] 1 1

["1", "5", "3"] 1 5

["1", "5", "3"] 2 5

["1", "5", "3"] 2 5

["1", "5", "3"] 5

variable trace in main()

variable trace in max()variable trace in max()

a b

5 3

Functions: quiz 1

What is the result of executing this program with the given command-line argument? 

A. 10

B. 11

C. Compile-time error.

D. Run-time error.

 
 
Very common bug. Ignoring the return value.

8

public class Mystery {

 public static int increment(int x) {
 return x + 1;
 }

 public static void main(String[] args) {
 int x = Integer.parseInt(args[0]);
 increment(x);
 StdOut.println(x);
 }
}

~/cos125/functions> java-introcs Mystery 10
10

if line containing function call were
x = increment(x);

2.1 FUNCTIONS

‣ flow-of-control

‣ properties

‣ call stack and scope

‣APIs and libraries
R O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

When a function reaches a return statement, it transfer control back to code that invoked it.

・The type of the return value must be compatible with the function’s return type.

・Java returns a single return value to the calling code.

Single return value

10

public static double sum(int n) {

 double result = 0.0;

 for (int i = 1; i <= n; i++)

 result += 1.0 / i;

 return result;

}

return statement

return type

that value can be of any type
(double, String, int[], …)

Control is transferred back to calling code upon reaching first return statement.

public static double abs(double x) {
 if (x < 0) return -x;
 else return x;
}

Multiple return statements

11

multiple return
statements

equivalent functionabsolute value function

public static double abs(double x) {
 if (x < 0) return -x;
 return x;
}

Multiple arguments

A function can take multiple arguments.

・Each parameter variable has a type and a name.

・The argument values are assigned to the corresponding parameter variables.
 
Ex. Polynomial evaluation: . p(x) = anxn + an−1xn−1 + ⋯ + a1x + a0

12

public static double eval(double[] a, double x) {
 double result = 0.0, monomial = 1.0;
 for (int i = a.length - 1; i >= 0; i--, monomial *= x)
 result += a[i] * monomial;
 return result;
}

function takes one
double[] and one
double argument

eval([1.0, 2.0, 1.0], 1.0)

Void functions

A method need not return a value.

・Its purpose is to produce side effects.

・Use keyword void as return type.

・No explicit return statement needed.

13

upon reaching the end of method,
control returns to calling code

public static void loop(String filename, int n) {
 for (int i = 0; i < n; i++) {
 StdAudio.play(filename);
 }
}

loop an audio file n times

public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 if (n <= 0) {
 StdOut.println("n must be positive");
 return;
 }
 ...
}

abort if the wrong number of command-line arguments

Multiple functions

You can define many functions in a class.

・One function can call another function.

・The order in which the functions are defined in the file is unimportant.

14

public class RightTriangle {
 public static double square(double x) {
 return x*x;
 }

 public static double hypotenuse(double a, double b) {
 return Math.sqrt(square(a) + square(b));
 }
}

function calls a function
defined in the same class

function calls a function
defined in a different class

a

b
a2 + b2

Overloaded functions

Overloading. Two functions with the same name (but different ordered list of parameter types).
 
 
 
 
 
 
 
 
 
 
 
 
 
Note. These two overloaded functions appear in Java’s Math library.
Another example: StdAudio.play(String filename) and StdAudio.play(double[] samples)

15

public class Math {
 public static int abs(int x) {
 if (x < 0) return -x;
 else return x;
 }

 public static double abs(double x) {
 if (x < 0) return -x;
 else return x;
 }
}

abs(-126) calls this function
(and evaluates to 126)

abs(-126.0) calls this function
(and evaluates to 126.0)

Overloaded functions

Overloading. Two functions with the same name (but different ordered list of parameter types).

16

public class Polynomial {
 public static double eval(double[] a, double x) {
 double result = 0.0, monomial = 1.0;
 for (int i = a.length - 1; i >= 0; i--, monomial *= x)
 result += a[i] * monomial;
 return result;
 }

 public static int eval(int[] a, int x) {
 int result = 0, monomial = 1;
 for (int i = a.length - 1; i >= 0; i--, monomial *= x)
 result += a[i] * monomial;
 return result;
 }
}

evaluate(new double[] {1.0, -2.0, 1.0}, 1.0)

calls this function (and evaluates to 0.0)

evaluate(new int[] {1, -2, 1}, 1)

calls this function (and evaluates to 0)

Functions: quiz 2

Which value does eval(new double[] {1.0, 0.0, 0.0}, 2) return?  

A. 2.0

B. 4.0

C. 4

D. Compile-time error.

E. Run-time error.

17

Functions: quiz 3

Which value does eval(new int[] {1, 0, 0}, 2.0) return?  

A. 2.0

B. 4.0

C. 4

D. Compile-time error.

E. Run-time error.

18

Side effects

Def. A side effect of a method is anything it does besides computing and returning a value.

・Print to standard output.

・Draw a circle.

・Play an audio file.

・Display a picture.

・Launch a missile.

・Consume input.

・Mutate an array.

・…
 
 
 
Note. The primary purpose of some methods is to produce side effects, not return values.

19

produce output

stay tuned

differs from medicine

Functions: quiz 4

Which of these functions both produces a side effect and returns a value?  

A. Integer.parseInt()

B. StdAudio.play()

C. StdIn.readInt()

D. All of the above.

E. None of the above.

 
 
 
 
 
 
Best practice. A function should either return a value or produce a side effect (but not both).

20

returns a value

produces a side effect
(plays on speakers)

returns a value and produces a side effect
(consumes one token on standard input)

2.1 FUNCTIONS

‣ flow-of-control

‣ properties

‣ call stack and scope

‣APIs and libraries
R O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Mechanics of function calls

22

function-call stack

main(["3.0", "4.0"])

parseDouble("3.0")parseDouble(“4.0”)hypotenuse(3.0, 4.0)

square(3.0)square(4.0)

println(5.0)

sqrt(25.0)

public class RightTriangle {
 public static double square(double x) {
 return x*x;
 }

 public static double hypotenuse(double a, double b) {
 return Math.sqrt(square(a) + square(b));
 }

 public static void main(String[] args) {
 int a = Double.parseDouble(args[0]);
 int b = Double.parseDouble(args[1]);
 StdOut.println(hypotenuse(a, b));
 }
}

Function-call trace

Function-call trace.

・Print name and argument values when each function is called.

・Print function’s return value just before returning.

・Add indentation on function calls and subtract on returns.

23

main("3.0", "4.0")
 parseDouble("3.0")
 return 3.0
 parseDouble("4.0")
 return 4.0
 hypotenuse(3.0, 4.0)
 square(3.0)
 return 9.0
 square(4.0)
 return 16.0
 sqrt(25.0)
 return 5.0
 return 5.0
 println(5.0)
 return
 return

function-call trace for RightTriangle

public class RightTriangle {
 public static double square(double x) {
 return x*x;
 }

 public static double hypotenuse(double a, double b) {
 return Math.sqrt(square(a) + square(b));
 }

 public static void main(String[] args) {
 int a = Double.parseDouble(args[0]);
 int b = Double.parseDouble(args[1]);
 StdOut.println(hypotenuse(a, b));
 }
}

Functions: quiz 5

Which value does cube(3) return?  

A. 0.0

B. 1.0

C. 27.0

D. Compile-time error.

E. Run-time error.  

 
 
Best practice. Parameter variables can be changed, but usually better style not to do so.

24

public static double cube(double i) {
 i = i * i * i;
 return i;

}
parameter variable is a variable,
so can be changed

Def. The scope of a variable is the code that can refer to it by name.
Significance. Can develop functions independently.
Best practice. Declare variables so as to limit their scope.

public class Polynomial {

 public static int eval(int[] a, int x) {
 int result = 0, monomial = 1;
 for (int i = a.length - 1; i >= 0; i--, monomial *= x)
 result += a[i] * monomial;
 return result;
 }

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {

 int x = Integer.parseInt(args[i]);

 StdOut.println(evaluate(new int[] {1, 0}, x));
 }

 }

}

Scope of a variable

25

scope of result

scope of i

code following its declaration, in the same block

scope of i

scope of x (entire method)

scope of args[]
(entire method)

different variables
named i

variables defined in one function do not
interfere with variables defined in another

scope of x

different variables
named x

Functions: quiz 6

How many different variables named i are created when executing java-introcs Polynomial 5 2?  

A. 0

B. 1

C. 2

D. 3

E. 4

public class Polynomial {

 public static int evaluate(int[] a, int x) {
 int result = 0, monomial = 1;
 for (int i = a.length - 1; i >= 0; i--, monomial *= x)
 result += a[i] * monomial;
 return result;
 }

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {

 int x = Integer.parseInt(args[i]);

 StdOut.println(evaluate(new int[] {1, 0}, x));
 }

 }

}

26

2.1 FUNCTIONS

‣ flow-of-control

‣ properties

‣ call stack and scope

‣APIs and libraries
R O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

API. An interface between provider and client programs.  
 
Examples.

Application Programming Interface

28

“contract” between software provider
and other software

API. An interface between provider and client programs.
This course. Concise description of the functions available to the client.
Examples.

Application Programming Interface

29

“contract” between software provider
and other software

public class StdIn description

static boolean isEmpty() true if no more values, false otherwise

static int readInt() read a value of type int

static double readDouble() read a value of type double

static boolean readBoolean() read a value of type boolean

static String readString() read a value of type String

 ⋮ ⋮

API. An interface between provider and client programs.
This course. Concise description of the functions available to the client.
Examples.

Application Programming Interface

30

“contract” between software provider
and other software

public class StdOut description

static void print(String s) print s on the output stream

static void println() print a newline on the output stream

static void println(String s) print s, then a newline on the stream

static void printf(String f, ...) print formatted output

⋮ ⋮

API. An interface between provider and client programs.
This course. Concise description of the functions available to the client.
Examples.

public class StdMidi description

static void play() plays the specified MIDI file

static void setInstrument() sets the MIDI instrument to the specified value

static void setTempo() sets the tempo to the specified number of beats per minute

static void playNote() plays the specified note for the given duration (measured in beats)

static void noteOn() turns the specified note on

⋮ ⋮ ⋮

Application Programming Interface

31

“contract” between software provider
and other software

API. An interface between provider and client programs.
This course. Concise description of the functions available to the client.
Examples.

public class Synth

static int length(double duration)

static double sine(double frequency, double t)

static double square(double frequency, double t)

static double saw(double frequency, double t)

static double[] sineWave(double frequency, double amplitude, duble duration)

static double[] squareWave(double frequency, double amplitude, duble duration)

static double[] sawWave(double frequency, double amplitude, duble duration)

static double[] whiteNoise(double amplitude, duble duration)

static double[] add(double[] a, double[] b)

static double[] multiply(double[] a, double[] b)

static double[] fade(double[] a, double lambda)

static void main(String[] args)

Application Programming Interface

32

“contract” between software provider
and other software

main() not called by the client;
use for unit testing!

Goal. Provide useful operations on non-zero polynomials.

public class Polynomial description

static int eval(int[] a, int x) evaluate polynomial with coefficients a[] on x

static double eval(double[] a, double x) evaluate polynomial with coefficients a[] on x

static void print(int[] a) print polynomial with coefficients a[]

static void print(double[] a) print polynomial with coefficients a[]

static double linearRoot(double[] a) root of linear polynomial (degree must be 1)

static double[] derivative(double[] a) derivative of polynomial with coefficients a[]

static double nearestRoot(double[] a, double start) root obtained by Newton’s method at start point

static double[] quadraticRoots(double[] a) all roots of quadratic polynomial (degree must be 2)

static double[] cubicRoots(double[] a) all roots of cubic polynomial (degree must be 3)

static double[] quarticRoots(double[] a) all roots of quartic polynomial (degree must be 4)

⋮ ⋮ ⋮

static void main(String[] args) unit testing

A Polynomial library

33

Summary

Functions. Provide a fundamental way to change flow of control of program.

・Java evaluates the arguments and passes by value to function.

・Function initializes parameter variables with corresponding argument values.

・Function computes a single return value and returns it to caller.
 
Applications.

・Scientists use mathematical functions to calculate formulas.

・Programmers use functions to build modular programs.

・You use functions for both.

34

function f (x)
side

effects

input x

output f (x)

stay tuned!

Lecture Slides © Copyright 2024 Robert Sedgewick, Kevin Wayne and Marcel Dall'Agnol

Credits

media source license

Gears Adobe Stock education license

Function Gradient Adobe Stock education license

Function Machine Wvbailey public domain

Chemotherapy Side Effects Adobe Stock education license

Google Maps logo Wikipedia public domain

OpenAI logo Wikipedia public domain

WhatsApp logo Wikipedia public domain

Instagram logo Wikipedia public domain

https://stock.adobe.com/images/vector-gears/12539996
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/function-gradient-icon/555415810
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://commons.wikimedia.org/wiki/File:Function_machine2.svg
https://wiki.creativecommons.org/wiki/public_domain
https://stock.adobe.com/images/chemotherapy-side-effects-icons-depict-the-list-of-reactions-and-issues-of-chemo-treatment-on-a-human-who-are-diagnosis-with-cancer/244886859
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://en.wikipedia.org/wiki/Google_Maps#/media/File:Google_Maps_icon_(2020).svg
https://upload.wikimedia.org/wikipedia/commons/4/4d/OpenAI_Logo.svg
https://commons.wikimedia.org/wiki/File:WhatsApp.svg#/media/File:WhatsApp.svg
https://en.wikipedia.org/wiki/Instagram#/media/File:Instagram_logo_2022.svg

