
Scalable Formal Verification 
in High-Level Hardware 
Languages
Amelia Dobis  - PhD Student, Princeton University
Advised by Mae Milano



Motivation: Formal Verification 

● Hardware design is difficult -> error prone.

● Tape-out is expensive -> no such thing as “affordable 
mistakes” .

● Formal Verification gives strong correctness guarantees.
○ Based on SMT solvers like z3 or bitwuzla.

2



Motivation: Current Approach

3

class Counter extends Module {

val count = RegInit(0.U(32.W))

when(count === 42.U) { count := 0.U }

otherwise { count := count + 1.U }

assert(count < 42.U)

}

CIRCT Counter.sv

Yosys
Formal 
Tools

c.btor2btormc

SMT 
SolverSAT/UNSAT



Motivation: Problems with Current Approach

● Formal Verification tools are mostly commercial and closed-source.

● They do not scale well for large designs.
○ Engineers rely on manual workarounds and simulation instead.

● They are designed for SystemVerilog, not the high-level source 
languages.

● We need an open-source solution that is fully integrated into the 
languages engineers write.

4



Goal: Unified Formal Verification System

Goal: Design a verification system that is:

1. Generic: Single interface that works for all high-level hardware 
languages.

2. Scalable: Efficiently verifies large modular designs.

3. Expressive: Allows for designs to be accurately specified.

5



Background

6



Background: CIRCT

● MLIR-based Compiler for 
high-level hardware 
languages, e.g. Chisel, 
Kanagawa, Verilog.

● Lowers all design constructs 
down to a shared core 
representation.

● Good target to create 
features that can be shared 
across many hardware 
languages.

7

CIRCT



Overview of our 
Solution

8



Goal: Unified Formal Verification System

Goal: Design a verification system that is:

1. Generic: Single interface that works for all high-level hardware 
languages.

2. Scalable: Efficiently verifies large modular designs.

3. Expressive: Allows for designs to be accurately specified.

9



Generic: Single Interface for Formal 
Verification
● Goal: Single interface to encode a formal test case in a frontend 

language.

10

Chisel Kanagawa Verilog frontends

BMC 
Interface

circt-bmc

k-Induction 
Interface

Potential 
induction tool

External 
Target

circt-test

CIRCT



Generic: Single Interface for Formal 
Verification
● Goal: Single interface to encode a formal test case in a frontend 

language.

11

Chisel Kanagawa Verilog frontends

Unified Formal Verification Interface

BMC 
Interface

circt-bmc

k-Induction 
Interface

Potential 
induction tool

External 
Target

circt-test

CIRCT



Generic: Single Interface for Formal 
Verification
● How: Express verification intent and constructs in the IR.

12

class formalTest extends Module with Formal {
// Inputs are interpreted as free/symbolic
val a = IO(Input(UInt(32.W)))
…

}

Chisel

verif.formal @formalTest {bound=500, method=BMC} {
%a = verif.symbolic_input : i32
…

}

MLIR



Generic: Single Interface for Formal 
Verification
● How: Express verification intent and constructs in the IR.

● New operations in MLIR:
○ verif.formal @Sym {attr-dict} {<body>}  

■ declares a formal test block that can contain verification operations. 
■ Each formal test will generate its own btor2 file.

○ %val = symbolic_value : <type>
■ declares a free variable. 
■ Only valid inside of a verif.formal  body.

13



Goal: Unified Formal Verification System

Goal: Design a verification system that is:

1. Generic: Single interface that works for all high-level hardware 
languages.

2. Scalable: Efficiently verifies large modular designs.

3. Expressive: Allows for designs to be accurately specified.

14



Scalable: Maintain Modularity during 
Verification
● Goal: Efficiently verify large modular designs.

● Problem: Current solutions ignore modularity during verification.

● Solution: Hardware Contracts
○ Express specifications at the Module boundaries through pre- & post-conditions
○ Use modular specification to abstract modules during verification
○ Only verify modules once – rather than once per instance

15



Scalable: Maintain Modularity during 
Verification
● Idea: Preserve modularity throughout verification process.

16



Scalable: Maintain Modularity during 
Verification
● How: Annotate Modules with contracts. Once Verified, use contracts 

to abstract module instances.

17

class A extends Module {
val in = IO(Input(UInt(32.W)))
val out = IO(Output(UInt(32.W)))

contract {
    requires in >= 0.U // precondition
    ensures out === in + 42.U // postcondition

}
// ... Module body ...

}

Chisel



Scalable: Maintain Modularity during 
Verification

18

class A extends Module {
//… IO …
contract {

    requires precondition
    ensures postcondition

}
}

hw.module @A(in %in : i32, out out : i32) {
; ... module body defining %out ...
%out_ = verif.contract %out : i32 {
    verif.requires %prec : i1    

verif.ensures %post : i1
}
hw.output %out_ : i32

}

Chisel

MLIR



Scalable: Maintain Modularity during 
Verification
● New operations in MLIR:

○ %out = verif.contract (<inputs>) {<body>}  
■ declares a contract that can contain pre- & postconditions. 
■ Functions as a Hoare Triple → inputs will be abstracted during verification.
■ Output is the result that  in postconditions

19



Scalable: Maintain Modularity during 
Verification
● New operations in MLIR:

○ %out = verif.contract (<inputs>) {<body>}  
■ declares a contract that can contain pre- & postconditions. 
■ Functions as a Hoare Triple → inputs will be abstracted during verification.
■ Output is the result that  in postconditions

○ verif.requires %precondition : <type>
■ declares a precondition 
■ Only valid inside of a verif.contract  body

20



Scalable: Maintain Modularity during 
Verification
● New operations in MLIR:

○ %out = verif.contract (<inputs>) {<body>}  
■ declares a contract that can contain pre- & postconditions. 
■ Functions as a Hoare Triple → inputs will be abstracted during verification.
■ Output is the result that  in postconditions

○ verif.requires %precondition : <type>
■ declares a precondition 
■ Only valid inside of a verif.contract  body

○ Verif.ensures %postcondition : <type>
■ declares a postcondition 
■ Only valid inside of a verif.contract  body

21



Scalable: Maintain Modularity during 
Verification
● Verification Compilation Flow: 

○ Lower frontend modules to MLIR modules containing contracts.
○ Lower formal tests to verif formal tests.

22



Scalable: Maintain Modularity during 
Verification
● Verification Compilation Flow: 

○ Lower frontend modules to MLIR modules containing contracts.
○ Lower formal tests to verif formal tests.

○ Convert modules into formal tests by:
■ Replace inputs and outputs with symbolic variables
■ Assume all preconditions on the inputs
■ Assert all postconditions on the outputs

23



Scalable: Maintain Modularity during 
Verification
● Verification Compilation Flow: 

○ Lower frontend modules to MLIR modules containing contracts.
○ Lower formal tests to verif formal tests.

○ Convert modules into formal tests by:
■ Replace inputs and outputs with symbolic variables
■ Assume all preconditions on the inputs
■ Assert all postconditions on the outputs

○ Replace module instances with their contracts where:
■ All preconditions are asserted on the inputs given to the instance
■ All postconditions are assumed on the result of the instance

24



Scalable: Maintain Modularity during 
Verification
● Verification Compilation Flow:

25

class A extends Module {
//… IO …
contract {

    requires …
    ensures …
}}

class B extends Module 
with Formal 

{
val a1 = Instance(A)
val a2 = Instance(A)
assert(...)

}

frontend



Scalable: Maintain Modularity during 
Verification
● Verification Compilation Flow:

26

class A extends Module {
//… IO …
contract {

    requires …
    ensures …
}}

class B extends Module 
with Formal 

{
val a1 = Instance(A)
val a2 = Instance(A)
assert(...)

}

frontend

hw.module @A(;...io...;) {
  %out_ = verif.contract %out : i32 {
    verif.requires …  
    verif.ensures …
}}

verif.formal @B {attr} {
  %a1.in = verif.symbolic_input : i32
  %a2.in = verif.symbolic_input : i32
  %a1.out = hw.instance "a1" 

@A(in: %a1.in) -> (out: i32)
  %a2.out = hw.instance "a2" 

@A(in: %a2.in) -> (out: i32)
  verif.assert …
}

CIRCT core IR



Scalable: Maintain Modularity during 
Verification
● Verification Compilation Flow:

27

class A extends Module {
//… IO …
contract {

    requires …
    ensures …
}}

class B extends Module 
with Formal 

{
val a1 = Instance(A)
val a2 = Instance(A)
assert(...)

}

frontend

hw.module @A(;...io...;) {
  %out_ = verif.contract %out : i32 {
    verif.requires …  
    verif.ensures …
}}

verif.formal @B {attr} {
  %a1.in = verif.symbolic_input : i32
  %a2.in = verif.symbolic_input : i32
  %a1.out = hw.instance "a1" 

@A(in: %a1.in) -> (out: i32)
  %a2.out = hw.instance "a2" 

@A(in: %a2.in) -> (out: i32)
  verif.assert …
}

CIRCT core IR

verif.formal @A {attr} {
  %in = verif.symbolic_input : i32
  %out = verif.symbolic_input : i32
  verif.assume …
  verif.assert …
}

verif.formal @B {attr} {
  %a1.in = verif.symbolic_input : i32
  %a2.in = verif.symbolic_input : i32
  %a1.out = verif.symbolic_input : i32
  verif.assert prec_a1
  verif.assume post_a1
  %a2.out = verif.symbolic_input : i32
  ;...contract a2
}

CIRCT verification IR



Scalable: Maintain Modularity during 
Verification

Why? 

● Enables Solver Parallelism

● Simplifies individual verification problems
○ No single verification task needs to solve for the entire system

28

verif.formal @A {attr} {…}
verif.formal @B {attr} {…}
verif.formal @C {attr} {…}
verif.formal @D {attr} {…}

A.btor2
C.btor2 btormc

If all succeed

counter-example

btormcbtormcbtormc
C.btor2
D.btor2

If one fails



Scalable: Maintain Modularity during 
Verification

Why? 

● Enables Solver Parallelism

● Simplifies individual verification problems
○ No single verification task needs to solve for the entire system

29

verif.formal @A {attr} {…}
verif.formal @B {attr} {…}
verif.formal @C {attr} {…}
verif.formal @D {attr} {…}

A.btor2
C.btor2 btormc

If all succeed

counter-example

btormcbtormcbtormc
C.btor2
D.btor2

If one fails



Scalable: Maintain Modularity during 
Verification

Why? 

● Enables Solver Parallelism

● Simplifies individual verification problems
○ No single verification task needs to solve for the entire system

30

verif.formal @A {attr} {…}
verif.formal @B {attr} {…}
verif.formal @C {attr} {…}
verif.formal @D {attr} {…}

A.btor2
C.btor2 btormc

If all succeed

counter-example

btormcbtormcbtormc
C.btor2
D.btor2

If one fails



Goal: Unified Formal Verification System

Goal: Design a verification system that is:

1. Generic: Single interface that works for all high-level hardware 
languages.

2. Scalable: Efficiently verifies large modular designs.

3. Expressive: Allows for designs to be accurately specified.

31



Expressive: Enable Accurate Specifications

● Goal: Accurately specify designs.

● Problem: Sequential hardware requires temporal specifications.
○ Modal Logic is complex and hard to support.
○ Only supported by expensive commercial verification tools.

● Solution: Incrementally lower temporal specifications into 
synthesizable hardware before verification.

○ Enables the use of LTL-like formulae in specifications
○ Lowers complex expressions to standard, widely supported constructs.

32



Expressive: Enable Accurate Specifications

33

(a ##1 b ##1 c) |-> (d ##1 e)



Expressive: Enable Accurate Specifications

34

(a ##1 b ##1 c) |-> (d ##1 e)

(a ##1 b) (ab ##1 c) (d ##1 e)(abc |-> de)



Expressive: Enable Accurate Specifications

35

(a ##1 b ##1 c) |-> (d ##1 e)

(a ##1 b) (ab ##1 c) (d ##1 e)(abc |-> de)

%ab = ltl.seq {
  %a_1 = ltl.delay %a, 1 : i1
  %res = comb.and bin %a_1, %b : i1
  ltl.yield %res
} : !ltl.sequence<1>



Expressive: Enable Accurate Specifications

36

(a ##1 b ##1 c) |-> (d ##1 e)

(a ##1 b) (ab ##1 c) (d ##1 e)(abc |-> de)

%ab = ltl.seq {
  %a_1 = ltl.delay %a, 1 : i1
  %res = comb.and bin %a_1, %b : i1
  ltl.yield %res
} : !ltl.sequence<1>

%abc = ltl.seq (%ab) {
  %ab_1 = ltl.delay %ab, 1 : i1
  %res = comb.and bin %ab_1, %c : i1
  ltl.yield %res
} : !ltl.sequence<1>



Expressive: Enable Accurate Specifications

37

(a ##1 b ##1 c) |-> (d ##1 e)

(a ##1 b) (ab ##1 c) (d ##1 e)(abc |-> de)

%ab = ltl.seq {
  %a_1 = ltl.delay %a, 1 : i1
  %res = comb.and bin %a_1, %b : i1
  ltl.yield %res
} : !ltl.sequence<1>

%abc = ltl.seq (%ab) {
  %ab_1 = ltl.delay %ab, 1 : i1
  %res = comb.and bin %ab_1, %c : i1
  ltl.yield %res
} : !ltl.sequence<1>

%de = ltl.seq {
  %d_1 = ltl.delay %d, 1 : i1
  %res = comb.and bin %d_1, %e : i1
  ltl.yield %res
} : !ltl.sequence<1>



Expressive: Enable Accurate Specifications

38

(a ##1 b ##1 c) |-> (d ##1 e)

(a ##1 b) (ab ##1 c) (d ##1 e)(abc |-> de)

%ab = ltl.seq {
  %a_1 = ltl.delay %a, 1 : i1
  %res = comb.and bin %a_1, %b : i1
  ltl.yield %res
} : !ltl.sequence<1>

%abc = ltl.seq (%ab) {
  %ab_1 = ltl.delay %ab, 1 : i1
  %res = comb.and bin %ab_1, %c : i1
  ltl.yield %res
} : !ltl.sequence<1>

%de = ltl.seq {
  %d_1 = ltl.delay %d, 1 : i1
  %res = comb.and bin %d_1, %e : i1
  ltl.yield %res
} : !ltl.sequence<1>

%ltl = ltl.implication %abc, %de : !ltl.property



Expressive: Enable Accurate Specifications

39

%ab = ltl.seq {
  %a_1 = ltl.delay %a, 1 : i1
  %res = comb.and bin %a_1, %b : i1
  ltl.yield %res
} : !ltl.sequence<1>

%abc = ltl.seq (%ab) {
  %ab_1 = ltl.delay %ab, 1 : i1
  %res = comb.and bin %ab_1, %c : i1
  ltl.yield %res
} : !ltl.sequence<1>

(a ##1 b)

(ab ##1 c)

%abc = ltl.seq {
  %a_2 = ltl.delay %a, 2 : i1
  %b_1 = ltl.delay %b, 1 : i1
  %res = comb.and %a_2, %b_1, %c : i1
  ltl.yield %res
} : !ltl.sequence<2>

(a ##1 b ##1 c)



Expressive: Enable Accurate Specifications

40

(d ##1 e)

%abc = ltl.seq {
  %a_2 = ltl.delay %a, 2 : i1
  %b_1 = ltl.delay %b, 1 : i1
  %res = comb.and %a_2, %b_1, %c : i1
  ltl.yield %res
} : !ltl.sequence<2>

(a ##1 b ##1 c)

%de = ltl.seq {
  %d_1 = ltl.delay %d, 1 : i1
  %res = comb.and %d_1, %e : i1
  ltl.yield %res
} : !ltl.sequence<1>

%ltl = ltl.implication %abc, %de : !ltl.property

%ltl = ltl.seq {
  %a_3 = ltl.delay %a, 3 : i1
  %b_2 = ltl.delay %b, 2 : i1
  %c_1 = ltl.delay %c, 1 : i1
  %abc = comb.and %a_3, %b_2, %c_1 : i1
  %d_1 = ltl.delay %d, 1 : i1
  %de = comb.and %d_1, %e : i1
  %res = ltl.implication %abc, %de:!ltl.property
  ltl.yield %res
} : !ltl.property<3>

(a ##1 b ##1 c) |-> (d ##1 e)



Expressive: Enable Accurate Specifications

With this design we achieve:

● Expressiveness: we can encode a wide variety of LTL expressions.

● Compositionality: composed LTL formulae lower correctly without 
additional effort.

● Synthesizability: formulae are easier to convert than the 
traditional method of building a monitor automata.

41



Goal: Unified Formal Verification System

Goal: Design a verification system that is:

1. Generic: Single interface that works for all high-level hardware 
languages.

2. Scalable: Efficiently verifies large modular designs.

3. Expressive: Allows for designs to be accurately specified.

42



Conclusion

43



Conclusion: Current Approach

44

Source Design CIRCT Counter.sv

Yosys
Formal 
Tools

c.btor2btormc

SMT 
SolverSAT/UNSAT



btormc

Conclusion: Our Solution

45

Source Design CIRCT btormc

SMT 
Solver

SAT/UNSAT
btormc



Conclusion

Designed a scalable unified verification system for hardware using:

1. Unified Formal Test Interface
a. Allows any frontend to gain access to Formal Verification for free.

2. Hardware Contracts – Maintain Modularity during 
Verification
a. Enable Solver Parallelism
b. Simplify individual verification tasks

3. General LTL support 
a. IR that encodes LTL expressions in a composable manner
b. Incrementally lower expression to synthesizable hardware through simple passes

46



Repositories

● Btor2-opt: Experimentation and Benchmarking
○ https://github.com/dobios/btor2-opt

● CIRCT: Final MLIR implementation of language constructs
○ https://github.com/llvm/circt

● Patronus: Implementation of solver optimizations
○ https://github.com/cucapra/patronus

47

https://github.com/dobios/btor2-opt
https://github.com/dobios/btor2-opt
https://github.com/llvm/circt
https://github.com/llvm/circt
https://github.com/cucapra/patronus
https://github.com/cucapra/patronus


Questions?

48


