
Kempe’s graph-coloring
algorithm

Andrew W. Appel Princeton University, 2016

These slides help explain Color.v, the graph-coloring
chapter of Verified Functional Algorithms,
a volume in the Software Foundations series.

1

These slides are best viewed in your PDF viewer in
whole-page (page-at-a-time) mode, not scrolling mode.

Alfred B. Kempe, 1849-1922

In 1879, tried to prove the 4-color theorem:
every planar graph can be colored using at
most 4 colors.

That is, any nodes

connected by an edge

must have different

 colors.

2

f

e

b m

c d

k
j

h

g

Alfred B. Kempe, 1849-1922

In 1879, tried to prove the 4-color theorem:
every planar graph can be colored using at
most 4 colors.

Failed: his proof had a bug.

But in the process, proved the 5-color theorem:
every planar graph can be colored using at most
5 colors. For use in this proof, he invented an
algorithm for graph coloring that is still relevant
today, for use in many applications such as
register allocation in compilers.

3

Alfred B. Kempe, 1849-1922

In 1879, tried to prove the 4-color theorem:
every planar graph can be colored using at
most 4 colors.

Failed: his proof had a bug.

Some other guys fixed up Kempe’s buggy

proof in 1976, using computers: they

proved the 4-color theorem. But their

proof doesn’t have applications to compilers,

as far as I know.

 4

Kempe’s graph-coloring algorithm

To 6-color a planar graph:

1. Every planar graph has at least one vertex of
degree ≤ 5.

2. Remove this vertex.

3. Color the rest of the graph with a recursive
call to Kempe’s algorithm.

4. Put the vertex back. It is adjacent to at most
5 vertices, which use up at most 5 colors from
your “palette.” Use the 6th color for this vertex.

5

From 6-coloring to 5-coloring

That was Kempe’s simplest algorithm, to 6-color
a planar graph; or in general, to K-color a graph
in class C, such that (1) every graph in class C has
a node of degree <K, and (2) removing a node
from a graph in class C gives you another graph
in class C.

Kempe had two more algorithms:

5-color a planar graph

4-color a planar graph (but this algorithm had a bug)
6

Kempe’s 5-coloring algorithm

To 5-color a planar graph:

1. Every planar graph has at least one vertex of
degree ≤ 5.

2. Remove this vertex.

3. Color the rest of the graph with a recursive
call to Kempe’s algorithm.

4. Put the vertex back. It is adjacent to at most
5 vertices. How many different colors are used
in these 5 vertices?

 Four or less: use the fifth color for this vertex.

 Five: use the method of “Kempe chains”, which is
beyond the scope of this discussion. 7

Kempe’s 5-coloring algorithm

To 5-color a planar graph:

1. Every planar graph has at least one vertex of
degree ≤ 5.

2. Remove this vertex.

3. Color the rest of the graph with a recursive
call to Kempe’s algorithm.

4. Put the vertex back. It is adjacent to at most
5 vertices. How many different colors are used
in these 5 vertices?

 Four or less: use the fifth color for this vertex.

 Five: use the method of “Kempe chains”, which is
beyond the scope of this discussion. 8

We will set this algorithm aside,

as it does not really concern us,

and go back to Kempe’s

 simpler algorithm

Heuristic hack of Kempe’s algorithm

To mostly K-color a graph (whether planar or not!)

Is there a vertex of degree < K ?

If so:

Remove this vertex.

Color the rest of the graph with a recursive call to the algorithm.

Put the vertex back. It is adjacent to at most K-1 vertices. They use (among
them) at most K-1 colors. That leaves one of your colors for this vertex.

If not:

Remove this vertex.

Color the rest of the graph with a recursive call.

Put the vertex back. It is adjacent to ≥ K vertices. How many colors do these
vertices use among them?

If < K : there is an unused color to use for this vertex

If ≥ K: leave this vertex uncolored.
9

Heuristic hack of Kempe’s algorithm

To mostly K-color a graph (whether planar or not!)

Is there a vertex of degree < K ?

If so:

Remove this vertex.

Color the rest of the graph with a recursive call to the algorithm.

Put the vertex back. It is adjacent to at most K-1 vertices. They use (among
them) at most K-1 colors. That leaves one of your colors for this vertex.

If not:

Remove this vertex.

Color the rest of the graph with a recursive call.

Put the vertex back. It is adjacent to ≥ K vertices. How many colors do these
vertices use among them?

If < K : there is an unused color to use for this vertex

If ≥ K: leave this vertex uncolored.
10

What?
Are we allowed to do that?

Yes!

This is an algorithm to
“mostly K-color” a graph.

Heuristic hack of Kempe’s algorithm

To mostly K-color a graph (whether planar or not!)

Is there a vertex of degree < K ?

If so:

Remove this vertex.

Color the rest of the graph with a recursive call to the algorithm.

Put the vertex back. It is adjacent to at most K-1 vertices. They use (among
them) at most K-1 colors. That leaves one of your colors for this vertex.

If not:

Remove this vertex.

Color the rest of the graph with a recursive call.

Put the vertex back. It is adjacent to ≥ K vertices. How many colors do these
vertices use among them?

If < K : there is an unused color to use for this vertex

If ≥ K: leave this vertex uncolored.
11

In the application of register allocation for compilers,

the uncolored nodes correspond to variables that are

“spilled” to memory instead of held in registers.

This variation of Kempe’s algorithm was invented

 by Gregory Chaitin in 1981.

Gregory Chaitin

Example: 3-color this graph

12

f

e

b m

c d

k
j

h

g

Stack:

Example: 3-color this graph

13

f

e

b m

c d

k
j

h

g

Stack:

This node

has degree < 3 ;

remove it!

Example: 3-color this graph

14

f

e

b m

c d

k
j

h

g

Stack: c
Push node c on

the stack

Example: 3-color this graph

15

f

e

b m

c d

k
j

h

g

Stack: c

Removing c

lowers the degree

of nodes b and m;

that will be helpful later!

Example: 3-color this graph

16

f

e

b m

d

k
j

h

g

Stack: c

This node

has degree < 3 ;

remove it!

Example: 3-color this graph

17

f

e

b m

d

k
j

h

g

Stack: h c

This node

has degree < 3 ;

remove it!

Example: 3-color this graph

18

f

e

b m

d

k
j

g

Stack: h c

This node

has degree < 3 ;

remove it!

Example: 3-color this graph

19

f

e

b m

d

k
j

Stack: g h c

No node has degree < 3

Pick a node arbitrarily,

remove it, and

push it on the stack

Example: 3-color this graph

20

f

e

b m

d

k
j

Stack: k g h c

No node has degree < 3

Pick a node arbitrarily,

remove it, and

push it on the stack

Example: 3-color this graph

21

f

e

b m

d

j

Stack: k g h c

This node

has degree < 3 ;

remove it!

Example: 3-color this graph

22

f

e

b m j

Stack: d k g h c

This node

has degree < 3 ;

remove it!

Example: 3-color this graph

23

f

e

b m

Stack: j d k g h c

This node

has degree < 3 ;

remove it!

Example: 3-color this graph

24

e

b m

Stack: f j d k g h c

This node

has degree < 3 ;

remove it!

Example: 3-color this graph

25

b m

Stack: e f j d k g h c

This node

has degree < 3 ;

remove it!

Example: 3-color this graph

26

m

Stack: b e f j d k g h c

This node

has degree < 3 ;

remove it!

Example: 3-color this graph

27
Stack: m b e f j d k g h c

Now, color the nodes in stack order

28
Stack: m b e f j d k g h c

f

e

b m

c d

k
j

h

g

Find a color for this

 node that’s not already

used in an adjacent node

Find a color for this

 node that’s not already

used in an adjacent node

Now, color the nodes in stack order

29
Stack: m b e f j d k g h c

f

e

b m

c d

k
j

h

g

Find a color for this

 node that’s not already

used in an adjacent node

Now, color the nodes in stack order

30
Stack: m b e f j d k g h c

f

e

b m

c d

k
j

h

g

Find a color for this

 node that’s not already

used in an adjacent node

Now, color the nodes in stack order

31
Stack: m b e f j d k g h c

f

e

b m

c d

k
j

h

g

Find a color for this

 node that’s not already

used in an adjacent node

Now, color the nodes in stack order

32
Stack: m b e f j d k g h c

f

e

b m

c d

k
j

h

g

Find a color for this

 node that’s not already

used in an adjacent node

Now, color the nodes in stack order

33
Stack: m b e f j d k g h c

f

e

b m

c d

k
j

h

g

Find a color for this

 node that’s not already

used in an adjacent node

Now, color the nodes in stack order

34
Stack: m b e f j d k g h c

f

e

b m

c d

k
j

h

g

We’re about to color node k.

This was the only one that was

degree ≥ 3 when we removed it.

Hence, it is not guaranteed that

we can find a color for it now.

But we got lucky, because

b and d have the same color!

Now, color the nodes in stack order

35
Stack: m b e f j d k g h c

f

e

b m

c d

k
j

h

g

Find a color for this

 node that’s not already

used in an adjacent node

Now, color the nodes in stack order

36
Stack: m b e f j d k g h c

f

e

b m

c d

k
j

h

g

Find a color for this

 node that’s not already

used in an adjacent node

Now, color the nodes in stack order

37
Stack: m b e f j d k g h c

f

e

b m

c d

k
j

h

g
Find a color for this

 node that’s not already

used in an adjacent node

Now, color the nodes in stack order

38
Stack: m b e f j d k g h c

f

e

b m

c d

k
j

h

g

Why did this work?
Because (usually) when we removed
each node, at that time it had degree < 3.
So when we put it back, it’s adjacent
to at most 2 already-colored nodes.

Two-phase algorithm:

39
Stack: m b e d k j f h g c

Phase 1: list the nodes in some order (“the stack”)

Phase 2: color the nodes in stack order f

e

b m

c d

k
j

h

g

Two phase algorithm

40

f

e

b m

c d

k
j

h

g

Coloring order:

Phase 1: list the nodes in some order (“the stack”)
Phase 2: color the nodes in stack order

What if we use some other
coloring order, instead of the
“remove nodes of low-degree”
order?

Two phase algorithm

41

f

e

b m

c d

k
j

h

g

Coloring order: b c d e f g h j k m

Phase 1: list the nodes in some order (“the stack”)
Phase 2: color the nodes in stack order

What if we use some other
coloring order, instead of the
“remove nodes of low-degree”
order?

Just for fun, let’s use

alphabetical order.

Two phase algorithm

42

f

e

b m

c d

k
j

h

g

Coloring order: b c d e f g h j k m

Phase 1: list the nodes in some order (“the stack”)
Phase 2: color the nodes in stack order

What if we use some other
coloring order?

Two phase algorithm

43

f

e

b m

c d

k
j

h

g

Coloring order: b c d e f g h j k m

Phase 1: list the nodes in some order (“the stack”)
Phase 2: color the nodes in stack order

What if we use some other
coloring order?

Two phase algorithm

44

f

e

b m

c d

k
j

h

g

Coloring order: b c d e f g h j k m

Phase 1: list the nodes in some order (“the stack”)
Phase 2: color the nodes in stack order

What if we use some other
coloring order?

Two phase algorithm

45

f

e

b m

c d

k
j

h

g

Coloring order: b c d e f g h j k m

Phase 1: list the nodes in some order (“the stack”)
Phase 2: color the nodes in stack order

What if we use some other
coloring order?

Phase 1: list the nodes in some order (“the stack”)
Phase 2: color the nodes in stack order

What if we use some other
coloring order?

Two phase algorithm

46

f

e

b m

c d

k
j

h

g

Coloring order: b c d e f g h j k m

Phase 1: list the nodes in some order (“the stack”)
Phase 2: color the nodes in stack order

What if we use some other
coloring order?

Two phase algorithm

47

f

e

b m

c d

k
j

h

g

Coloring order: b c d e f g h j k m

Phase 1: list the nodes in some order (“the stack”)
Phase 2: color the nodes in stack order

What if we use some other
coloring order?

Two phase algorithm

48

f

e

b m

c d

k
j

h

g

Coloring order: b c d e f g h j k m

Phase 1: list the nodes in some order (“the stack”)
Phase 2: color the nodes in stack order

What if we use some other
coloring order?

Two phase algorithm

49

f

e

b m

c d

k
j

h

g

Coloring order: b c d e f g h j k m

Phase 1: list the nodes in some order (“the stack”)
Phase 2: color the nodes in stack order

What if we use some other
coloring order?

Two phase algorithm

50

f

e

b m

c d

k
j

h

g

Coloring order: b c d e f g h j k m

No color available

for node k, just

leave it uncolored

This is a correct partial
coloring of the graph!

It’s not as good as the other one,
but it is correct.

(In a register-allocation
application, variable k
would not be assigned a
register, but would be
spilled to the stack frame.)

Two phase algorithm

51

f

e

b m

c d

k
j

h

g

Coloring order: b c d e f g h j k m

Moral: The two-phase algorithm is correct
no matter what ordering you choose.

In phase 1, not necessary to use
Kempe’s algorithm,
although that may give
better results.

Two phase algorithm

52

f

e

b m

c d

k
j

h

g

Coloring order: b c d e f g h j k m

Moral: The two-phase algorithm is correct
no matter what ordering you choose.

In phase 1, not necessary to use Kempe’s algorithm,
although that may give better results.

Implications for program verification

53

Therefore: When proving the correctness of this graph-coloring algorithm,

we do not have to prove that the ordering phase correctly follows Kempe’s

algorithm; any ordering will do! We just have to prove things about phase 2.*

* This was once pointed out to me by an anonymous referee named G.G.

Representing graphs in a functional program

54

Node labels: b,c,d,e,…

Edges of node f: {j,e,m}

This is a

set of nodes

Graph is a finite function
from node to set-of-nodes:
[b↦{c,e,k,m}, c↦{b,m}, d↦{j,k,m},

 e↦{b,f,j,m}, f↦{e,j,m}, g↦{h,j,k},

 h↦{g,j}, j↦{d,e,f,g,h,k}, k↦{b,d,g,j},

 m↦{b,c,d,e,f}]

f

e

b m

c d

k

j

h

g

Undirected graphs

55

f

e

b m

c d

k

j

h

g

Graph is a finite function
from node to set-of-nodes:
[b↦{c,e,k,m}, c↦{b,m}, d↦{j,k,m},

 e↦{b,f,j,m}, f↦{e,j,m}, g↦{h,j,k},

 h↦{g,j}, j↦{d,e,f,g,h,k}, k↦{b,d,g,j},

 m↦{b,c,d,e,f}]

Graph coloring is done on undirected graphs.

In an undirected graph, whenever 𝑥→𝑦 then 𝑦→𝑥.

Or we can write,

undirected(G) :=
 ∀𝑥,𝑦. 𝑦 ϵ G(𝑥) ⇒ 𝑥 ϵ G(𝑦)

Sets and maps

56

Graph is a finite function from node to set-of-nodes:
[b↦{c,e,k,m}, c↦{b,m}, d↦{j,k,m}, …]

We can use Coq’s FSets and FMaps libraries
to implement (efficient) functional sets and functional maps
over small-integer keys:

Module E := PositiveOrderedTypeBits. (* E for “Element type,” positive numbers *)

Module S := PositiveSet. (* finite sets of positive numbers *)

Module M := PositiveMap. (* finite functions from positive numbers to arbitrary type *)

Removing a node from a graph

57

f

e

b m

c d

k

j

h

g

[b↦{c,e,k,m}, c↦{b,m}, d↦{j,k,m},

 e↦{b,f,j,m}, f↦{e,j,m}, g↦{h,j,k},

 h↦{g,j}, j↦{d,e,f,g,h,k}, k↦{b,d,g,j},

 m↦{b,c,d,e,f}]

Definition remove_node (c: node) (G: graph) : graph :=
 M.map (S.remove c) (M.remove c G).

First, remove c

from finite-map G

Removing a node from a graph

58

f

e

b m

d

k

j

h

g

[b↦{c,e,k,m}, c↦{b,m}, d↦{j,k,m},

 e↦{b,f,j,m}, f↦{e,j,m}, g↦{h,j,k},

 h↦{g,j}, j↦{d,e,f,g,h,k}, k↦{b,d,g,j},

 m↦{b,c,d,e,f}]

Definition remove_node (c: node) (G: graph) : graph :=
 M.map (S.remove c) (M.remove c G).

First, remove c

from finite-map G

This leaves some

dangling edges

remove the

dangling edges

Removing a node from a graph

59

f

e

b m

d

k

j

h

g

[b↦{c,e,k,m}, c↦{b,m}, d↦{j,k,m},

 e↦{b,f,j,m}, f↦{e,j,m}, g↦{h,j,k},

 h↦{g,j}, j↦{d,e,f,g,h,k}, k↦{b,d,g,j},

 m↦{b,c,d,e,f}]

Definition remove_node (c: node) (G: graph) : graph :=
 M.map (S.remove c) (M.remove c G).

First, remove c

from finite-map G

This leaves some

dangling edges

Testing whether a node is low-degree

60

[b↦{c,e,k,m}, c↦{b,m}, d↦{j,k,m},

 e↦{b,f,j,m}, f↦{e,j,m}, g↦{h,j,k},

 h↦{g,j}, j↦{d,e,f,g,h,k}, k↦{b,d,g,j},

 m↦{b,c,d,e,f}]

Definition low_deg (K: nat) (n: node) (adj: nodeset) : bool :=
 S.cardinal adj <? K.

f

e

b m

c d

k

j

h

g

Example: K=3, n=d, adj={j,k,m}

(S.cardinal {j,k,m} <? 3) is false.

The fold function on a finite map

61

[b↦{c,e,k,m}, c↦{b,m}, d↦{j,k,m},

 e↦{b,f,j,m}, f↦{e,j,m}, g↦{h,j,k},

 h↦{g,j}, j↦{d,e,f,g,h,k}, k↦{b,d,g,j},

 m↦{b,c,d,e,f}]

M.fold: ∀ A B : Type, (M.elt → A → B → B) → M.t A → B → B

M.fold: (node → nodeset → nodeset → nodeset) → graph → nodeset → nodeset

(* calculate the set of those nodes of G that satisfy predicate P *)
Definition subset_nodes (P: node → nodeset → bool) (g: graph) :=
 M.fold (fun n adj s => if P n adj then S.add n s else s) g S.empty.

The set of low-degree nodes

62

[b↦{c,e,k,m}, c↦{b,m}, d↦{j,k,m},

 e↦{b,f,j,m}, f↦{e,j,m}, g↦{h,j,k},

 h↦{g,j}, j↦{d,e,f,g,h,k}, k↦{b,d,g,j},

 m↦{b,c,d,e,f}]

M.fold: ∀ A B : Type, (M.elt → A → B → B) → M.t A → B → B

M.fold: (node → nodeset → nodeset → nodeset) → graph → nodeset → nodeset

(* calculate the set of those nodes of G that satisfy predicate P *)
Definition subset_nodes (P: node → nodeset → bool) (g: graph) :=
 M.fold (fun n adj s => if P n adj then S.add n s else s) g S.empty.

(subset_nodes (low_deg K) G)

The set of low-degree

nodes of G

Phase 1 of Kempe’s algorithm

63

Function select (K: nat) (G: graph) : list node :=
 match S.choose (subset_nodes (low_deg K) G) with
 | Some n ⇒ n :: select K (remove_node n G)
 | None ⇒ nil
 end.

Calculates the “stack”

by removing one low-degree node

at a time.

To define a “Function” in Coq,

you must prove that it terminates,

that it decreases some measurable

thing at each recursive call.

Recursive functions in Coq

64

Function select (K: nat) (G: graph) {measure . . . } : list node :=
 match S.choose (subset_nodes (low_deg K) G) with
 | Some n ⇒ n :: select K (remove_node n G)
 | None ⇒ nil
 end.
Proof. . . .
Defined.

Recursive functions in Coq

65

Function select (K: nat) (G: graph) {measure M.cardinal G} : list node :=
 match S.choose (subset_nodes (low_deg K) G) with
 | Some n ⇒ n :: select K (remove_node n G)
 | None ⇒ nil
 end.
Proof. apply select_terminates.
Defined.

Lemma select_terminates:
 ∀ (K: nat) (G : graph) (n : node),
 S.choose (subset_nodes (low_deg K) G) = Some n →
 M.cardinal (remove_node n G) < M.cardinal G.

Color palette

66

For 6-coloring a graph
(or painting a portrait)

For 3-coloring a graph
(not so good for a portrait)

palette: S.t
A “palette” is a set of colors

Phase 2 of the algorithm

67

e

b m

c d

k
j

h

g

Find a color for this

 node that’s not already

used in an adjacent node

Phase 2 of the algorithm

68

e

b m

c d

k
j

h

g

Find a color for this

 node that’s not already

used in an adjacent node

Definition coloring := M.t node.

Definition colors_of (f: coloring) (s: S.t) : S.t :=
 S.fold
 (fun n s => match M.find n f with Some c ⇒ S.add c s | None ⇒ s end)
 s S.empty.

Definition color1 (palette: S.t) (g: graph) (n: node) (f: coloring) : coloring :=
 match S.choose (S.diff palette (colors_of f (adj g n))) with
 | Some c => M.add n c f
 | None => f
 end.

The entire program

69

e

b m

c d

k
j

h

g

Definition color (palette: S.t) (G: graph) : coloring :=
 fold_right (color1 palette G) (M.empty _) (select (S.cardinal palette) G).

Phase 1 Phase 2

PROVING THE PROGRAM
CORRECT

70

Specification of correctness

71

coloring : Type := “finite function from node to color”

Definition color (palette: S.t) (G: graph) : coloring :=

Correctness:
 If 𝑓 is a coloring for G, that is, color palette G = 𝑓,
 then (1) if 𝑓(𝑖) = Some 𝑐 then 𝑐 ϵ palette
 and (2) if 𝑗ϵG(𝑖) and 𝑓(𝑖) = Some 𝑐 and 𝑓(𝑗) = Some 𝑑 then 𝑐≠𝑑

Definition coloring_ok (palette: S.t) (g: graph) (f: coloring) :=
 forall i j, S.In j (adj g i) →
 (forall ci, M.find i f = Some ci → S.In ci palette) /\
 (forall ci cj, M.find i f = Some ci → M.find j f = Some cj → ci<>cj).

Theorem

72

Definition coloring_ok (palette: S.t) (g: graph) (f: coloring) :=
 ∀ i j,
 S.In j (adj g i) →
 (forall ci, M.find i f = Some ci → S.In ci palette) /\
 (forall ci cj, M.find i f = Some ci → M.find j f = Some cj → ci<>cj).

Theorem color_correct:
 ∀ palette g,
 no_selfloop g →
 undirected g →
 coloring_ok palette g (color palette g).

Proof: See the Coq development, Color.v

