
Scalable Formal Verification in High-Level Hardware Languages
Amelia Dobis 1 Fabian Schuiki 2 Bea Healy 3 Hideto Ueno 2 Martin Erhart 2 Lenny Truong 2 Mae Milano 1

1Princeton University 2SiFive 3University of Cambridge

Background: Hardware Development

Idea: Write a description of a Digital Circuit in a high-level format (similar to a program) that is

processed by EDA tools in one of 3 ways:

Production: Create a physical layout of electronic components to produce a real chip.

Simulation: Create a software model of the circuit to run it on a computer and test it.

Verification: Create a mathematical model (logic formula) of the circuit and formally prove that

it matches a given behavioral specification.

Hardware
Description

Electronic Design
Automation (EDA)

Tools

Synthesized Design
For Production:
ASIC or FPGA

Software Model of
Design

For Simulation

Mathematical Model
of Design

For Verification

module Counter(input ..., output ...);
 reg [31:0] r;
 always @(posedge clock) begin
 ... // if(reset) ... else ...
 end
endmodule

Figure 1. Overview of a typical hardware development flow.

Background: Formal Verification of Hardware

Problem: Producing a chip (tape-out) is an expensive process ($50Mio with modern technology).

We need a way to guarantee that a design is correct before we produce it. Simulation is often not

convincing enough.

Idea: Create a mathematical model of a given design, and formally prove that this model is equiv-

alent to a given behavioral specification (assertions about the circuit’s expected behavior).

How: Encode the circuit as a transition system that can be reasoned about mathematically.

en = 0
count = 0

en = 1
count = 0

en = 1
count = 1

en = 0
count = 2

en = 1
count = 2

en = 0
count = 1

...

Figure 2. Illustration of the conversion of a hardware design to a state transition system.

This process is:

Difficult: Formal verification tools are slow to find a solution.

Scales Poorly: Modularity in a design is ignored, making larger designs much harder to verify.

Research Questions

Goal: Make formal verification simple and scalable. Can be done by answering the following:

Modularity: How can we preserve modularity in a design during verification?

Generalizability: Can we create a single solution that supports all hardware languages?

Expressiveness: How can we faithfully express our design as a verification problem?

Key Idea: Retain Modularity during Verification

Current Approach: Handle modularity by inlining modules in place of instances before converting

the design for formal verification. This results in re-verifying modules for every instance.

Model for Verification

Module A

Module B

instance of A

Modular Design

Formula for A

Formula for A

Formula for B

instance of A

instance of B

Module C Formula for C

Current Approach

Formula for A

Formula for A

Formula for B

Model for Verification

Module A

Module B

instance of A

Modular Design

Formula for A

Formula for B

instance of A

instance of B

Module C Formula for C

Our Solution

Contract A

Contract B

Contract A

Contract A
Contract B

Figure 3. Comparison between the current formal verification approach (left) and our modular solution (right).

Our solution: Hardware Contracts – Verify all modules exactly once.

Annotate Modules with preconditions (constraints on the module’s inputs) and postconditions

(guarantees on the module’s outputs).

Abstract Module instances using contracts to simplify verification while maintaining

correctness.

Example

class A extends Module {
 val in = IO(Input(UInt(32.W))
 val out = IO(Output(UInt(32.W))
 contract {
 require in >= 0.U
 ensure out === in + 42.U
 }
 // Module body
}

class B extends Module {
 val a1 = Instance(A)
 val a2 = Instance(A)
 a1.in := 0.U
 a2.in := 1.U
 assert(a1.out + a2.out === 85.U)
}

 1 sort bitvector 32
 2 constd 1 0
 3 sort bitvector 1
 4 ugte 3 2 2
 5 not 3 4
 6 bad 5 ; precondition a
 7 input 1 a1.out
 8 constd 1 42
 9 add 1 2 8
 10 eq 3 7 9
 11 constraint 10 ; postcondition a
 12 constd 1 1
 13 ugte 3 12 2
 14 not 3 13
 15 bad 14 ; precondition a2
 16 input 1 a2.out
 17 add 1 12 8
 18 eq 3 16 17
 19 constraint 18 ; postcondition a2
 20 add 1 11 12
 21 constd 1 85
 22 eq 3 20 21
 23 not 22
 24 bad 23 ; assertion

B.btor2

contract a1

contract a2

Figure 4. Example of a modular design, implemented in Chisel, converted into a logic formula, expressed in btor2.

Details: A Unified Representation for Modular Formal Verification

Goal: Create a modular formal verification interface that all hardware languages can easily target

to unlock formal verification for free.

How: Extend CIRCT, a compiler and intermediate representation (IR) for hardware design, with:

Unified Interface representing a formal verification problem in CIRCT’s IR.

IR and Compiler Passes to support hardware contracts.

Formal Backend to convert CIRCT’s IR into a format for formal verification.

This is implemented as the verif IR inside of CIRCT. With this all languages that use CIRCT have

access to a scalable formal verification stack for free.

. sca la

Fron t Ends and Dia lec t s

Chisel HLS K a n a g a w a PyCDE Verilog

chirr t l , f i rr t l c f , a r i th , handshake , dc ibis m o o r e

.cpp .k .py .sv

.sv .tcl . json .b to r2

Core Dia lec ts

Des ign Verification

comb, hw, seq verif, ltl

Specia l ty Dia lec ts

debug, es i , f sm, l lhd, om, sv

Back Ends

Emiss ion Simula t ion Verification

Figure 5. Overview of the CIRCT compiler. The compiler uses specialty dialects to support several front-ends

regardless of their paradigms. The core dialects represent a generalized representation of hardware design and

verification. These can then be lowered to target several targets.

Several problems had to be solved in order to enable this solution for hardware, including han-

dling multi-clock designs, encoding various types of states, and expressing specifications about

hardware. Please talk to me if you want to know more about how we solved these problems!

Initial Results

Initial results of verifying the small design from Figure 4 using btormc.

without contracts with contracts speedup

0.011s 0.007s 1.57x

Table 1. Wall-time average over 100 runs (in seconds) of verifying Figure 4 with the resulting speedup obtained from

using hardware contracts.

These results are due to contracts enabling solver parallelism and simplifying verification. We

believe that the speedup will scale with the size of the design.

References

[Dij75] Edsger W. Dijkstra.

Guarded commands, nondeterminacy and formal derivation of programs.

Commun. ACM, 18(8):453–457, August 1975.

[NPWB18] Aina Niemetz, Mathias Preiner, Clifford Wolf, and Armin Biere.

Btor2 , btormc and boolector 3.0.

In Computer Aided Verification. Springer, 2018.

https://github.com/llvm/circt Ivy Collective Research Symposium 2024, Cambridge MA amelia.dobis@princeton.edu

https://github.com/llvm/circt
mailto:amelia.dobis@princeton.edu

