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Abstract

Several research groups have shown how to correlate fMRI responses to the meanings

of presented stimuli. This paper presents new methods for doing so when only a

natural language annotation is available as the description of the stimulus. We study

fMRI data gathered from subjects watching an episode of BBCs Sherlock [4], and

learn bidirectional mappings between fMRI responses and natural language represen-

tations. We show how to leverage data from multiple subjects watching the same

movie to improve the accuracy of the mappings, allowing us to succeed at a scene

classification task with 72% accuracy (random guessing would give 4%) and at a scene

ranking task with average rank in the top 4% (random guessing would give 50%). The

key ingredients are (a) the use of the Shared Response Model (SRM) and its variant

SRM-ICA [5, 24] to aggregate fMRI data from multiple subjects, both of which are

shown to be superior to standard PCA in producing low-dimensional representations

for the tasks in this paper; (b) a sentence embedding technique adapted from the

natural language processing (NLP) literature [3] that produces semantic vector rep-

resentation of the annotations; (c) interpretably using previous timestep information

in the featurization of the predictor data.
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Chapter 1

Introduction

Recent work has provided convincing evidence that fMRI readings from human sub-

jects can be related to semantics of presented stimuli. Such experiments consist

of finding (1) low-dimensional representations of the fMRI signals, and (2) low-

dimensional semantic representations of the external stimulus. These tasks often

build upon work in machine learning.

1.1 Background

The earliest work concerned simple settings with carefully controlled stimuli, such

as subjects being presented (visually or auditorily) with one of a set of carefully

selected words [17]. The semantic representation of a word was computed using word

embeddings, a tool from natural language processing [7] that represents each word as

a point in a k-dimensional meaning space. This work was extended [18, 19] to perform

“brain reading”, using fMRI readings and a popular text-analysis tool called topic

modeling to reconstruct word clouds from brain activity evoked by a word/concept

stimulus.

The next obvious step in this research program is to understand fMRI readings

collected from subjects as they process more complex stimuli such as movies. In
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such settings it is not clear how to represent the semantics of the stimulus, since

a multitude of signals (auditory as well as visual) are presented within a short time

interval. Ideally, this mapping between fMRI and stimuli should be meaningful across

different human subjects, so that the accuracy of matching the two should improve by

using data from multiple subjects. One approach to solving this task was presented

in [13], which studied fMRI responses to a natural movie stimulus. In this case, the

movie stimulus was represented with a feature space of 1705 distinct nouns and verbs.

A subsequent study [12] examined fMRI responses to audio stories, and departed

from the previous work by applying distributional embeddings to featurize the dialog

and predict voxel activation. The goal in these papers was to derive a semantic

word map for the voxels of the brain. Another paper [22] gathered fMRI data from

subjects reading a story, and used unweighted averages of distributional embeddings

to featurize sentences for predicting voxel activity.

1.2 Problem Setting and Goals

In this paper, we study the Sherlock fMRI dataset [4], which consists of fMRI record-

ings of 16 people watching the British television program “Sherlock” for 50 minutes

broken into 1973 TRs, where each TR is 1.5 seconds of film. As a proxy for the

semantics of the movie, we use externally annotated English text scene annotations

of the program (average annotation length 15 words per TR). We examine brain data

from predefined regions of interest (ROIs) in the brain, and separately analyze each

one. In particular, we examine the default mode network (DMN), dorsal and ventral

language areas, the occipital lobe, and a 26000-voxel mask containing voxels with

high intersubject correlation across the whole brain. We seek to determine whether

various modifications to fMRI and text featurization as well as the usage of previous

timepoint information help to improve bidirectional mappings between fMRI data and
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semantic meaning vectors. In particular, we examine the effects of three featuriza-

tion methods for fMRI and text data: Low-dimensional shared fMRI representation

across subjects, weighted semantic embeddings of text annotations, and using previous

timepoints in the performance of linear maps between people.

Aggregating fMRI responses across subjects. In prior work, combining

fMRI response data from multiple subjects is often solved by averaging, anatomical

alignment and smoothing, or latent multivariate feature modeling [22, 6, 12]. Further

work concludes that high-level representations of content from movies are shared

across people and that there can be considerable de-noising benefits from averaging

across people [4]. Another recent paper [5] introduced the Shared Response Model

(SRM), an algorithm that stems from previous work on hyperalignment [10]. The

SRM in [5] optimizes the objective
∑n

i=1 ‖Xi −WiS‖F for a low-dimensional shared

space S and orthogonal-column subject specific maps Wi, and can be thought of

as a multi-subject extension of PCA. Simultaneously reducing dimensionality across

subjects outperforms other averaging approaches at matching up specific timepoints

in a movie across subjects.

Semantic representation of stimulus. To find semantic representations of

English annotations, it is natural to draw upon related work in natural language

processing. One common approach involves word embeddings created by using co-

occurrence information in a large corpus like Wikipedia. A simple technique for

representing longer pieces of text is to average the vectors for the individual words

[22]. Recently, this simplistic idea has been extended in natural language processing

by using recurrent neural nets [15] or by modifying the original model for learning

word vectors to learn word sequence chunks (for instance, paragraphs) directly from

the text [16]. These more powerful methods have the drawback of requiring large

corpora, making them unusable in our current setting where we only have 1973 brief

text annotations. Very recently, [3] suggested a simpler method for this task that
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requires no additional information beyond the existing word embeddings, yet beats

these more complicated methods in standard natural language tasks. We adapt this

method to construct annotation embeddings using weighted combinations of the vector

representations for the words in each annotation. One of our key results is that this

new embedding significantly outperforms unweighted averaging of word vectors.

Using previous timestep information. A movie stimulus naturally breaks

up into multi-timestep scenes that occur at different timepoints. Thus, at any given

timepoint, there may be a window of previous timesteps that are part of the current

scene and thus are relevant to understanding the current time point in both fMRI

and Text space. We would like to incorporate this past information shared within

scenes in order to learn better maps between fMRI and Text. Other models [12, 22]

incorporate past information by modeling the hemodynamic response function (HRF)

that describes the fMRI BOLD response to a stimulus. However, this approach focuses

on small timescales, and only accounts for the delayed and temporally-smeared BOLD

response rather than attempting to aggregate scene information. Our approach is to

first approximate the HRF delay with a simple one-time shift of 4.5 seconds, and to

then incorporate longer time-scales into our model by including in the featurization a

k-sized window of previous timesteps, where k is varied from 0 to 30 (these numbers

correspond to 0− 45 seconds).

To evaluate the effect of each of these featurization methods, we use linear maps

to relate the fMRI signal to the representation of the semantic content, using only

the first half of the movie. These maps are validated with two experiments: scene

classification and scene ranking. We divide up the second half of the movie into 25

uniformly-sized chunks. Scene classification is the task of using correlation to match

predicted intervals of fMRI or semantic activity with the ground truth, and reporting

the percentage of the time that the match is perfect. Since there are 25 intervals,

random chance performance at this task is 4%. Scene ranking is the same task, except

4



we measure the average rank of the correct answer: Random chance performance here

is 50%. For a visual summary of the setup, see Figure 1.1. These experiments are

executed with the fMRI → Text maps (given fMRI data, predict text annotations)

as well as the Text → fMRI maps (give text annotations, predict fMRI data).

1.3 Main results

Our main results are (i) showing that fMRI responses from multiple individuals can

be effectively combined using SRM to improve the matching accuracy (1.3× average

improvement over our baseline, the average PCA representation) between the fMRI

and the text annotation (Table 4.1, Figures 4.2, 4.3), (ii) demonstrating that a method

for combining word vectors into annotation vectors via a suitable weighting [3] for

averaging word vectors on average improves 1.2× over unweighted averaging (Table

4.1, Figures 4.2, 4.3), and (iii) finding that appropriate inclusion of information from

previous time steps yields as much as a 5.3× improvement (on average, 1.8×) in tasks

measuring the performance of mapping from fMRI to Text (see Figure 4.2, Dorsal

Language ROI). There are diminishing returns after a certain point to including more

time steps: The optimal number seems to be around 5 − 8 previous time steps. For

the Text → fMRI task, using previous time steps decreases performance.

We also report the top performances for each task. For the fMRI → Text task,

our top scene classification performance is 72% accuracy, meaning that for 72% of

the time intervals we examine, our predicted annotation representation correlates

the most with the true annotation representation for that time interval (see Figure

4.1, Whole Brain ROI). Notably, this result improves considerably over the random

guessing rate of 4%. The corresponding scene ranking performance is 96%, meaning

that on average, the rank of the true annotation representation is within the top 4%

when sorted by correlation with the predicted annotation representation.
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Figure 1.1: Summary of Experimental Setup: We learn a shared response for the
brain activity of 16 different subjects watching BBC’s Sherlock, construct semantic
featurizations for associated semantic annotations, and learn bidirectional linear maps
between the two data modes.

The Text→ fMRI task had worse results. The top scene classification performance

for Text → fMRI is 56% accuracy, and the corresponding scene ranking accuracy is

91% (see Figure 4.1, DMN-A ROI).
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Chapter 2

Methods

2.1 Preprocessing the Dataset

Before performing any analysis, the fMRI data are preprocessed and standardized

using the techniques described in [4]. Then, we identify six distinct brain regions of

interest (ROIs) that we treat completely separately. That is, we first apply ROI masks

to the whole-brain data and then learn SRM-representations for each of these ROIs

separately. We use the ROIs for the default mode network (DMN-A, DMN-B) and

the ROIs for the ventral and dorsal language areas identified in [21]. Methodology for

finding the default mode network relies on intersubject functional correlation (ISFC),

a technique first introduced by [9]. The central idea is that natural stimuli (like

movies) evoke reliable, time-dependent activity across a variety of brain networks.

For more details, see Figure 2.1. We are interested in the DMN ROIs in particular

since prior work has demonstrated that these regions play a crucial role in tracking the

narrative in settings such as watching movies or reading stories [9, 8, 11, 20, 1, 21, 23].

The “Whole Brain” ROI is a 26000-voxel mask of the brain that highlights voxels that

have intersubject correlation > 0.2 on the data, and the Occipital Lobe ROI is defined
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Figure 2.1: Visualization of the DMN and Ventral/Dorsal Language Area ROIs
[21]: Here, we display four of the regions of interest on a brain map. These masks
were collected on the Pie Man dataset [21], then fit to a standard anatomical brain
(MNI152), and interpolated to 3-mm isotropic voxels [21]. In order to define the
DMN-A and DMN-B regions, as well as the Ventral and Dorsal language area regions,
the intersubject functional correlation matrix [9] was calculated from the fMRI data
of 36 subjects collected while they were listening to stories [21]. Then, k-means
clustering was applied to find the networks. The DMN-A and DMN-B networks
were identified by comparing the resultant clusters to the DMN ROIs derived via
thresholding the functional correlation between the posterior cingulate (identified by
literature) and the rest of the brain for the fMRI data of 36 subjects during resting
state [21]. The Ventral and Dorsal language areas were identified by comparing the
clusters to previous results in the literature [21].

from the MNI Structural Atlas in FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases).

We include these ROIs for holistic comparison across the whole brain.

We also truncate the first three TRs of fMRI data and the last three TRs of

semantic annotation data. This operation effectively aligns the fMRI and semantic

data under the assumption that there is a 4.5 second delay between the onset of the

stimulus and the BOLD response signal.

2.2 Constructing Semantic Embeddings

In order to represent words, we take advantage of the distributional properties of

words in a large corpus - namely, English Wikipedia. We train word embeddings as

described in [2], which perform on par with other standard word embedding techniques
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like GloVe and Word2Vec [2]. Now, we diverge from the prior work by calculating

and applying a domain specific re-centering of the embeddings. After creating an

embedding for each word in the vocabulary of the Sherlock annotations, we calculate

the top principal component of all word embeddings in the vocabulary. We then scale

the normalized top principal component by the average Euclidean norm of a word

embedding in the Sherlock vocabulary. This vector represents a kind of average topic

for the Sherlock vocabulary. Since we would like our word embeddings to be discrim-

inative within this average topic, we algebraically subtract out this component. We

can view this step as finding a translation operation that moves the word embeddings

away from the region of semantic space that is close to generic words in the Sherlock

annotation corpus. Finally, in order to experiment with different dimensional word

embeddings, we employ random dimension reduction, which is justified by the well-

known Johnson-Lindenstrauss lemma. We check dimensions 20, 50, 100, and 300. We

achieve the best results using the 100-dimensional embeddings.

The central assumption in [2] is the probability model for a word w in a vocabulary

V given a context c, where the context represents a small window of words in the

corpus. This model is given by P [w|c] = 1
Zc

exp(vTwc) where vw represents the vector

for a given word and Zc is a term that normalizes the distribution. The idea is that

the context vector c represents the subject matter of the text at a given point in time.

Using this assumption and a few others, the word vector learning problem is

phrased in [2] as the squared-norm objective:

min{vw}w∈V ,C
∑

w1,w2
Xw1,w2 (log(Xw1,w2)− ‖vw1 + vw2‖2

2 − C)
2

where C is a bias term, X is the co-occurrence count matrix between single words

in a small window of text (fixed at ≈ 5 words) and vw are the word vectors we are

trying to learn. This objective can be optimized with gradient descent. For a full
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treatment of the theoretical properties of the word vectors and the derivation of the

squared-norm objective, see [2].

For every 1.5-second time-point in our Sherlock movie, annotators were asked to

provide a natural description of what is happening in the movie: actions, dialog, and

so on. This annotation is typically a few sentences long, and contains around 15

words on average. We can think of each annotation as the current context of the

movie narrative. The log-linear probability model of [2] for words given context c

implies that the maximum likelihood estimator of the context is simply the average

of all words in the annotation. (This formulation is a theoretical justification for a

standard rule of thumb in natural language processing for representing the sense of a

small piece of text by the average of the embeddings for the words in the text). We

will call these representations the unweighted annotation vectors.

However, one imagines that not all words in the annotation are equally important,

and that a better representation might be possible by taking this idea into account.

This approach has been studied in various neural network frameworks [15]; however,

applying these kinds of models requires a large annotation corpus, while we only

have 1973 15-word annotations. A recent paper [3] suggests a principled approach

for computing a representation of a small piece of text. The intuition from [3] is that

words that occur with much greater frequency in the original corpus may inherently

contain less information, since these words are in some sense uniform with respect

to the whole word distribution. Therefore, more frequent words should be weighted

less. The paper [3] modifies the above language generation model as follows: For a

word w given context c, the probability of a word w given context c is

P [w|c] = αP [w] + (1− α) exp(vTwc)
Zc

(2.1)
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Word Weights in Annotation Vector Aggregation

Figure 2.2: Visualization of Semantic Annotation Vector Weightings: We display
an example sentence from the Sherlock annotations, where we have colored important
words red, and unimportant words blue. Brighter red means more important, and
darker blue means less important.

where Zc normalizes the distribution and α ∈ [0, 1]. We can think of this model as a

weighted sum of the probability of a word w appearing not conditioned on the context

c and the probability of a word w appearing conditioned on the context c.

The revised estimate of the context vector c in this modified objective is

vannotation =
∑

word∈annotation

β

β + pword

· vword (2.2)

where β := 1−α
αZ

. Typically, we choose α such that β ≈ 10−4. These representations

are called the smooth inverse frequency (SIF) annotation vectors, or weighted

annotation vectors. Figure 2.2 depicts a example sentence with the respective word

weights colored according to importance in the sentence embedding.

Using either the unweighted or weighted approach will produce one annotation

vector for each of our T time steps. On the training portion of the data (the first

half of the movie), we calculate an average annotation vector and subtract it from all

data. Here, we assume that the average annotation vector is invariant, which turns

out to be a good assumption.

2.3 Shared Response Models for Multi-Subject

fMRI

The Shared Response Model (SRM) [5] is an unsupervised probabilistic latent variable

model for multi-subject fMRI data under a time-synchronized stimulus. From each
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subject’s fMRI view of the movie, SRM learns projections to a shared space that

captures semantic aspects of the fMRI response.

Specifically, SRM learns N maps Wi with orthogonal columns such that ‖Xi −

WiS‖F is minimized over {Wi}Ni=1, S, where Xi ∈ Rv×T is the ith subject’s fMRI

response (v voxels by T repetition times) and S ∈ Rk×T is a feature time-series in

a k-dimensional shared space. In this paper, k = 20 since low-rank SVD with 20

dimensions captures 90% of the variance of the original fMRI matrices [4]. We also

experimented with using k = 50, 80, 100, 1000, but the results barely varied from using

k = 20 dimensions. Note that, for testing, the learned Wi allow us to project unseen

fMRI data into the shared space via W T
i X

test
i since Wi has orthogonal columns.

We also examine a variant of SRM called SRM-ICA [24] that modifies the SRM

algorithm with an independent components analysis (ICA) objective. ICA is an

unsupervised learning technique that identifies independent signals from a mixture by

looking for rotations of the data that produce non-Gaussian signals. SRM-ICA brings

this approach to learning a shared space: While in SRM we alternated by solving for

Wi by minimizing ‖Xi−WiS‖F and updating S with the average of W T
i Xi, we change

the objective we use to update each Wi to an ICA objective: Maximizing the non-

Gaussianity of the shared response S = 1
n

∑n
i=1W

+
i Xi, individually with respect to

each (Xi,Wi) pair.

In our experiments, we compare average SRM and SRM-ICA projections

( 1
N

∑N
i=1W

T
i X

test
i ) against the baseline average principal components analysis (PCA)

projections. PCA is a standard linear dimensionality reduction technique that

finds an optimal (in Frobenius norm) orthogonal projection of the data onto a

low-dimensional subspace.
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2.4 Learning Linear Maps

Our approach to predicting semantic annotation vectors from fMRI vectors and vice

versa is simply linear regression with two kinds of regularization. Letting X ∈ Rv×T

represent the fMRI data matrix (either SRM, SRM-ICA, or PCA) for a specific ROI

and Y ∈ R100×T represent the annotation vectors, our main approach is given by

solving the Procrustes problem minΩ ‖Y −ΩX‖2
2 with orthogonal columns constraint

ΩTΩ = Iv×v. Thus, we learn a matrix Ω ∈ R100×v as a map from X → Y , decoding

fMRI vectors into semantic space. Our other approach is given by the ridge regression

problem minωj ‖yj−ωTj X‖2
2 +‖ωj‖2

2 where j ∈ [1, 100] for each word vector dimension.

Putting the ωj together forms Ω ∈ R100×v as before, with the orthogonality constraint

replaced by a row-wise `2-norm regularization.

2.5 Adding Previous Timesteps

One could augment the fMRI and annotation vectors using past time steps by finding

a complicated combination of the features at each time step, resulting in a represen-

tation with the same number of dimensions. For now, we sidestep the complexity

of this task by simply concatenating k previous vectors to the predictor vector at

each time step (TR) before learning mappings as before. A potential downside to

this approach is that we linearly increase the dimensionality with k, which can be

intractable for large k. However, this approach allows every predictor feature at every

timepoint to have its own weight in the linear map, creating a powerful model. Thus,

in the fMRI → Text case, we stacked the k previous fMRI vectors onto each fMRI

vector, and did not modify the textual annotation vectors. In the Text→ fMRI case,

we stacked k previous text annotation vectors and left the fMRI vectors unmodified.

When previous time steps do not exist, we append an all-zeros vector instead. We can

think of the modified representations as capturing a notion of the dynamics occurring

13



Figure 2.3: Visualizing Concatenation: We visualize what the single timestep case
looks like compared to a case where we use the previous two timesteps in our featur-
ization as well. The latter case results in a more complicated model, since one of the
dimensions of our linear map triples in size.

over an interval of 1.5(k + 1) (TR length × total number time points) seconds. In

this paper, we tried k = 1 to 9 in steps of 1, and then k = 10 to 30 in steps of 5. See

Figure 2.3 for a visualization.

2.6 Experiment Descriptions

First, we divide our 1973 TRs into 50 uniformly-sized chunks of time, the first 25 of

which are our training data and the latter 25 of which are our testing data. We learn

maps both from fMRI to text annotations and from text annotations to fMRI on the

training data. From now on, we refer to fMRI → Text experiments as those which

take an fMRI representation as input and attempt to predict a semantic annotation

vector representation. Likewise, Text → fMRI experiments are those which take in

a semantic annotation vector input and predict an fMRI representation. Also note

that we train the linear maps on the individual TRs as opposed to the 25 chunks.
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We perform two primary experiments in this paper, scene classification and

scene ranking. These experiments are applied to both the fMRI → Text and Text

→ fMRI settings. In the following description, we denote the predictor space by X

and the target space by Y .

Suppose we are in the X → Y setting. For each time chunk i ∈ [1, 25] in X-space,

we predict chunk i in Y -space using the learned map, by applying the map individually

to each TR within the time chunk. Then, we calculate the Pearson correlation of the

predicted chunk i (represented by concatenating the representations for each TR in

the chunk into one long vector) with each of the actual time chunks j ∈ [1, 25], and

we rank the chunk indexes by correlation.

Scene classification. Given the ranking of actual time chunks by correlation

with the predicted chunk, we report the proportion of the time that the correct chunk

index is ranked the highest. This measure has a 4% chance rate, meaning that if we

randomly ranked the actual chunks, any particular chunk would be the top chunk 4%

of the time.

Scene ranking. Given the ranking of actual time chunks by correlation with the

predicted chunk, we calculate 1 − average rank of the correct index
25

. This measure has 50%

chance rate, meaning that if we randomly ranked the actual time chunks, the average

rank of any particular chunk would be in the middle.

We report both of these metrics because the 4% chance rate task gives a better

idea of the distribution of the ranking, while other authors have used the 50% chance

rate, obtaining ranking scores between 70%− 80% [18, 22, 19].

We also give some additional analysis of the properties of stacking previous time

points, and discuss how they affect prediction capabilities. In particular, we observe

the dependence of classification accuracy on the number of previous time steps.
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Chapter 3

An Interpretable Temporal

Dynamics Model

When predicting fMRI→ Text and Text→ fMRI, there are many possible approaches

to using previous time steps in our linear maps. Throughout this chapter, we will

suppose that X represents fMRI data (n×T data matrix, where n is the dimension of

the fMRI data) and Y represents the semantic annotation data (m× T data matrix,

where m is the dimension of the text representations). For simplicity, we wil discuss

the fMRI → Text problem.

As discussed in the previous chapter, the most basic version of the mapping prob-

lem is to solve the equation WX = Y where W ∈ Rm×n may have constraints imposed

on it (for instance, requiring its columns to be orthogonal turns this problem into the

Procrustes problem). Here, we make no use of previous time points and note that

the learning problem is invariant to column order. Now, we provide a discussion of

various other methods of attempting to integrate timepoint information into a single

representation.
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3.1 Weighted Combination of Time Points

The simplest thing we can do to begin to integrate previous time points is to suppose

that there are some weights φ = [1, · · · , φk] such that it is easier to predict column

Yt by learning a linear map between a weighted average of the columns Xt, · · · , Xt−k

according to φ. For illustration purposes, we can write this out with matrices in the

case where k = 3. Let us define a convolution matrix

Φ3 =



1 φ1 φ2 φ3 0 · · · 0

0 1 φ1 φ2 φ3
. . . 0

0 0 1 φ1 φ2
. . . 0

0 0 0 1 φ1
. . . φ3

0 0 0 0 1
. . . φ2

0 0 0 0 0
. . . φ1

0 0 0 0 0 · · · 1


In general, Φ ∈ RT×T , and column Φt is defined by

Φt(i) =


φj if i = t− j

1 if i = t

0 otherwise.

(3.1)

Thus, we get the simple equation

WXΦ = Y (3.2)

We can also choose the normalize the columns of Φ, in which case we get a weighted

average of the columns. If we set all φj = 1, then we get the average.
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In all cases, this model does not improve upon WX = Y , and in fact performs

worse.

3.2 Temporal Dynamic Data Matrices

Since the weighted average idea above fails to work, we consider enlarging the hy-

pothesis class of maps between X and Y . Consider stacking k previous time points

below each time point to form X̂ ∈ Rn∗(k+1)×T , as in Figure 2.3.

Notably, we can now consider each column of X̂ to be a representation of the

dynamics of the fMRI data over the past k timepoints plus the current timepoint,

at the current timepoint. Thus, the space that the maps which take this data matrix

as input is considerably larger than before (by a factor k). We therefore note that

we are now dealing with models linear in the temporal dynamics, which means

we are in fact modeling time series dependencies between two vector time series. See

Figure 2.3.

3.2.1 Weighted Average Model

Then, we can rewrite the weighted average model from the previous section. Define

the matrix Ck ∈ Rn×n∗(k+1) as

Ck =



1 0 · · · 0 φ1 0 · · · 0 · · · · · · φk 0 · · · 0

0 1 0 0 φ1 0 · · · · · · 0 φk 0

...
. . .

...
. . . · · · · · · ...

. . .

0 1 0 φ1 · · · · · · 0 φk


(3.3)

Then, the weighted average model becomes

WCkX̂ = Y (3.4)
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where W ’s shape is unchanged as W ∈ Rm×n. Ck is completely described by the k

parameters φ1, · · · , φk. Note that in either formulation of this model, the weighted

average model only has k parameters in addition to n ∗m parameters of the weight

matrix W , for a total of Θ (k + n ∗m) parameters.

3.2.2 Full Temporal Model

The previous timepoint stacking approach discussed in the previous chapter learns a

unique weight for every feature 1, · · · , n of X for every single timepoint in the previous

k time points can be described in this language as well. This approach corresponds to

the other extreme, where we learn a unique weight for every feature 1, · · · , n of X for

every single timepoint in the previous k time points. This model is simply expressed

as learning Ŵ ∈ Rm×n∗(k+1) such that we have

Ŵ X̂ = Y (3.5)

We note that this model is much more expressive and is a much larger hypoth-

esis class than the weighted average model: The full temporal model with Ŵ has

Θ (n ∗m ∗ k) parameters.

3.3 The Temporal Decay Model: Parametrizing Φ

Over Time

In the previous section, we considered assigning a different weight to every fMRI

feature at every time step. However, we might consider this setup to be an overly

complex model. We may believe that for instance, each fMRI feature should have the

same weight φj at timestep t − j for current timestep t. However, this assumption

leads to the old weighted average model, which experimentally does not work. We
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thus relax the requirement that we have a single weight for each column, and allow

different columns to have different weights as before. However, we want to enforce

additional assumptions on the parameters so that the model is more interpretable. We

can compromise by assuming that the weight parameters decay exponentially over

the past k timesteps, at a different rate for each representation feature. Thus, we

assign a single parameter to govern the weights over the time course, by assuming

that the weights should decay with time and giving the weight decay a functional

form.

3.3.1 Decay Weights

Since we believe that generally, the further in the past an event occurs, the less effect it

should have on the present, we propose to weight previous timesteps with exponential

decay. Given an fMRI feature dimension i from 1, · · · , n, assign a parameter λi such

that the weight at time t− j is

φi,j =
ejλi∑t−k

j∗=t e
(t−j∗)λi

(3.6)

and is 0 otherwise, where the weights are normalized over the previous timesteps.

This equation defines our whole matrix Φi,j ∈ Rn×(k+1) with only n parameters. We

call the vector of decay weights λ = [λ1, · · · , λn] the decay vector.

3.3.2 Visualizing Decay Weights

In Figure 3.1, we briefly visualize what the decay weights look like in the case where

we assume that each fMRI feature i ∈ [n] has the same decay weight λ̃. Note that in

this case, our convolution matrix/ decay matrix has only one additional parameter,

for a total of Θ (n ∗m+ 1) parameters, which is fewer parameters than even the

weighted averaging from before. As is expected, this model does not perform well.
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Figure 3.1: We demonstrate the weight values for 100 evenly spaced settings of λ̃
between 0.1 and 10 for k = 10. The y-axis is the weight value while the x-axis is the
number of timesteps into the past. Larger values of λ̃ push more of the mass onto
the current timestep, while small values of λ̃ make the distribution over the past k
timesteps essentially uniform.

3.3.3 Unique Decay Weights for fMRI Features

We now specify n different decay weights λ = [λ1, · · · , λn] for each of the fMRI

features in the fMRI → Text setting. These decay weights completely define Φ. We

define

Ck = [Γ0,Γ1, · · · ,Γk] where

Γj =



ejλ1
Z1

0 · · · 0

0 ejλ2
Z2

0

...
. . .

0 ejλn

Zn


(3.7)

letting Zi =
∑t−k

j∗=t e
(t−j∗)λi be the normalizing factor for each row. This version of

the problem has Θ (n+m ∗ n) parameters, since Ck is parametrized by n values.
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Let us now write down the model where we specify n different decay weights

λ = [λ1, · · · , λn] for each of the fMRI features. These decay weights completely

define Φ. Writing out the model, and letting Zi =
∑t−k

j∗=t e
(t−j∗)λi the normalizing

factor, we have that our convolution matrix Ck becomes

We formulate the problem setting

WCkX̂ = Y (3.8)

again, where W ∈ Rm×n, Ck ∈ Rn×n∗(k+1), X̂ ∈ Rn∗(k+1)×T , and Y ∈ Rm×T . This

version of the problem has Θ (n+m ∗ n) parameters, since Ck is parametrized by n

values. Notably, the number of parameters in this model has no dependence on the

number of previous time steps chosen. Typically, this model will have slightly more

parameters than the weighted average model which has Θ (k +m ∗ n) parameters,

since k ranges from 0 → 30 while n = 20. So the number of parameters is of a

similar order. However, we are also incorporating an additional assumption encoded

in the exponential decay. If the assumption is correct, then this model may be more

appropriate for the actual data.

The neuroscientific motivation behind the assumption that there may be different

rates of decay for different fMRI features comes from the notion that different parts

of the brain operate over different time scales: The neurons in some parts of the brain

fire a lot more rapidly and react to quickly changing stimuli, while other parts of the

brain fire much more occasionally and change according to real world stimuli which

occur at longer time scales.

The weighted average model did not take this into account, and also imposed no

restriction on the weights over time. Therefore, if it is true that the weights generally

exponentially decay, the model described in this section (unique decay) is in fact more

general than the weighted-average model from earlier, since it allows parameters to
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vary over where they actually do vary. It is also interesting to note that we cannot

express this unique decay model in terms of a Φ ∈ RT×T matrix as we did with the

weighted average model.

3.4 The Learning Problem

In order to learn any of the models which require us to learn parameters W in addition

to either Ck or Φ, the learning problem is non-convex, and we resort to alternating

optimization without guarantees. In this section, only the models which have W and

Ck are of interest since the weighted average model does not work in practice.

In our previous models, (WX = Y ; Ŵ X̂ = Y ), the solutions were linear and had

a simple closed form whether we used ridge-regression or the Procrustes problem to

solve them. This nice property is no longer the case when we try to solve WCkX̂ = Y ,

since we are trying to learn two different matrices W,Ck with different constraints.

Our alternating optimization problem proceeds as follows:

1. Randomly initialize λ and construct Ck.

2. Calculate A = CkX̂ and solve for W in WA = Y . This solution has a closed

form if we use ridge-regression or the Procrustes problem.

3. Fix W . Use gradient descent on λ with loss function

f(λ) =
∥∥∥Y −WCk(λ)X̂

∥∥∥2

F
(3.9)

4. Return to step 2 and alternate until the solution converges.

We note that this procedure does not have guarantees. Empirically our procedure

converges to reasonable optima when λ is initialized to be small.
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Chapter 4

Results

4.1 Improvement Ratios for Algorithmic Parame-

ters

In Table 4.1, we give both the maximum and average performance increase due to

each of the individual methods. Here, we report the algorithmic improvement for the

scene classification task, a task with a base 4% chance rate.
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fMRI → Text Maximum Average

Previous Timesteps vs. None 5.3× 1.8×
Procrustes vs. Ridge 2.8× 1.3×
SRM/SRM-ICA vs. PCA 1.8× 1.3×
Weighted-SIF vs. Unweighted 1.6× 1.2×

Text → fMRI Maximum Average

Previous Timesteps vs. None 2.5× 0.5×
Procrustes vs. Ridge 3.0× 0.8×
SRM/SRM-ICA vs. PCA 2.3× 1.2×
Weighted-SIF vs. Unweighted 1.8× 1.1×

Table 4.1: Table of Improvement Ratios for Various Algorithmic Parameters: In this
table we give the maximum and average improvement ratios for a specific algorith-
mic technique over another, including usage of previous time steps, SRM/SRM-ICA
versus PCA, SIF-weighted annotation embeddings versus unweighted annotation em-
beddings, and Procrustes versus ridge regression for both fMRI → Text and Text
→ fMRI. When we use previous timesteps, we consider the results for using 5 − 8
previous time steps. These numbers are all for the scene classification task. Note
that the values from the maximum columns can be seen visually in Figures 4.2 and
4.3 respectively.
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Figure 4.1: Best Bidirectional Accuracy Scores for Each Brain Region of Interest
for both Scene Classification and Ranking: In this figure, for each ROI and for each
experiment (Text → fMRI 4% (red), 50% (blue) chance rates; fMRI → Text 4%
(red), 50% (blue) chance rates), we give the best performance as a percentage. For
all measures, closer to 100% is better. We can see that Whole Brain, DMN-A, and
DMN-B tend to perform the best, and that fMRI → Text performs better than Text
→ fMRI.
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4.2 Top Performances over Algorithmic Choices

Figure 4.1 demonstrates that the DMN regions have nearly the best performance

over the other ROIs studied, which fits with prior research in this area ([20], [21]).

We achieve 72% accuracy over 4% chance with the Whole Brain region in the scene

classification task. Since the scene ranking measure is always ≥ 80%, the average

rank of the correct answer is in the top 20% of the scenes, which translates to top 5

scenes out of 25. For fMRI → Text we perform even better, where the average rank

of the correct answer is in the top 10% of the scenes (top 3 scenes out of 25). Notably,

we get excellent performance out of the Whole Brain region, which has 26000 voxels

selected by merely choosing voxels whose intersubject correlation is above a certain

threshold. This result demonstrates that our methods are not overly dependent on

applying domain-specific knowledge (we do not necessarily have to preselect an ROI

to get good results).

fMRI → Text. Here we discuss the performance of the fMRI → Text exper-

iments. In Figure 4.1, we display the top accuracy over all algorithmic choices for

each experiment. We achieve high accuracy performance, reaching 72% for the scene

classification task for fMRI → Text and in the mid-90%s for the scene ranking tasks.

In particular, the Whole Brain and the DMN regions perform best, supporting pre-

vious work by [20] and others demonstrating that the DMN plays an important role

in narrative processing.

Text→ fMRI. On the other hand, we see that the Text→ fMRI experiments per-

form worse than the fMRI → Text experiments. The best top−1 scene classification

accuracy performance is 56% for the DMN-A region, and the other top performing

regions get accuracy in the mid-to-high 40% accuracy. For the ranking task, perfor-

mance ranges from 80%− 90%, which is again slightly worse than the fMRI → Text

ranking experiment.
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4.3 Comparing Algorithmic Choices

In order to simplify presentation for Figures 4.2 and 4.3, we chose to fix the algorithmic

parameters that uniformly outperformed other options. All linear maps for fMRI →

Text were learned using the Procrustes method and all linear maps for Text→ fMRI

were learned using the ridge regression approach. We fixed these for comparison

purposes since, for fMRI → Text scene classification, Procrustes performed 1.25×

better than ridge on average (Table 4.1). On the other hand, ridge performed 1.2×

better than Procrustes on average over Text→ fMRI scene classification (Table 4.1).

As a caveat, there were exceptions to the rule, as the max ratios in Table 4.1 indicate.

In Figures 4.2 and 4.3, for the data points that are labeled as using previous time

steps, we reported the result for 8 previous time steps. The optimal number of

previous time steps for fMRI → Text was typically between 5 − 8, and so we fixed

that choice of parameter across all of the graphs in these figures.

Comparing SRM and SRM-ICA to PCA. We see considerable improvement

on best-case performance when using SRM or SRM-ICA over PCA, particularly on

the fMRI → Text tasks, in some cases gaining as much as 1.8× the top−1 scene

classification performance of PCA, as demonstrated in Figure 4.2. Typically, SRM-

ICA tends to perform slightly better, especially on the Whole Brain ROI. The case

is weaker for Text → fMRI, since though we can find that performance increases

by as much as 2.3× the top−1 scene classification performance, the average benefit

is smaller (Table 4.1, Figure 4.3). If we look at average case improvements, we see

considerable gains in both directions: SRM/SRM-ICA improve on average by 1.3×

over PCA for fMRI → Text scene classification, and on average by 1.2× over PCA

on Text → fMRI scene classification. For the ranking tasks, we note that while

performance improvement for the best selections of algorithm parameters is not as

distinct, SRM and SRM-ICA can drastically improve upon PCA performance for
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Figure 4.2: Comparisons for all ROIs for the fMRI → Text Top-1 Scene Classifi-
cation Experiment: The chance rate for this task is 4%. Each plot is for a different
ROI. Here, we only display results which use the Procrustes linear map since it on
average performs better than ridge regression for fMRI→ Text. We also fix the num-
ber of previous time points used for the shaded bars at 8 previous time steps, since
that tends to be near optimal. We present comparisons between SRM/SRM-ICA and
PCA using blue colors versus red colors, and compare weighted semantic aggregation
(left) to unweighted semantic aggregation (right) by x-axis position.

poor selection of parameters. This fact suggests that one should always use SRM or

SRM-ICA over PCA, since on new datasets where it is not known which linear map

to use, or the number of previous time points to incorporate in the analysis and so

on, our results here suggest that these SRM-variants will improve strongly upon PCA

if the parameters are poorly chosen, and still improve decently upon PCA otherwise.

Weighted vs. Unweighted Aggregation of Word Embeddings. Using the

SIF-weighted embeddings improves upon unweighted averaging when featurizing the

29



Weighted Semantic Vectors Unweighted Semantic Vectors
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75
A
cc
u
ra
cy

0.20

0.12

0.32

0.04

0.16
0.12 0.12

0.20

0.28

0.08

0.00

0.20

Occipital Lobe SRM

SRMICA

PCA

SRM w/prev times

SRMICA w/prev times

PCA w/prev times

Weighted Semantic Vectors Unweighted Semantic Vectors
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

A
cc
u
ra
cy

0.28

0.12

0.56

0.16

0.24

0.12

0.24
0.20

0.32

0.08

0.28

0.16

DMN-A Network

Weighted Semantic Vectors Unweighted Semantic Vectors
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

A
cc
u
ra
cy

0.20

0.12

0.28

0.12

0.20

0.12

0.24

0.08

0.40

0.04

0.20

0.08

Whole Brain

Weighted Semantic Vectors Unweighted Semantic Vectors
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

A
cc
u
ra
cy

0.20

0.12

0.20

0.08
0.12

0.08 0.08 0.08

0.24

0.08
0.12

0.04

Ventral Language Network

Weighted Semantic Vectors Unweighted Semantic Vectors
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

A
cc
u
ra
cy

0.08

0.20
0.16

0.12
0.08 0.08

0.20

0.12

0.20

0.04

0.12
0.08

Dorsal Language Network

Weighted Semantic Vectors Unweighted Semantic Vectors
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

A
cc
u
ra
cy

0.20

0.04

0.28

0.08

0.16

0.04

0.16

0.08

0.28

0.08

0.24

0.08

DMN-B

Text to fMRI (4% chance)

Figure 4.3: Comparisons for all ROIs for the Text → fMRI Top-1 Scene Classifi-
cation Experiment: The chance rate for this task is 4%. Each plot is for a different
ROI. Here, we only display results which use the ridge regression linear map since it
on average performs better than Procrustes for Text → fMRI. We also fix the num-
ber of previous time points used for the shaded bars at 8 previous time steps, since
that tends to be near optimal. We present comparisons between SRM/SRM-ICA and
PCA using blue colors versus red colors, and compare weighted semantic aggregation
(left) to unweighted semantic aggregation (right) by x-axis position.

annotation vectors as well. Examining Table 4.1 and Figure 4.2, we see that for

fMRI → Text top−1, there is improvement on best-case performance by as much as

1.3× by using weighted embeddings. On average, we see that weighted embeddings

improve by 1.2× over the unweighted embeddings. Looking at Figure 4.3, the case is

weaker for Text → fMRI top−1; while for some algorithms and ROIs we see as much

as 2.5× improvement on best-case performance by weighted aggregation embeddings,

we also see that sometimes unweighted averaging can outperform weighted averaging.
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However, on average, weighted embeddings improve by 1.1× over unweighted averaged

embeddings.

The Effects of Previous Time Points. Figure 4.2 demonstrates the positive

effect of adding previous time steps to the accuracy scores for the fMRI→ Text case.

Table 4.1 demonstrates that at best, using previous timepoints can improve perfor-

mance by as much as 5.3×. On average, this improvement is 1.8×, nearly doubling

performance. On the other hand, Figure 4.3 shows that for Text → fMRI, adding

previous time steps almost universally hurts performance and on average halves per-

formance (Table 4.1). This fact is also evident from Figure 4.4, which illustrates the

situation for the DMN-A ROI.

Notably, the effect of using previous time steps is different from learning a hemo-

dynamic response function, which other authors [22, 12] have done in the past. In-

stead, we are investigating whether information from longer time scales helps improve

performance. In Figure 4.4, we see that there are some peaks in classification perfor-

mance between 5 and 8 previous time steps ago (or 7.5−9.0 seconds ago, after having

taken into account the HRF). However, using any number of previous time steps (up

to as long as 30 TRs ago, or 45 seconds) still improves over the baseline of using no

previous time steps.

For Text → fMRI however, the story is different. We see no improvement in

performance when using previous time points, and in fact performance decreases

(Figure 4.4). We can first examine the situation from a generative model perspective.

After aligning the fMRI and text data, our linear model either says the fMRI is

explained by a linear transformation of the text data (X = WY ) or the text data is

explained by a linear transformation of the fMRI data (Y = WX). If the former case

is true, then learning a linear map in the Text → fMRI problem should work well.

If the latter is true, then the fMRI → Text task should succeed. Note that a good
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Figure 4.4: Varying Previous Timesteps: For the DMN-A region, choosing SRM-
ICA, weighted average, Procrustes for the fMRI → Text linear map, and ridge for
the Text→ fMRI linear map, we plot the relationship between accuracy (y-axis) and
number of previous time points used in the linear map fit (x-axis). We can see a peak
at around using 5 − 8 previous TRs as optimal for the fMRI → Text tasks, and a
relatively monotone decay for using any previous TRs in the Text → fMRI tasks.

linear map existing for one direction does not imply that a good linear map exists for

the other direction, since these linear maps are not invertible due to their low rank.

We believe the central reason that a better linear map exists for the fMRI → Text

direction is due to the relatively high correlation between the semantic representations

compared to the correlation between fMRI states. As a result, the fMRI→ Text task

is a many-to-one problem, while we perform a more difficult one-to-many task when

we attempt Text to fMRI.

4.4 Analyzing the Interpretable Temporal Model

In Figure 4.5, we see that performance increases when we use the temporal decay

model for the fMRI → Text task, but decreases for the Text → fMRI task. Addi-
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Figure 4.5: Decay vs. No Decay: We plot the histogram over all algorithmic choices
(choice of dimension reduction, choice of linear map, choice of ROI, etc.) of the
performance for scene classification. In this figure, “No Decay” refers to the setting
where no previous time points are used. “Decay” refers to the performance of
the interpretable temporal dynamics model. Note that peak performance accuracy is
similar to the full temporal model.
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tionally, performance for each brain area matches or is slightly less than performance

in the temporal model used in this work (obtaining 64% accuracy over 4% chance

rate for the scene classification task for the DMN-A region), thus demonstrating that

we can replace the full temporal model with a more interpretable model and lose

very little. The same conclusions with respect to shared space dimension reduction,

word embeddings, and brain ROI performances hold when we replace the temporal

dynamics model.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this paper, we have explored several methods that improve our success at mapping

between fMRI response to a natural stimulus and semantic text data describing this

stimulus. We see that SRM and SRM-ICA perform considerably better than simple

averaging or using PCA. Figure 4.2 demonstrates that weighted aggregation of the

words in semantic space to form annotation vectors over simple averaging improves

the baseline accuracy by a reasonable amount. We also show that adding previous

time steps improves accuracy substantially.

Using SRM-ICA in fMRI space, weighted annotation vectors in semantic space

and a Procrustes linear map learned between the concatenations of five previous time

points in fMRI and semantic space, we are able to achieve 72% scene classification

accuracy over 4% chance rate for the Whole Brain region on the fMRI → Text task.

Other ROIs are typically above 60% scene classification accuracy as well. Simi-

larly, in the scene ranking task, we achieve > 90% average rank for the correct answer

across ROIs. Text → fMRI does not perform as well but is still far above chance

(56% with DMN-A ROI for 4% chance rate, and > 80% average rank across ROIs).
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Another takeaway is that SRM and SRM-ICA improve upon PCA almost always,

and provide particularly substantial improvement in cases where the other parame-

ter settings (like the semantic featurization or selection of linear map and associated

hyper-parameters) are not necessarily tuned. These results indicate that we are able

to use multiple subjects to learn a 20-dimensional shared space for the fMRI data

that increases performance on our experiments. Thus, we provide concrete evidence

towards the hypothesis made in [12] regarding the existence of a shared fMRI rep-

resentation across multiple subjects that correlates significantly with fine-grained

semantic context vectors derived via statistical word co-occurrence properties.

The method of combining word vectors is another essential part of our results.

We demonstrate that weighted-SIF averaging [3] for aggregating individual elements

of a word sequence performs on average 1.2× better than unweighted averaging for

fMRI → Text top−1 scene classification, and on average 1.1× better for Text →

fMRI top−1 scene classification. Since we use only semantic vectors to featurize a

movie stimulus dataset, our work provides additional support for the notion that

the distributional hypothesis of word meaning may extend to real life multi-sensory

stimuli.

Finally, we note that using multiple previous timepoints when mapping from fMRI

→ Text is very beneficial and significantly improves results by a factor of as much as

5.3×, and on average nearly doubles performance (Table 4.1).

We also presented an interpretable temporal dynamics model which improves maps

from fMRI to Text. It remains to explain why Text to fMRI does not perform as

well. We believe the central reason is due to the relatively high correlation between

the semantic representations compared to the correlation between fMRI states. As

a result, we perform a one-to-many task when we attempt Text to fMRI, which is

more difficult. This idea suggests one avenue of future work; namely to decorrelate

the annotation representations further.
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The main thrust of the temporal dynamics model is that we are trying to integrate

information from the past over different timescales: Our assumption is that all the in-

formation for the current scene is not located inside a single timepoint representation,

but is rather spread out across past timepoints. One explanation of our decreased

performance with the temporal dynamics model is that annotation representations

already contain integrated information across time. When we try to integrate in se-

mantic text space, we end up only adding noise to the annotation representation: A

human has already processed the information in the past and integrated it into the

present representation. Thus for annotation embeddings, it may not make sense to

use previous timepoints in the representation, while it still may make sense to use

previous timepoints for the fMRI in the representation.

5.2 Future Work

As for future work, the first question that arises is whether the results on the Sherlock

dataset generalize to other datasets, and whether the techniques which were the best

on the Sherlock dataset are the best on the other datasets. Preliminary results verify

that our techniques in matching fMRI and Text generalize to more varied stories, in

both audio and visual formats on other datasets.

We would also like to experiment further with de-correlation procedures for the

text annotation embeddings. As noted above, it is conceivable that coming up with

text embeddings which are less correlated with each other will aid the performance

of the Text → fMRI task. Initial directions will focus on removing common linear

components, as determined by spectral procedures like singular value decomposition

(SVD).

The ultimate goal of the experiments discussed in this paper is to enable the

true decoding of thoughts in the human brain: Namely, given some measurements of
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brain activity, can we reconstruct in text the thoughts that occurred during the mea-

surement? There are several obstacles to this dream: For one, despite our mapping

accuracy in this work, fMRI data is still considerably noisy and blurry, especially in

the temporal domain. Thus, it seems likely that we would only be able to reconstruct

relatively coarse-grained descriptions of human thought with this technology. The

second considerable obstacle is the amount of existing data of this format, a factor

intrinsic to the level of difficulty of accurate fMRI data collection. Currently, we have

a total of nearly 2.5 hours worth of fMRI data recorded of subjects being exposed to

natural stimuli like movies and audio stories. Additionally, the subjects are not nec-

essarily the same for each experiment, and we only have a small set of different human

subjects (around 50). Though techniques like the shared response model suggest that

generalization over human subjects is possible with a small number of data points,

it is unclear the extent to which generalization will occur given larger sets of people.

However, techniques to analyze multi-dataset data and efforts to gather more fMRI

data from more people are ongoing. Dataset open-sourcing is becoming a continuing

trend. It is conceivable that in several years, we will be able to obtain enough fMRI

data associated with the human experience of stories and narratives to be able to

entertain approaches similar to the image captioning literature, recently made possi-

ble and popular by advances using deep neural networks [14]. The futuristic notion

of automatic thought decoding (as recently popularized by the companies Neuralink

and Facebook) probably requires much more fine-grained methods of measuring the

human brain.
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