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Abstract— We investigate the emergence of periodic behavior
in opinion dynamics and its underlying geometry. For this,
we use a bounded-confidence model with contrarian agents in
a convolution social network. This means that agents adapt
their opinions by interacting with their neighbors in a time-
varying social network. Being contrarian, the agents are kept
from reaching consensus. This is the key feature that allows
the emergence of cyclical trends. We show that the systems
either converge to nonconsensual equilibrium or are attracted
to periodic or quasi-periodic orbits. We bound the dimension
of the attractors and the period of cyclical trends. We exhibit
instances where each orbit is dense and uniformly distributed
within its attractor. We also investigate the case of randomly
changing social networks.

I. INTRODUCTION

Much of the work in the area of opinion dynamics has
focused on consensus and polarization [1], [2]. Typical
questions include: How do agents come to agree or disagree?
How do exogenous forces drive them to consensus? How long
does it take for opinion formation to settle? Largely left out
of the discussion has been the emergence of cyclical trends.
A question worth examining is whether the process conceals
deeper mathematical structure. The purpose of this work is
to show that it is, indeed, the case.

Our main result is a proof that adding a simple contrarian
rule to the classic bounded-confidence model suffices to
produce quasi-periodic trajectories. The model is a slight
variant of the classic Hegselmann-Krause (HK) framework:
a finite collection of agents hold opinions on several topics,
which they update at discrete time steps by consulting their
neighbors in a (time-varying) social network. The modi-
fication is the addition of a simple repulsive force field
that keep agents away from tight consensus. The idea is
partly inspired by swarming dynamics, e.g. birds refrain from
flocking too closely. Likewise, near-consensus on a large
enough scale tends to induce contrarian reactions among
agents [3], [4]. Some political scientists have pointed to
contrarianism as one of the reasons for the closeness of some
national elections [5], [6].

Based on computer simulation, we found that it is not
specific distributions of initial opinions that produce os-
cillations but, rather, the recurrence of certain symmetries
in the networks. We prove that the condition is sufficient
(though its necessity is still open). Moreover, we show that
contrarian opinions tend to orbit toward an attractor whose
dimensionality is independent of the number of opinions
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held by a single agent. These attracting sets are typically
Minkowski sums of ellipses.

Our inquiry builds on the pioneering work of French [7],
DeGroot [8], Friedkin & Johnsen [9], and Deffuant et
al. [10]. The model we use is a minor modification of the
bounded-confidence model model [11], [12]. A HK system
consists of 𝑛 agents, each one represented by a point inR𝑑 . The
𝑑 coordinates for each agent 𝑖 represent their current opinions
on 𝑑 different topics: thus, 𝑑 is the dimension of the opinion
space. At any (discrete) time, each agent 𝑖 moves to the mass
center of the agents within a fixed distance 𝑟𝑖 , which represents
its radius of influence. This step is repeated ad infinitum.
Formally, the agents are positioned at 𝑥1 (𝑡), . . . , 𝑥𝑛 (𝑡) ∈ R𝑑 at
time 𝑡 and for any 𝑡 = 0, 1, 2, . . . ,

𝑥𝑖 (𝑡 + 1) = 1
|N𝑖 (𝑡) |

∑︁
𝑗∈N𝑖 (𝑡 )

𝑥 𝑗 (𝑡), (1)

with N𝑖 (𝑡) =
{

1 ≤ 𝑗 ≤ 𝑛 :
𝑥𝑖 (𝑡) − 𝑥 𝑗 (𝑡)


2 ≤ 𝑟𝑖

}
.

Interpreting each N𝑖 (𝑡) as the set of neighbors of agent
𝑖 defines the social network 𝐺𝑡 at time 𝑡. In the special case
where all the radii of influence are equal (𝑟𝑖 = 𝑅), convergence
into fixed-point clusters occurs within a polynomial number of
steps [13]–[15]. Computer simulation suggests that the same
remains true even when the radii differ but a proof has remained
elusive. In this work, we present a model where cyclical trends
in opinion change arise. This is accomplished by using a
vertex-transitive graph as social network (specifically a Cayley
graph), which stipulates that agents cannot be distinguished by
their local environment. Before defining the model formally in
the next section, we summarize our main findings.
• Undirected networks always drive the agents to non-

consensual convergence, i.e., to fixed points at which
they “agree to disagree.” For their behavior to become
periodic or quasi-periodic, the social networks need to be
directed. We prove that such systems either converge or
are attracted to periodic or quasi-periodic orbits. We give
precise formulas for the orbits.

• We investigate the geometry of the attractors. We bound
the rotation number, which indicates the speed at which
(quasi)-periodic opinions undergo a full cycle. We exhibit
instances where each limiting orbit forms a set that is
dense and, in fact, uniformly distributed on its attractor.

• We explore the case of social networks changing ran-
domly at each step. We prove the surprising result that
the dimension of the attractor can decrease because of the
randomization. This is a rare case where adding entropy
to a system can reduce its dimensionality.
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The dynamics of contrarian views has been studied before [3]–
[6], [16]–[18] but, to our knowledge, not for the purpose of
explaining cyclical trends.

II. Contrarian Opinion Dynamics
The social network, with each vertex representing an agent,

is modeled as a time-dependent Cayley graph 𝐺𝐶𝑡
= (𝑉, 𝐸𝑡 )

over an abelian group. Since every finite abelian group is
isomorphic to a direct sum of cyclic groups, the vertex set 𝑉
can be written as (Z/𝑛1Z) ⊕ · · · ⊕ (Z/𝑛𝑚Z). For simplicity, we
set 𝑛𝑖 = 𝑛, allowing us to represent 𝑉 = (Z/𝑛Z)𝑚 as a vector
space. The number of agents is denoted by 𝑁 = |𝑉 | = 𝑛𝑚.
The edge set 𝐸𝑡 =

⋃{(𝑣, 𝑣 + 𝑐) | 𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶𝑡 } at time 𝑡 is
determined by the convolution set 𝐶𝑡 ⊆ (Z/𝑛Z)𝑚.

We model the opinion 𝑥𝑣 (𝑡) of agent 𝑣 at time 𝑡 as a point in
R𝑑 , with the initial opinion 𝑥𝑣 (0) abbreviated to 𝑥𝑣 . The agent’s
subsequent opinions evolve based on a weighted average of
their own previous opinion (allowing for self-confidence) and
the opinions of neighboring agents. In the spirit of HK systems,
we define the dynamics as follows: for 𝑡 = 0, 1, . . . ,

𝑥𝑣 (𝑡 + 1) = 𝑝𝑥𝑣 (𝑡) +
1 − 𝑝

|𝐶𝑡 |
∑︁

𝑤∈𝑣+𝐶𝑡

𝑥𝑤 (𝑡). (2)

Here, 𝑝 represents a “self-confidence” weight such that 1/𝑁 <

𝑝 < 1. This choice implies that the agent places more trust in
their own opinion than in that of at least one other agent,
without being excessively confident. Because of the presence
of 𝑝, we may assume that 𝐶𝑡 does not contain the origin 0.

If we view each 𝑥𝑣 (𝑡) as a row vector in R𝑑 , the update (2)
specifies an 𝑁-by-𝑁 stochastic matrix 𝐹𝐶𝑡

. Let 𝑥(𝑡) denote the
𝑁-by-𝑑 matrix whose rows are the 𝑁 agent positions 𝑥𝑣 (𝑡), for
𝑣 ∈ 𝑉 . We have 𝑥(𝑡 + 1) = 𝐹𝐶𝑡

𝑥(𝑡). The matrix 𝐹𝐶𝑡
may not

be symmetric but it is always doubly-stochastic. This means
that the mass center 1⊤𝑥(𝑡)/𝑁 is time-invariant. Since the
dynamics itself is translation-invariant, we are free to move the
mass center to the origin, which we do by assuming 1⊤𝑥 = 0⊤,
where 𝑥 denotes 𝑥(0).

Obviously, some initial conditions are uninteresting: for
example, 𝑥 = 0. For this reason, we choose 𝑥 randomly;
specifically, each 𝑥𝑣 is picked iid from the 𝑑−dimensional
normal distribution N(0, 1). In the following, we use the
phrase “with high probability,” to refer to an event occurring
with probability at least 1 − 𝜀, for any fixed 𝜀 > 0. Once we
have picked the matrix 𝑥 randomly, we place the mass center
of the agents at the origin by subtracting its displacement from
the origin: 𝑥 ← 𝑥 − 1

𝑁
11⊤𝑥.

The agents will be attracted to the origin to form a single-
point cluster of consensus in the limit. Responding to their
contrarian nature, the agents will restore mutual differences
by boosting the own opinions. For that reason we consider the
scaled dynamics: 𝑦(0) = 𝑥 and, for 𝑡 ≥ 0,

𝑦(𝑡 + 1) = 𝜉𝑡𝐹𝐶𝑡
𝑦(𝑡), (3)

where 𝜉𝑡 is chosen so that the diameter of the system remains
roughly constant. As scaling leaves the salient topological and
geometric properties of the dynamics unchanged, the precise
definition of 𝜉𝑡 can vary to fit analytical (or even visual) needs.

A. Preliminaries
To analyze the model, it is sufficient to focus on a single

connected component of 𝐺𝐶𝑡
. As 𝐶𝑡 spans the vector space 𝑉

if and only if 𝐺𝐶𝑡
is strongly connected,1 we assume that 𝐶𝑡

spans the vector space 𝑉 , which implies that |𝐶𝑡 | ≥ 𝑚.
For clarity, throughout the remainder of this section, we

write 𝐶𝑡 as 𝐶, omitting the subscript 𝑡. The presence of the
weight 𝑝 > 0 in (2) ensures that the diagonal of 𝐹𝐶 is positive.
Together with the strong connnectivity assumption, this makes
the matrix 𝐹𝐶 primitive, meaning that 𝐹𝑘

𝐶
> 0, for some 𝑘 > 0.

By the Perron-Frobenius theorem [20], all the eigenvalues of
𝐹𝐶 lie strictly inside the unit circle inC, except for the dominant
eigenvalue 1, which has multiplicity 1. For any 𝑢, 𝑣 ∈ 𝑉 ,
we write 𝜓𝑣

𝑢 = 𝜔⟨𝑢,𝑣⟩ , where 𝜔 := 𝑒2𝜋𝑖/𝑛. We define the
vector 𝜓𝑣 = (𝜓𝑣

𝑢 | 𝑢 ∈ 𝑉) and easily verify that {𝜓𝑣 | 𝑣 ∈ 𝑉}
forms an orthogonal eigenbasis for 𝐹𝐶 . The eigenvalue 𝜆𝑣
corresponding to 𝜓𝑣 satisfies

𝜆𝑣𝜓
𝑣
𝑢 = 𝑝𝜓𝑣

𝑢 +
1 − 𝑝

|𝐶 |
∑︁

𝑤∈𝑢+𝐶
𝜓𝑣
𝑤 = 𝑝𝜓𝑣

𝑢 +
1 − 𝑝

|𝐶 |

( ∑︁
ℎ∈𝐶

𝜓𝑣
ℎ

)
𝜓𝑣
𝑢 .

We conclude:

Lemma 2.1. Each 𝑣 ∈ 𝑉 corresponds to a distinct eigen-
vector 𝜓𝑣 , which together form an orthogonal basis for C𝑁 .
The corresponding eigenvalue is given by

𝜆𝑣 = 𝑝 + 1 − 𝑝

|𝐶 |
∑︁
ℎ∈𝐶

𝜔⟨𝑣,ℎ⟩ .

We define 𝜆 = max𝑣∈𝑉 {|𝜆𝑣 | < 1} and denote by 𝑊 =

{𝑣 ∈ 𝑉 : |𝜆𝑣 | = 𝜆} the set of subdominant eigenvectors.
The argument of 𝜆𝑣 plays a key role in our discussion, so we
define 𝜃𝑣 such that 𝜆𝑣 = |𝜆𝑣 |𝜔𝜃𝑣 , with 𝜃𝑣 ∈ (−𝑛/2, 𝑛/2] (we
will prove in (6), 𝜆𝑣 ≠ 0 for 𝑣 ∈ 𝑊 , so 𝜃𝑣 is well defined).

B. The evolution of opinions
We begin with the case of a fixed convolution set 𝐶𝑡 = 𝐶.

The initial position of the agents is expressed in eigenspace
as 𝑥 = 1

𝑁

∑
𝑣∈𝑉 𝜓𝑣 (𝜓𝑣)H𝑥. Let 𝑧𝑣 denote the row vector

(𝜓𝑣)H𝑥 =
∑

𝑢∈𝑉 𝜔−⟨𝑣,𝑢⟩𝑥𝑢. Because (𝜓𝑣)H𝑥 = 1⊤𝑥 = 0⊤,
for 𝑣 = 0 ∈ 𝑉 ,

𝑥(𝑡) = 1
𝑁

∑︁
𝑣∈𝑉\{0}

𝜆𝑡𝑣𝜓
𝑣𝑧𝑣 . (4)

Lemma 2.2. With high probability, for all 𝑣 ≠ 0,

Ω
(√︁

1/𝑁
)
= ∥𝑧𝑣 ∥2 = 𝑂

(√︁
𝑑𝑁 log 𝑑𝑁

)
.

Proof. Let 𝑎 = (𝑎𝑢)𝑢∈𝑉 be the first column of the matrix
𝑥. For each 𝑢 ∈ 𝑉 , by the initialization of the system, 𝑎𝑢 =

𝜁𝑢 − 𝛿, where 𝜁𝑢 ∼ N(0, 1) and 𝛿 = 1
𝑁

1⊤𝜁 . Given 𝑣 ≠ 0,
𝜓𝑣 is orthogonal to 𝜓0 = 1; hence (𝜓𝑣)H𝑎 = (𝜓𝑣)H (𝜁 −
𝛿1) = (𝜓𝑣)H𝜁 . Since the random vector 𝜁 is unbiased and
|𝜔−⟨𝑣,𝑢⟩ | = 1, it follows that var

[
(𝜓𝑣)H𝑎

]
=

∑
𝑢∈𝑉 var𝜁𝑢 =

𝑁 . Thus, the first coordinate 𝑧𝑣,1 of 𝑧𝑣 is of the form 𝑎 + 𝑖𝑏,
where 𝑎 and 𝑏 are sampled (not independently) fromN(0, 𝜎2

1 )
and N(0, 𝜎2

2 ), respectively, such that 𝜎2
1 + 𝜎2

2 = 𝑁 . Thus,

1Proof is provided in the full version of the paper [19].
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|𝑧𝑣,1 | ≤ 𝛿 with probability at most 2𝛿/
√
𝜋𝑁 . Conversely, by

the inequality erfc(𝑧) ≤ 𝑒−𝑧
2 for 𝑧 > 0, we find that |𝑧𝑣,1 | =

𝑂 (
√︁
𝑁 log(𝑑𝑁/𝜀) ), with probability at least 1 − 𝜀/𝑑𝑁 , for

any 0 < 𝜀 < 1; hence ∥𝑧𝑣 ∥2 = 𝑂 (
√︁
𝑑𝑁 log(𝑑𝑁/𝜀) ), with

probability at least 1 − 𝜀/𝑁 . Setting 𝛿 = 𝜀
√︁
𝜋/4𝑁 and using a

union bound completes the proof. □

We upscale by setting 𝜉𝑡 = 1/𝜆; hence 𝑦(𝑡 + 1) = 𝑦(𝑡)/𝜆.

Theorem 2.3. Let 𝑎ℎ and 𝑏ℎ be the row vectors whose
𝑢-th coordinates (𝑢 ∈ 𝑉) are cos(2𝜋⟨ℎ, 𝑢⟩/𝑛) and
sin(2𝜋⟨ℎ, 𝑢⟩/𝑛), respectively. With high probability, for
each 𝑣 ∈ 𝑉 , the agent 𝑣 is attracted to the trajectory of
𝑦∗𝑣 (𝑡), where

𝑦∗𝑣 (𝑡) = 1
𝑁

∑︁
ℎ∈𝑊

(
cos 2𝜋 (𝑡 𝜃ℎ+⟨ℎ,𝑣⟩)

𝑛
, sin 2𝜋 (𝑡 𝜃ℎ+⟨ℎ,𝑣⟩)

𝑛

) (𝑎ℎ
𝑏ℎ

)
𝑥. (5)

Let 𝜇 := max{|𝜆𝑣 |/𝜆 < 1} be the third largest (upscaled)
eigenvalue, measured in distinct moduli. The error of the
approximation decays exponentially fast as a function of
𝜇:

∥𝑦∗𝑣 (𝑡) − 𝑦𝑣 (𝑡)∥𝐹
∥𝑦𝑣 (𝑡)∥𝐹

= 𝑂
(
𝜇𝑡𝑁2√︁𝑑 log 𝑑𝑁

)
.

Proof. Since the eigenvalues sum up to tr𝐹𝐶 = 𝑝𝑁 and 1 has
multiplicity 1, we have 𝑝𝑁 ≤ 1+(𝑁−1)𝜆; hence, by 𝑝 > 1/𝑁 ,

𝜆 ≥ 𝑝𝑁 − 1
𝑁 − 1

> 0. (6)

Writing 𝜇𝑣 = 𝜆𝑣/𝜆 and 𝜇 = max{|𝜇𝑣 | < 1}, we have |𝜇𝑣 | = 1
for 𝑣 ∈ 𝑊 ; recall that 𝑊 = {𝑣 ∈ 𝑉 : |𝜆𝑣 | = 𝜆}. By (4), it
follows that

𝑦(𝑡) = 1
𝑁

∑︁
𝑣∈𝑊

𝜇𝑡𝑣𝜓
𝑣𝑧𝑣 + 𝜂(𝑡), (7)

where, by Lem. 2.2, with high probability,

∥𝜂(𝑡)∥𝐹 =

 1
𝑁

∑︁
𝑣∈𝑉\(𝑊∪{0})

𝜇𝑡𝑣𝜓
𝑣𝑧𝑣


𝐹

≤ 1
𝑁

∑︁
𝑣∈𝑉\(𝑊∪{0})

𝜇𝑡 ∥𝜓𝑣 ∥2 ∥𝑧𝑣 ∥2

= 𝑂
(
𝜇𝑡𝑁

√︁
𝑑 log 𝑑𝑁

)
.

The lower bound of the lemma implies that, for any 𝑣 ∈ 𝑊 , ∑︁
𝑣∈𝑊

𝜇𝑡𝑣𝜓
𝑣𝑧𝑣

2

𝐹
= tr

( ∑︁
𝑣∈𝑊

𝜇𝑡𝑣𝜓
𝑣𝑧𝑣

)H ( ∑︁
𝑣∈𝑊

𝜇𝑡𝑣𝜓
𝑣𝑧𝑣

)
= tr

{ ∑︁
𝑣∈𝑊

𝑧H
𝑣 (𝜓𝑣)H𝜓𝑣𝑧𝑣

}
= 𝑁 · tr

{ ∑︁
𝑣∈𝑊

𝑧H
𝑣 𝑧𝑣

}
= 𝑁

∑︁
𝑣∈𝑊
∥𝑧𝑣 ∥22 ≥ Ω(1).

For large enough 𝑡 = Ω
(
log(𝑑𝑁)/log(1/𝜇)

)
, the sum

in (7) dominates 𝜂(𝑡) with high probability, while the lat-
ter decays exponentially fast. Thus the dynamics 𝑦(𝑡) is
asymptotically equivalent to 𝑦∗ (𝑡) = 1

𝑁

∑
𝑣∈𝑊 𝜇𝑡𝑣𝜓

𝑣𝑧𝑣 . Recall

that 𝜆𝑣 = |𝜆𝑣 |𝜔𝜃𝑣 ; since, for 𝑣 ∈ 𝑊 , 𝜇𝑣 = 𝜆𝑣/𝜆 has
modulus 1, it is equal to 𝜔𝜃𝑣 . This implies that 𝑦∗𝑣 (𝑡) =
1
𝑁

∑
ℎ∈𝑊

∑
𝑢∈𝑉 𝜔𝑡 𝜃ℎ+⟨ℎ,𝑣−𝑢⟩𝑥𝑢. Because 𝑦∗𝑣 (𝑡) is real, we can

ignore the imaginary part when expanding the expression
above, which completes the proof. □

C. Geometric investigations
The trajectory 𝑦∗𝑣 (𝑡) is called the limiting orbit.2 Thm. 2.3

indicates that, with high probability, every orbit is attracted to
its limiting form at an exponential rate, so we may focus on
the latter. Given the initial placement 𝑥 of the agents, all the
limiting orbits lie in the set S, expressed in parametric form by

S =
1
𝑁

∑︁
ℎ∈𝑊

{
(𝑎ℎ𝑥) cos 𝑋ℎ + (𝑏ℎ𝑥) sin 𝑋ℎ

}
. (8)

Recall that 𝑎ℎ𝑥 and 𝑏ℎ𝑥 are row vectors in R𝑑 . The attractor
S is the Minkowski sum of a number of ellipses. We examine
the geometric structure S and explain how the limiting orbits
embed into it. To do that, we break up the sum (5) into three
parts. Given ℎ ∈ 𝑊 , we know that 𝜆ℎ ≠ 0 by (6), so there
remain the following cases for the subdominant eigenvalues:
• real 𝜆ℎ > 0: the contribution to the sum is 𝑐𝑣𝑥, where 𝑐𝑣

is the row vector

𝑐𝑣 := 1
𝑁

∑︁
ℎ∈𝑊 : 𝜃ℎ=0

{
𝑎ℎ cos 2𝜋 ⟨ℎ,𝑣⟩

𝑛
+ 𝑏ℎ sin 2𝜋 ⟨ℎ,𝑣⟩

𝑛

}
. (9)

• real 𝜆ℎ < 0: the contribution is (−1)𝑡𝑑𝑣𝑥, where,
likewise, 𝑑𝑣 is the row vector

𝑑𝑣 := 1
𝑁

∑︁
ℎ∈𝑊 : 𝜃ℎ=𝑛/2

{
𝑎ℎ cos 2𝜋 ⟨ℎ,𝑣⟩

𝑛
+ 𝑏ℎ sin 2𝜋 ⟨ℎ,𝑣⟩

𝑛

}
. (10)

• nonreal 𝜆ℎ: we can assume that 𝜃ℎ > 0 since the
conjugate eigenvalue �̄�ℎ = 𝜆−ℎ is also present in 𝑊 .
The contribution of an eigenvalue is the same as that of
its conjugate since 𝑎ℎ = 𝑎−ℎ and 𝑏ℎ = −𝑏−ℎ. So the
contribution of a given 𝜃 > 0 is equal to 𝑒𝑣, 𝜃𝑥, where

𝑒𝑣, 𝜃 := 2
𝑁

∑︁
ℎ∈𝑊 : 𝜃ℎ=𝜃

{
𝑎ℎ cos 2𝜋 (𝑡 𝜃+⟨ℎ,𝑣⟩)

𝑛
+𝑏ℎ sin 2𝜋 (𝑡 𝜃+⟨ℎ,𝑣⟩)

𝑛

}

= 𝑎𝑣, 𝜃 cos
2𝜋𝜃𝑡
𝑛
+ 𝑏𝑣, 𝜃 sin

2𝜋𝜃𝑡
𝑛

,

and3(
𝑎𝑣, 𝜃
𝑏𝑣, 𝜃

)
=

2
𝑁

∑︁
ℎ∈𝑊 : 𝜃ℎ=𝜃

𝑅

(
−2𝜋⟨ℎ, 𝑣⟩

𝑛

) (
𝑎ℎ
𝑏ℎ

)
. (11)

Putting all three contributions together, we find

𝑦∗𝑣 (𝑡) = 𝑐𝑣𝑥 + (−1)𝑡𝑑𝑣𝑥

+
∑︁
𝜃∈𝜗

{
𝑎𝑣, 𝜃 cos

2𝜋𝜃𝑡
𝑛
+ 𝑏𝑣, 𝜃 sin

2𝜋𝜃𝑡
𝑛

}
𝑥, (12)

where 𝜗 is the set of distinct 𝜃ℎ > 0 for ℎ ∈ 𝑊 and all other
quantities are defined in (9, 10, 11). See Fig. 1 for an illustration
of a doubly-elliptical orbit around its torus-like attractor.

2The phase space of the dynamical system is R𝑑𝑁 , but by abuse of notation
we use the word “orbit” to refer the trajectory of a single agent, which lies in
R𝑑 .

3𝑅 (𝛼) =
(
cos 𝛼 − sin 𝛼

sin 𝛼 cos 𝛼

)
.
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Fig. 1. Two orbits of a single agent around its attractor.

1) Generic elliptical attraction: We prove that, for almost
all values of the self-confidence weight 𝑝, the set 𝑊 generates
either a single real eigenvalue or two complex conjugate ones.
By (12), this shows that almost every limiting orbit is either a
single fixed point or a subset of an ellipse in R𝑑 .

Theorem 2.4. There exists a set Λ of at most
(𝑁

2
)

reals
such that the set 𝑊 is associated with either a single
real eigenvalue or two complex conjugate ones, for any
𝑝 ∈ (1/𝑁, 1) \ Λ.

The system is called regular if 𝑝 ∈ (1/𝑁, 1) \ Λ. For such
a system, either (i) 𝜗 = {𝜃} and 𝑐𝑣 = 𝑑𝑣 = 0, or (ii) 𝜗 = ∅ and
exactly one of 𝑐𝑣 or 𝑑𝑣 equals 0. In other words, by (12), we
have three cases depending on the subdominant eigenvalues:

𝑦∗𝑣 (𝑡) =


𝑐𝑣𝑥 : real positive
(−1)𝑡𝑑𝑣𝑥 : real negative(
𝑎𝑣, 𝜃 cos 2𝜋𝜃𝑡

𝑛
+ 𝑏𝑣, 𝜃 sin 2𝜋𝜃𝑡

𝑛

)
𝑥 : conjugate pair.

(13)

Lemma 2.5. Consider a triangle 𝑎𝑏𝑐 and let 𝑒 = 𝑝𝑐+(1−𝑝)𝑎
and 𝑓 = 𝑝𝑐 + (1− 𝑝)𝑏. Let 𝑂 be the origin and assume that
the segments 𝑂𝑒 and 𝑂 𝑓 are of the same length (Fig. 2);
then the identity |𝑎 |2 − |𝑏 |2 =

2𝑝
1−𝑝 (𝑏 − 𝑎) · 𝑐 holds.

Proof. Let 𝑑 := 1
2 (𝑒 + 𝑓 ) be the midpoint of 𝑒 𝑓 . The segment

𝑂𝑑 lies on the perpendicular bisector of 𝑒 𝑓 , so it is orthogonal
to 𝑒 𝑓 ; hence to 𝑎𝑏. Thus, 𝑑 · (𝑏 − 𝑎) = 0. Since 𝑑 = 1

2 (2𝑝𝑐 +
(1 − 𝑝)𝑎 + (1 − 𝑝)𝑏), the lemma follows from (2𝑝𝑐 + (1 −
𝑝) (𝑎 + 𝑏)) · (𝑏 − 𝑎) = 0. □

𝑂

𝑒 𝑓

|

∥𝑑∥

|

𝑐

𝑏𝑎

Fig. 2. A triangle identity.

Proof of Theorem 2.4. Choose two distinct 𝑢, 𝑣 ∈ 𝑊 . Ap-
plying Lem. 2.5 in the complex plane, we set: 𝑎 =

1
|𝐶 |

∑
ℎ∈𝐶 𝜔⟨𝑢,ℎ⟩ ; 𝑏 = 1

|𝐶 |
∑

ℎ∈𝐶 𝜔⟨𝑣,ℎ⟩ ; and 𝑐 = 1; thus 𝑒 = 𝜆𝑢
and 𝑓 = 𝜆𝑣 , which implies that the segments 𝑂𝑒 and 𝑂 𝑓 are
of the same length. Abusing notation by treating 𝑎, 𝑏, 𝑐 as both
vectors and complex numbers, we have (𝑏−𝑎) · 𝑐 = ℜ(𝑏−𝑎);
therefore, (

2ℜ(𝑏 − 𝑎) + |𝑎 |2 − |𝑏 |2
)
𝑝 = |𝑎 |2 − |𝑏 |2.

1) If 2ℜ(𝑏 − 𝑎) + |𝑎 |2 − |𝑏 |2 = 0, then |𝑎 | = |𝑏 |, which
in turn implies that ℜ(𝑏 − 𝑎) = 0; hence 𝑎 = �̄� and
𝜆𝑢 = �̄�𝑣 .

2) If 2ℜ(𝑏−𝑎)+ |𝑎 |2−|𝑏 |2 ≠ 0, then 𝑝 is unique: 𝑝 = 𝑝𝑢,𝑣 .
We form Λ by including all numbers 𝑝𝑢,𝑣 , with 𝑢, 𝑣 ∈ 𝑊 . □

2) The case of cycle convolutions: It is useful to consider
the case of a single cycle: 𝑚 = 1. For convenience, we momen-
tarily assume that 𝑛 is prime and that

∑
ℎ∈𝐶 ℎ ≠ 0 (mod 𝑛);

both assumptions are dropped in subsequent sections.

Lemma 2.6. Each eigenvalue 𝜆𝑣 is simple.

Proof. Because 𝑛 is prime, the cyclotomic polynomial for 𝜔 is
Φ(𝑧) = 𝑧𝑛−1+𝑧𝑛−2+· · ·+𝑧+1. It is the minimal polynomial for
𝜔, which is unique. Note that ⟨𝑣, ℎ⟩ = 𝑣ℎ, since 𝑚 = 1. Given
𝑣 ∈ 𝑉 , we define the polynomial 𝑔𝑣 (𝑧) =

∑
ℎ∈𝐶 𝑧𝑣ℎ in the

quotient ring of rational polynomialsQ[𝑧]/(𝑧𝑛−1). Sorting the
summands by degree modulo 𝑛, we have 𝑔𝑣 (𝑧) =

∑𝑛−1
𝑘=0 𝑞𝑣,𝑘𝑧

𝑘 ,
for nonnegative integers 𝑞𝑣,𝑘 , where

∑
𝑘 𝑞𝑣,𝑘 = |𝐶 |. If𝜆𝑣 = 𝜆𝑢,

for some 𝑢 ∈ 𝑉 , then, by Lem. 2.1, 𝑔𝑣 (𝜔) = 𝑔𝑢 (𝜔); hence Φ

divides 𝑔𝑣 − 𝑔𝑢. Because the latter is of degree at most 𝑛 − 1,
it is either identically zero or equal to Φ up to a rational factor
𝑟 ≠ 0. In the second case,

(𝑞𝑣,𝑛−1−𝑞𝑢,𝑛−1)𝑧𝑛−1 + · · · + (𝑞𝑣,1−𝑞𝑢,1)𝑧+𝑞𝑣,0−𝑞𝑢,0 = 𝑟Φ.

This implies that 𝑞𝑣,𝑘 − 𝑞𝑢,𝑘 = 𝑟 ≠ 0, for all 0 ≤ 𝑘 < 𝑛, which
contradicts the fact that

∑
𝑘 𝑞𝑣,𝑘 =

∑
𝑘 𝑞𝑢,𝑘 = |𝐶 |; therefore,

𝑔𝑣 = 𝑔𝑢.
1) If 𝑣 = 0, then 𝑔𝑣 (𝑧) = |𝐶 |; hence 𝑔𝑢 (𝑧) = |𝐶 | and 𝑢 = 0,

i.e., 𝑣 = 𝑢.
2) If 𝑣 ≠ 0, then let 𝑆𝑣 = {𝜔𝑣ℎ | ℎ ∈ 𝐶}. Because Z/𝑛Z is

a field, the |𝐶 | roots of unity in 𝑆𝑣 are distinct; hence
𝑞𝑣,𝑘 ∈ {0, 1}. It follows that 𝑆𝑣 = 𝑆𝑢 and |𝑆𝑣 | = |𝑆𝑢 | =
|𝐶 |; therefore, for some permutation 𝜎 of order |𝐶 |, we
have 𝑣ℎ = 𝑢𝜎(ℎ), for all ℎ ∈ 𝐶. Summing up both sides
over ℎ ∈ 𝐶 gives us 𝑣

∑
ℎ∈𝐶 ℎ = 𝑢

∑
ℎ∈𝐶 ℎ (mod 𝑛);

hence 𝑣 = 𝑢, since
∑

ℎ∈𝐶 ℎ ≠ 0 (mod 𝑛). □

By (13), the limiting orbit is of the form 𝑦∗𝑣 (𝑡) = 𝑐𝑣𝑥 or
𝑦∗𝑣 (𝑡) = (−1)𝑡𝑑𝑣𝑥 if the subdominant eigenvalue is real. Oth-
erwise, the orbit of an agent approaches a single ellipse in R𝑑:
for some 𝜃 > 0, 𝑦∗𝑣 (𝑡) =

(
𝑎𝑣, 𝜃 cos 2𝜋𝜃𝑡

𝑛
+ 𝑏𝑣, 𝜃 sin 2𝜋𝜃𝑡

𝑛

)
𝑥.

3) Opinion velocities: Assume that the system is regular,
so 𝑊 is associated with either a single real eigenvalue or
two complex conjugate ones. If 𝜗 = ∅, by (12), every agent
converges to a fixed point of the attractor S or its limiting
orbit has a period of 2. The other case 𝜗 = {𝜃} is more
interesting. The agent approaches its limiting orbit, which is
periodic or quasi-periodic. The rotation number, 𝛼 := 𝜃/𝑛, is
the (average) fraction of a whole rotation covered in a single
step. It measures the speed at which the agent cycles around
its orbit. It is possible to prove a lower bound on that speed.4

Theorem 2.7. The rotation number 𝛼 of a regular system
satisfies 𝛼 ≥ 1−𝑝

𝑛

(
1

2𝑁

)𝑁
.

4Its upper bound is 1/2.
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The proof of Theorem 2.7 is given in [19]. Our next result
formalizes the intuitive fact that self-confidence slows down
motion. Self-assured agents are reluctant to change opinions.

Theorem 2.8. The rotation number of a regular system
cannot increase with 𝑝.

Proof. We must have |𝜗 | = 1. Let 𝜆ℎ be (an) eigenvalue
corresponding to the unique angle in 𝜗; recall that 0 < 𝜃ℎ <

𝑛/2. As we replace 𝑝 by 𝑝′ > 𝑝, we use the prime sign with all
relevant quantities post-substitution. Thus, the subdominant
eigenvalue for 𝑝′ associated with 𝜗′ is denoted by 𝜆′𝑣; again,
we assume that |𝜗′ | = 1. Note that 𝑣 might not necessarily be
equal to ℎ; hence the case analysis:
• 𝑣 = ℎ: Using the same notation for complex numbers and

the points in the plane they represent (Fig. 3), we see that
𝜆′
ℎ

lies in (the relative interior of) the segment 1𝜆ℎ; hence
𝜃′
ℎ
< 𝜃ℎ.

• 𝑣 ≠ ℎ: We prove that, as illustrated in Fig. 3, all three
conditions |𝜆ℎ | > |𝜆𝑣 |, |𝜆′ℎ | < |𝜆

′
𝑣 |, and 𝜃ℎ < 𝜃′𝑣 ≤ 𝑛/2,

cannot hold at the same time, which will establish the
theorem. If we increase 𝑞 continuously from 𝑝 to 𝑝′,
𝜃ℎ (𝑞) decreases continuously (we use the argument 𝑞

to denote the fact that 𝜃ℎ corresponds to the eigenvalue
defined with 𝑝 replaced by 𝑞). Since, at the end of that
motion, |𝜆ℎ (𝑞) | < |𝜆𝑣 (𝑞) |, by continuity we have 𝑝𝑜 <

𝑝′, where 𝑝𝑜 = min{𝑞 > 𝑝 : |𝜆ℎ (𝑞) | = |𝜆𝑣 (𝑞) |}. To
simplify the notation, we repurpose the use of the prime
superscript to refer to 𝑝𝑜 (eg, 𝑝′ = 𝑝𝑜). So, we now have
|𝜆′

ℎ
| = |𝜆′𝑣 | and 𝜃ℎ < 𝜃′𝑣 < 𝜃𝑣 ≤ 𝑛/2. It follows that (i)

the point 𝜆𝑣 lies in the pie slice of radius |𝜆ℎ | running
counterclockwise from 𝜆ℎ to −|𝜆ℎ | on the real axis. Also,
because |𝜆′

ℎ
| = |𝜆′𝑣 | and |𝜆ℎ | > |𝜆𝑣 |, setting 𝑐 = 1 as

before in Lem. 2.5 shows that (ii) ℜ(𝜆𝑣) > ℜ(𝜆ℎ).5
Putting (i, ii) together shows that 𝜃ℎ ≥ 𝑛/4 (as shown
in Fig. 3). Consequently, the slope of the segment 𝜆ℎ𝜆𝑣
is negative. Since that segment is parallel to 𝜆′

ℎ
𝜆′𝑣 , the

perpendicular bisector of the latter has positive slope.
Since that bisector is above𝜆′𝑣 andℑ(𝜆′𝑣) ≥ 0, this implies
that 0 and 𝜆′

ℎ
are on opposite sides of that bisector; hence

|𝜆′𝑣 | < |𝜆′ℎ |, which is a contradiction. □

𝑂 1

𝜆ℎ

𝜃ℎ𝜆′𝑣

𝜃′𝑣𝜆𝑣

𝜆′
ℎ

∥
∥

Fig. 3. Why self-confidence slows down the dynamics: proof by contradiction.

D. Equidistributed orbits
The attractor S is the Minkowski sum of a number of ellipses

bounded by |𝑊 |. An agent orbits around an ellipse as it gets

5The keen-eyed observer will notice that in the lemma we must plug in
(𝑝𝑜 − 𝑝)/(1 − 𝑝) instead of 𝑝.

attracted to it exponentially fast. In a regular system with
𝜗 ≠ ∅, its limiting orbit is periodic if the unique angle 𝜃ℎ
of 𝜗 is rational; it is quasi-periodic otherwise. In fact, it then
forms a dense subset of the ellipse. By (12), this follows from
Weyl’s ergodicity principle [21], which states that the set {𝛼𝑡
(mod 1), | 𝑡 ≥ 0} is uniformly distributed in [0, 1), for any
irrational 𝛼.

Dropping the regularity requirement may produce more
exotic dynamics. We exhibit instances where a limiting orbit
will not only be dense over the entire attracting set but, in fact,
uniformly distributed. In other words, an agent will approach
every possible opinion with equal frequency. This will occur
when this property holds:6

Assumption 2.9. The numbers in 𝜗 ∪ {1} are linearly
independent over the rationals.

We explain this phenomenon next. Order the angles of 𝜗

arbitrarily and define the vector 𝛼 = (𝛼1, . . . , 𝛼𝑠) ∈
[
0, 1

2
] 𝑠 ,

where 𝑠 = |𝜗 | and 𝛼 𝑗 = 𝜃/𝑛 for the 𝑗-th angle 𝜃 ∈ 𝜗. We
may assume that 𝑐𝑣 = 𝑑𝑣 = 0 in (12) since these cases
are rotationally trivial. By Assumption 2.9, 0 is the only
integer vector whose dot product with 𝛼 is an integer. We use
the standard notation ∥𝛼∥ R/Z = max𝑘≤𝑠 min𝑎∈Z |𝛼𝑘 − 𝑎 |. By
Kronecker’s approximation theorem [22], for any 𝛽 ∈ [0, 1]𝑠
and any 𝜀 > 0, there exists 𝑞 ∈ Z such that ∥𝑞𝛼−𝛽∥ R/Z ≤ 𝜀. It
follows directly that, with high probability, any limiting orbit
is dense over the attractor S. We prove the stronger result:

Theorem 2.10. Under Assumption 2.9, any limiting orbit
is uniformly distributed over the attractor S.

We mention that, in general, Assumption 2.9 might be
difficult to verify analytically. Empirically, however, density
is fairly obvious to ascertain numerically with suitable visual
evidence (Fig. 4). We define the discrepancy 𝐷 (𝑆𝑡 ) of 𝑆𝑡 =

Fig. 4. Two examples where an agent approaches every point on its attractor
with equal frequency. In each case, the curve traces the orbit of the agent.

(𝑝1, . . . , 𝑝𝑡 ), with 𝑝𝑖 ∈ R𝑠 , as

𝐷 (𝑆𝑡 ) = sup
𝐵∈𝐽

��� 𝐴(𝐵; 𝑡)
𝑡
− 𝜇𝑠 (𝐵)

���,
where 𝜇𝑠 is the 𝑠-dimensional Lebesgue measure and
𝐴(𝐵; 𝑡) = |{𝑖 | 𝑝𝑖 ∈ 𝐵}| and 𝐽 is the set of 𝑠-dimensional boxes
of the form

∏𝑠
𝑖=1 [𝑎𝑖 , 𝑏𝑖) ⊂ [0, 1]𝑠 . The infinite sequence 𝑆∞

is said to be uniformly distributed if 𝐷 (𝑆𝑡 ) tends to 0, as 𝑡

goes to infinity.

6The coordinates of 𝑎 = (𝑎1, . . . , 𝑎𝑘 ) are linearly independent over the
rationals if 0 is the only rational vector normal to 𝑎.
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Lemma 2.11. (Erdős–Turán–Koksma [21], page 116).
For any integer 𝐿 > 0,

𝐷 (𝑆𝑡 ) ≤ 2𝑠23𝑠+1
( 1
𝐿
+

∑︁
0<∥ℓ ∥∞≤𝐿

1
𝑟 (ℓ)

���1
𝑡

𝑡∑︁
𝑘=1

𝑒2𝜋𝑖⟨ℓ, 𝑝𝑘 ⟩
��� ) ,

where 𝑟 (ℓ) :=
∏𝑠

𝑗=1 max{1, |ℓ 𝑗 |} and ℓ = (ℓ1, . . . , ℓ𝑠) ∈ Z𝑠 .

Proof of Theorem 2.10. We form the sequence 𝑝1, . . . , 𝑝𝑡 ∈
[0, 1)𝑠 such that 𝑝𝑘 = 𝑘𝛼 (mod 1); where each coordinate
of 𝑘𝛼 is replaced by its fractional part. By Lem. 2.11, its box
discrepancy satisfies

𝐷 (𝑆𝑡 ) ≤ 2𝑠23𝑠+1
( 1
𝐿
+

∑︁
0<∥ℓ ∥∞≤𝐿

1
𝑟 (ℓ)

���1
𝑡

𝑡∑︁
𝑘=1

𝑒2𝜋𝑖⟨ℓ,𝑘𝛼⟩
��� ) .
(14)

By Assumption 2.9, 0 is the only integer vector whose dot
product with 𝛼 is an integer; hence 𝛾ℓ := 𝑒2𝜋𝑖⟨ℓ,𝛼⟩ ≠ 1, for
any ℓ ≠ 0. It follows that��� 𝑡∑︁

𝑘=1
𝑒2𝜋𝑖⟨ℓ,𝑘𝛼⟩

��� = ��� 𝑡∑︁
𝑘=1

𝛾𝑘
ℓ

��� = ���𝛾ℓ − 𝛾𝑡+1ℓ

1 − 𝛾ℓ

��� ≤ 2
|1 − 𝛾ℓ |

.

By (14), for any 𝛿 > 0,

𝐷 (𝑆𝑡 ) ≤ 2𝑠23𝑠+1
( 1
𝐿
+ 1
𝑡

∑︁
0<∥ℓ ∥∞≤𝐿

2
|1 − 𝛾ℓ |

)
≤ 𝛿,

for 𝐿 =

⌈
4𝑠23𝑠+1

𝛿

⌉
and 𝑡 ≥ (8/𝛿)𝑠23𝑠+1

∑
0<∥ℓ ∥∞≤𝐿

|1− 𝛾ℓ |−1. □

III. Examples
We illustrate the range of contrarian opinion dynamics by

considering a few specific examples.
1) Fixed-point attractor: Set 𝑚 = 2 and 𝐶 =

{(1, 0), (0, 1), (−1, 0), (0,−1)}. By Lem. 2.1, for any 𝑣 =

(𝑣1, 𝑣2) ∈ 𝑉 ,

𝜆𝑣 = 𝑝 + 1 − 𝑝

2

(
cos

2𝜋𝑣1
𝑛
+ cos

2𝜋𝑣2
𝑛

)
.

The eigenvalues are real and 𝜆 = max𝑣∈𝑉 {|𝜆𝑣 | < 1} = 𝑝 +
1
2 (1 − 𝑝) (1 + cos 2𝜋/𝑛). For any ℎ ∈ 𝐶, 𝜆ℎ = 𝜆 and 𝜃ℎ = 0;
hence 𝐶 ⊆ 𝑊 . A simple examination shows that, in fact,
𝑊 = 𝐶. By (9, 12), given 𝑗 ∈ [𝑑],7

𝑦∗𝑣 (𝑡) 𝑗 = 𝐴 𝑗 cos
2𝜋(𝑣1 + 𝛼 𝑗 )

𝑛
+ 𝐵 𝑗 cos

2𝜋(𝑣2 + 𝛽 𝑗 )
𝑛

,

where 𝐴 𝑗 , 𝐵 𝑗 , 𝛼 𝑗 , 𝛽 𝑗 do not depend on 𝑣 but only on the initial
position 𝑥. This produces a 2D surface in R𝑑 formed by the
Minkowski sum of two ellipses centered at the origin (Fig. 5).

Fig. 5. The attractor on which each agent converges to a fixed point.

7As usual, [𝑑 ] denotes {1, . . . , 𝑑}.

2) Periodic and quasi-periodic orbits: Set 𝑚 = 2 and 𝐶 =

{(1, 0), (0, 1)}. By Lem. 2.1, for any 𝑣 ∈ 𝑉 ,𝜆𝑣 = 𝑝+ 1−𝑝
2

(
𝜔𝑣1+

𝜔𝑣2
)
; hence 𝜆 = max𝑣∈𝑉 {|𝜆𝑣 | < 1} = 1

2
��1 + 𝑝 + (1− 𝑝)𝜔

�� and
𝑊 = {(1, 0), (0, 1), (−1, 0), (0,−1)}. Specifically, 𝜆𝑣 is equal
to 1

2
(
1 + 𝑝 + (1 − 𝑝)𝜔

)
, for 𝑣 ∈ {(1, 0), (0, 1)}, and to its

conjugate, for 𝑣 ∈ {(−1, 0), (0,−1)}. By (11, 12), we have
𝜗 = {𝜃}, where

𝜃 =

( 𝑛

2𝜋

)
arctan

(
(1 − 𝑝) sin 2𝜋/𝑛

1 + 𝑝 + (1 − 𝑝) cos 2𝜋/𝑛

)
, and

𝑦∗𝑣 (𝑡) =
(
𝑎𝑣, 𝜃 cos

2𝜋𝜃𝑡
𝑛
+ 𝑏𝑣, 𝜃 sin

2𝜋𝜃𝑡
𝑛

)
𝑥 .

Fix a coordinate 𝑗 ∈ [𝑑]; we find that

𝑦∗𝑣 (𝑡) 𝑗 = 𝐴 𝑗 cos
2𝜋(𝜃𝑡 + 𝑣1 + 𝛼 𝑗 )

𝑛
+ 𝐵 𝑗 cos

2𝜋(𝜃𝑡 + 𝑣2 + 𝛽 𝑗 )
𝑛

,

for suitable reals 𝐴 𝑗 , 𝐵 𝑗 , 𝛼 𝑗 , 𝛽 𝑗 that depend on the initial
position 𝑥 but not on 𝑣. This again produces a two-dimensional
attracting subset of R𝑑 formed by the Minkowski sum of two
ellipses. In the case of Fig. 6, the attractor is a torus pinched
along two curves. The main difference from the previous
case comes from the limit behavior of the agents. They are
not attracted to a fixed point but, rather, to a surface. With
high probability, the orbits are asymptotically periodic if 𝜃

is rational, and quasi-periodic otherwise. For a case of the
former, consider 𝑝 = 0, which gives us

𝜃 =

( 𝑛

2𝜋

)
arctan

(
sin 2𝜋/𝑛

1 + cos 2𝜋/𝑛

)
=

1
2

;

hence periodic orbits.

Fig. 6. A periodic orbit on the left with the full attractor on the right.

3) Equidistribution over the attractor: Put 𝑚 = 2 and 𝐶 =

{(1, 0), (0, 1), (2, 3)}. We set 𝑝 = 1/4. For any 𝑣 ∈ 𝑉 , we have

𝜆𝑣 = 𝑝 + 1 − 𝑝

3
(
𝜔𝑣1 + 𝜔𝑣2 + 𝜔2𝑣1+3𝑣2

)
.

We found numerically 𝑊 = {(1, 0), (1,−1), (−1, 0), (−1, 1)}
and 𝜗 = {𝜃1, 𝜃2}, where

𝜃1 =
(
𝑛

2𝜋
)

arctan
(

sin 2𝜋/𝑛+sin 4𝜋/𝑛
2+cos 2𝜋/𝑛+cos 4𝜋/𝑛

)
𝜃2 =

(
𝑛

2𝜋
)

arctan
(
− sin 2𝜋/𝑛

1+3 cos 2𝜋/𝑛

)
.

By (12),

𝑦∗𝑣 (𝑡) =
∑︁
𝑘=1,2

(
𝑎𝑣, 𝜃𝑘 cos

2𝜋𝜃𝑘 𝑡
𝑛
+ 𝑏𝑣, 𝜃𝑘 sin

2𝜋𝜃𝑘 𝑡
𝑛

)
𝑥 .

Computer experimentation points to the linear independence
of the numbers 1, 𝜃1, 𝜃2 over the rationals. If so, then Assump-
tion 2.9 from Section II-D holds and, by Thm. 2.10, any limit-
ing orbit is uniformly distributed over the attractor S (Fig. 7).

4660



Fig. 7. A single agent’s orbit is uniformly distributed around its attractor.

IV. Dynamic Social Networks
We define a mixed model of contrarian opinion dynamics.

LetM = {𝐶1, . . . , 𝐶𝑠} be a set of 𝑠 nonempty subsets, each
one spanning the vector space𝑉 . At each time step 𝑡, we define
the matrix 𝐹𝐶 by choosing, as convolution set 𝐶, a random,
uniformly distributed element of M. As before, we assume
that 1⊤𝑥 = 0. Let 𝜆 𝑗 ,𝑣 be the eigenvalue of 𝐹𝐶 𝑗

associated
with 𝑣 ∈ 𝑉 . Given an infinite sequence 𝐼∞ of indices from [𝑠],
we denote by 𝐼𝑡 = 𝑘1, . . . , 𝑘𝑡 be the first 𝑡 indices of 𝐼∞, and
we write Λ𝑣 (𝐼𝑡 ) =

∏
𝑘∈𝐼𝑡 𝜆𝑘,𝑣 . We generalize (4) into

𝑥(𝑡) = 1
𝑁

∑︁
𝑣∈𝑉\{0}

Λ𝑣 (𝐼𝑡 ) 𝜓𝑣𝑧𝑣 , (15)

where 𝑧𝑣 is the row vector
∑

𝑢∈𝑉 𝜔−⟨𝑣,𝑢⟩𝑥𝑢.

A. Spectral decomposition
Write 𝜆×𝑣 =

��∏𝑠
𝑗=1 𝜆 𝑗 ,𝑣

��1/𝑠 and 𝜆 = max𝑣∈𝑉\{0} 𝜆×𝑣 ; because
all the eigenvalues other than 𝜆 𝑗 ,0 = 1 lie strictly inside the
unit circle, we have 𝜆 < 1. Without loss of generality, we can
assume that 𝜆 > 0. Indeed, suppose that 𝜆 = 0; then, for every
𝑣 ∈ 𝑉 \ {0}, there is 𝑗 = 𝑗 (𝑣) such that 𝜆 𝑗 ,𝑣 = 0. This presents
us with a “coupon collector’s” scenario: with probability at
most 𝑁 (1 − 1/𝑠)𝑡 ≤ 𝑁𝑒−𝑡/𝑠 , we have Λ𝑣 (𝐼𝑡 ) ≠ 0 for at least
one nonzero 𝑣 ∈ 𝑉 . In other words, with high probability, every
coordinate of 𝑥(𝑡) in the eigenbasis will vanish after𝑂 (𝑠 log 𝑁)
steps; hence 𝑥(𝑡) = 0 for all 𝑡 large enough. This case is of
little interest, so we dismiss it and assume that 𝜆 is positive. We
redefine 𝑊 = {𝑣 ∈ 𝑉 | 𝜆×𝑣 = 𝜆}. Let 𝑊 ′ = {𝑣 ∈ 𝑉 | 𝜆×𝑣 < 𝜆}.

Lemma 4.1. If 𝑊 ′ is nonempty, there exists 𝑐 < 1 such that,
with high probability, for all 𝑡 large enough,

max
𝑤′∈𝑊 ′

|Λ𝑤′ (𝐼𝑡 ) | ≤ 𝑐𝑡 min
𝑤∈𝑊
|Λ𝑤 (𝐼𝑡 ) |.

Note that the high-probability event applies to all times 𝑡

larger than a fixed constant. The proof involves the comparison
of two multiplicative random walks.

Proof. Fix 𝑤 ∈ 𝑊 and 𝑤′ ∈ 𝑊 ′. We prove that |Λ𝑤′ (𝐼𝑡 ) | ≤
𝑐𝑡 |Λ𝑤 (𝐼𝑡 ) |. If 𝜆×

𝑤′ = 0, then 𝜆 𝑗 ,𝑤′ = 0, for some 𝑗 . With
high probability, the sequence 𝐼𝑡 includes the index 𝑗 at least
once for any 𝑡 large enough; hence |Λ𝑤′ (𝐼𝑡 ) | = 0 and the
lemma holds. Assume now that 𝜆×

𝑤′ > 0; for all 𝑗 , both of
𝜆 𝑗 ,𝑤 and 𝜆 𝑗 ,𝑤′ are nonzero. Write 𝑆𝑣 (𝐼𝑡 ) = log

∏
𝑘∈𝐼𝑡 |𝜆𝑘,𝑣 |,

for 𝑣 = 𝑤, 𝑤′, and note that 𝑆𝑣 (𝐼𝑡 ) = 𝑡 log𝜆×𝑣 +
∑

𝑘∈𝐼𝑡 𝜎𝑘,𝑣 ,
where 𝜎𝑘,𝑣 = log |𝜆𝑘,𝑣 | − log𝜆×𝑣 . Let 𝜎 = max𝑘,𝑣 |𝜎𝑘,𝑣 |.
The random variables 𝜎𝑘,𝑣 are unbiased and mutually inde-
pendent in [−𝜎, 𝜎]. Classic deviation bounds [23] give us

P
[ ��� ∑𝑘∈𝐼𝑡 𝜎𝑘,𝑣

��� > 𝑏

]
< 2𝑒−𝑏2/(2𝑡 𝜎2 ) . It follows that

��𝑆𝑣 (𝐼𝑡 ) −
𝑡 log𝜆×𝑣

�� = 𝑂
(
𝜎
√︁
𝑡 ln(𝑡𝑁)

)
with probability 1 − 𝑎/(𝑡𝑁)2, for

an arbitrarily small constant 𝑎 > 0. Since
∑

𝑡>0 1/𝑡2 = 𝜋2/6,
it follows that, for arbitrarily small fixed 𝜀 > 0 and all 𝑡 large
enough, with probability at least 1 − 𝜀/𝑁2,

log
|Λ𝑤 (𝐼𝑡 ) |
|Λ𝑤′ (𝐼𝑡 ) |

= 𝑆𝑤 (𝐼𝑡 ) − 𝑆𝑤′ (𝐼𝑡 )

≥ 𝑡 log
𝜆×𝑤
𝜆×
𝑤′
−𝑂

(
𝜎
√︁
𝑡 log(𝑡𝑁)

)
≥ 𝑡

2
log

𝜆×𝑤
𝜆×
𝑤′

,

for any given 𝑤 ∈ 𝑊 and 𝑤′ ∈ 𝑊 ′. We conclude by setting
𝑐 = max𝑤∈𝑊,𝑤′∈𝑊 ′

√︃
𝜆×
𝑤′/𝜆×𝑤 and using a union bound. □

We define the scaled orbit 𝑦(𝑡) = 𝑥(𝑡)/𝜆𝑡 . Reprising the
argument from Thm. 2.3, we conclude from (15) that, with
high probability, the limiting orbit is of the form

𝑦∗ (𝑡) = 1
𝑁

∑︁
ℎ∈𝑊

( ∏
𝑘∈𝐼𝑡

𝜆𝑘,ℎ

𝜆

)
𝜓ℎ𝑧ℎ

=
1
𝑁

∑︁
ℎ∈𝑊

( ∏
𝑘∈𝐼𝑡

|𝜆𝑘,ℎ |
𝜆

)
𝜔

∑
𝑘∈𝐼𝑡 𝜃𝑘,ℎ 𝜓ℎ𝑧ℎ,

where 𝜆𝑘,ℎ := |𝜆𝑘,ℎ |𝜔𝜃𝑘,ℎ . It follows that

𝑦∗𝑣 (𝑡) =
1
𝑁

∑︁
ℎ∈𝑊

( ∏
𝑘∈𝐼𝑡

|𝜆𝑘,ℎ |
𝜆

)
𝜔

∑
𝑘∈𝐼𝑡 𝜃𝑘,ℎ+⟨ℎ,𝑣⟩

∑︁
𝑢∈𝑉

𝜔−⟨ℎ,𝑢⟩𝑥𝑢 .

If we put 𝑋ℎ = 2𝜋
𝑛

(
⟨ℎ, 𝑣⟩ +∑

𝑘∈𝐼𝑡 𝜃𝑘,ℎ
)
, then, with 𝑎ℎ and 𝑏ℎ

being the row vectors defined in Thm. 2.3,

𝑦∗𝑣 (𝑡) =
1
𝑁

∑︁
ℎ∈𝑊

( ∏
𝑘∈𝐼𝑡

|𝜆𝑘,ℎ |
𝜆

) (
(𝑎ℎ𝑥) cos 𝑋ℎ + (𝑏ℎ𝑥) sin 𝑋ℎ

)
.

B. Surprising attractors
Adding mixing to a model increases the entropy of the

system. It is thus to be expected that the attractor of a
mixed model should have higher dimensionality than its pure
components. The surprise is that this need not be the case.
We exhibit instances of contrarian opinion dynamics where
mixing decreases the dimension of the attractor. To keep the
notation simple, we consider two pure models M1 = {𝐶1},
M2 = {𝐶2} alongside their mixtureM3 = {𝐶1, 𝐶2}.

Theorem 4.2. The dimension of the mixture’s attractor
can be arbitrarily smaller than those of its pure compo-
nents, i.e., for any 𝑘 ∈ [𝑚], there is a choice of 𝐶1 and
𝐶2 such that dimM3 = 𝑘 and dimM1 = dimM2 = 𝑚.

Proof. We define 𝐶1 = (𝑒1, . . . , 𝑒𝑚) and 𝐶2 =

(𝑒1, . . . , 𝑒𝑘 , 2𝑒𝑘+1, . . . , 2𝑒𝑚), for any 𝑘 ∈ [𝑚], where 𝑒𝑖 is
the one-hot vector of 𝑉 whose 𝑖-th coordinate is 1 and all
the others 0. Let 𝑊𝑖 be the set 𝑊 corresponding to the
system M𝑖 . We easily verify that 𝑊1 = ±𝐶1 and 𝑊2 =

±
{
𝑒1, . . . , 𝑒𝑘 , 2−1𝑒𝑘+1, . . . , 2−1𝑒𝑚

}
, where 2−1 is the inverse

of 2 in the field Z/𝑛Z. A vector 𝑣 ∈ 𝑊𝑖 and its negative
contribute to the same ellipse, so we have dimM1 = dimM2 =

𝑚. We note that |𝜆𝑘,ℎ | = 𝜆 =
��1+ 1−𝑝

𝑚
(𝜔−1)

��, for ℎ ∈ 𝑊1∪𝑊2;
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hence 𝜆×𝑣 = 𝜆 for ℎ ∈ 𝑊1 ∩𝑊2 and 𝜆×𝑣 < 𝜆 for all other values
of ℎ. It follows that dimM3 = 𝑘 . □

Fig. 8 illustrates Thm. 4.2. for 𝑚 = 2, 𝑛 = 29, 𝐶1 =

{(1, 0), (0, 1)} and 𝐶2 = {(1, 0), (0, 2)}. The initial positions
are random and identical in all three cases.

Fig. 8. The two attractors of the pure modelsM𝑖 (𝑖 = 1, 2) on the left, with
the lower-dimensional attractor of the mixture on the right.

We can generalize the mixed model by picking𝐶1 (resp.𝐶2)
with probability 1− 𝑞 (resp. 𝑞), where 0 ≤ 𝑞 ≤ 1. For this, we
redefine 𝜆×𝑣 (𝑞) =

��𝜆1−𝑞
1,𝑣 𝜆

𝑞

2,𝑣

�� and 𝜆(𝑞) = max𝑣∈𝑉\{0} 𝜆×𝑣 (𝑞).

Theorem 4.3. The mixture’s attractor can be larger than
those of its pure components, i.e., there is a choice of 𝐶1
and 𝐶2 such that dimM3 > dimM1 = dimM2 = 𝑚.

Proof. Borrowing the notation of the previous proof, we define
𝐶1 = (𝑒1, . . . , 𝑒𝑚) and 𝐶2 = (2𝑒1, . . . , 2𝑒𝑚) and verify that
𝑊1 = ±𝐶1 and 𝑊2 = ±{2−1𝑒1, . . . , 2−1𝑒𝑚

}
; hence dimM1 =

dimM2 = 𝑚. Assuming that 𝑛 > 3, we note that the sets
𝑊1 and 𝑊2 are disjoint. Regarding the mixed system, we have
𝑊 (𝑞) = {𝑣 ∈ 𝑉 : 𝜆×𝑣 (𝑞) = 𝜆(𝑞)}, where 𝑊 (0) = 𝑊1 and
𝑊 (1) = 𝑊2. Around 𝑞 = 0, we have, for all 𝑣 ∈ 𝑊 (0),

𝜆×𝑣 (𝑞) =
��� 1+ 1 − 𝑝

𝑚
(𝜔−1)

���1−𝑞× ��� 1+ 1 − 𝑝

𝑚
(𝜔2−1)

���𝑞 . (16)

Since 𝑊 (0) ≠ 𝑊 (1), by continuity, there are 𝑞 ∈ (0, 1), 𝑤 ∈
𝑊 (𝑞) \𝑊 (0) such that 𝜆×𝑤 (𝑞) is equal to the r.h.s. of (16). This
implies that 𝑊 (𝑞) ⊇ 𝑊 (0) ∪ {𝑤}, which yields Thm. 4.3. □

Fig. 9 illustrates Thm. 4.3 for 𝑚 = 2, 𝑛 = 29, 𝑝 = 0.9,
𝑞 = 0.0306, 𝐶1 = {(1, 0), (0, 1)} and 𝐶2 = {(2, 0), (0, 2)}.
The initial positions are random and identical in all three cases.

Fig. 9. The two attractors of the pure modelsM𝑖 (𝑖 = 1, 2) on the left, with
the higher-dimensional attractor of the mixture on the right.

V. CONCLUSIONS
We studied an opinion dynamics model where agents update

their opinions at discrete time steps. The updates occur through
a weighted average of each agent’s own opinion and those of
its neighbors in a social network in the form of a Cayley graph.

In this model, agents either converge to a nonconsensual
equilibrium or exhibit cyclic behavior around an attractor, with
the attractor’s geometry being dependent on the structure of
the Cayley graph. We classified different types of attractors,
analyzed the agents’ velocities and distribution on the attractor,
and studied the effects of a randomly changing network.
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