
A Calculus for Composing Security Policies∗

Lujo Bauer, Jarred Ligatti and David Walker
Department of Computer Science

Princeton University
Princeton, NJ 08544

Technical Report TR-655-02

August 12, 2002

Abstract

A runtime monitor is a program that runs in parallel with an un-
trusted application and examines actions from the application’s instruc-
tion stream. If the sequence of program actions deviates from a specified
security policy, the monitor transforms the sequence or terminates the
program. We present the design and formal specification of a language
for defining the policies enforced by program monitors.

Our language provides a number of facilities for composing complex
policies from simpler ones. We allow policies to be parameterized by val-
ues, or other policies. There are also operators for forming the conjunction
and disjunction of policies. Since the computations that implement these
policies modify program behavior, naive composition of computations does
not necessarily produce the conjunction (or disjunction) of the policies
that the computations implement separately. We use a type and effect
system to ensure that computations do not interfere with one another
when they are composed. We also present a preliminary implementation
of our language.

1 Introduction

Any system designed to execute and interoperate with potentially malicious
code should implement at least two different sorts of security mechanisms:

1. A safe language and sound type checker to statically rule out simple bugs.

2. A run-time environment to detect, document, prevent and recover from
those errors that cannot be detected beforehand.

∗This research was supported in part by a generous gift from Microsoft Research, Redmond
and DARPA award F30602-99-1-0519.

1

Strong type systems such as the ones in the Java Virtual Machine [LY99]
and Common Language Runtime [GS01, Gou01, MG] are the most efficient and
most widely deployed mechanisms for ruling out a wide variety of potential
security holes ranging from buffer overruns to misuse of system interfaces.

To complement static checking, secure run-time environments normally use
auxiliary mechanisms to check properties that cannot be decided at compile
time or link time. One of the ways to implement such run-time checks is with
program monitors, which examine a sequence of program actions before they are
executed. If the sequence deviates from a specified policy, the program monitor
transforms the sequence or terminates the program.

In this paper, we describe a new general-purpose language called Polymer
that can help designers of secure systems detect, prevent and recover from errors
in untrusted code at runtime. System architects can use Polymer to write
program monitors that run in parallel with an untrusted application. Whenever
the untrusted application is about to call a security-sensitive method, control
jumps to the Polymer program which determines which of the following will
occur:

• the application runs the method and continues with its computation,

• the application is terminated by the monitor,

• the application is not allowed to invoke the given method, but otherwise
may continue with its computation, or

• the monitor performs some computation on behalf of the application before
or after proceeding with any of the first three options (Figure 1).

This basic architecture has been used before to implement secure systems [DG71,
ES00, ET99, GB01, PH00]. Previous work has shown that the framework effec-
tively subsumes a variety of less general mechanisms such as access-control lists
and stack inspection. Unfortunately, there has been a nearly universal lack of
concern for precise semantics for these languages, which we seek to remedy in
this paper.

We improve upon previous work in a number of ways.

• We present a new, general-purpose language for designing run-time se-
curity policies. Policies are able to prevent actions from being executed,
execute their own actions, and terminate the offending program. In our
language, policies are first-class objects and can be parameterized by other
policies or ordinary values. We provide interesting and useful combinators
that allow complex policies to be built from simpler ones.

• We define a formal operational semantics for our language, which turns
out to be a variant of the computational lambda calculus [Mog91]. To our
knowledge, this is the first such semantics for a general-purpose security
monitoring language. It provides a tool that system architects can use to
reason precisely about their security policies.

2

Application Monitor

sensitive_call

Figure 1: Sample interaction between application and monitor: monitor allows
application to make a sensitive call.

• We provide a type system, which we have proven sound with respect to
our operational semantics. The type system includes a novel effect system
that ensures that composed policies do not interfere with one another.

• We have developed a preliminary implementation of our language that
enforces policies on Java programs.

2 A Calculus for Composing Security Policies

In this section, we provide an informal introduction to our security policy lan-
guage. The next section will define a rigorous semantics for the language.

2.1 Simple Policies

Our monitoring language is derived from Moggi’s computational lambda calcu-
lus [Mog91]; consequently, the language constructs are divided into two groups:
pure terms M and computations E. A computation runs in parallel with a
target program and may have effects on the target’s behavior. We call a sus-
pended computation paired with an action set ({actions : A; policy : E}) a
policy. A policy is a term that, when its suspended computation E is run, will
intercept and manipulate target actions in the set A. We call this set of actions
the regulated set. For the purposes of this paper, a target action is a function or
method call that the target application wishes to execute. However, it is easy
to imagine a variety of other sorts of target program actions, such as primitive
operations like assignment, dereference, iteration, the act of raising particular
exceptions, etc., that might also be considered actions that are regulated by a
security policy.

A first example Consider the following policy, which enforces a limit on the
amount of memory that an application can allocate for itself.

3

fun mpol(q:int).
{
actions: malloc();
policy:

next →
case ? of
malloc(n) →
if ((q-n) > 0) then
ok; run (mpol (q-n))

else
halt

end
done → ()

}

A recursive policy, like the one above, is a recursive function (a term) with
a policy as its body. The recursive function argument q is a memory quota
that the application must not exceed. The only action manipulated by this
policy is the malloc action. The computation defining the policy begins with
the (next → E1 | done → E2) computation, which suspends the monitor until
the target is about to execute the next action in the regulated set (i.e., the
next malloc operation). At this point, the monitor executes E1. If the program
terminates before before executing another regulated action, E2 will be executed
to perform any sort of bookkeeping or application cleanup that is necessary. In
this example, we assume no bookkeeping is necessary so the monitor simply
returns () to indicate it is done.

The ok statement signals that the current action should be accepted, and
halt is the terminal computation, which halts the target program.

A recursive call to a policy involves two steps. The first step is a function ap-
plication (mpol (q-n)), which returns a policy (a suspended computation). To
run the suspended computation, we use the run statement (run (mpol (q-n))).
Sometimes, computations return interesting values (not just unit) in which case
we write let {x} = pol in E. This is the monadic let, which executes its pri-
mary argument pol, binds the resulting value to x and continues the compu-
tation with E. We also use an ordinary let where convenient: let x = M in
E.

Now that we have defined our recursive memory-limit policy, we can initialize
it with a quota (q0) simply by applying our recursive function.

memLimit = mpol q0

The type of any policy is M(τ) where τ is the type of the value that the
underlying computation returns. Hence, the type of memLimit is M(unit).

A second example In this example, we restrict access to files by controlling
the actions fopen and fclose. For simplicity, we assume that fclose takes a
string argument rather than a file descriptor. The first argument to the policy

4

is a function (acl) that returns true if the target is allowed access to the given
file in the given mode. The second argument is a list of files that the application
has opened so far. The code below uses a number of list processing functions
including cons (::), membership test (member), and element delete (delete).

fun fpol(acl:string->mode->bool, files:file list).
{
actions: fopen(), fclose();
policy:

let fcloses fs = {... fclose f ...} in
next →
case ? of
fopen(s,m) →
if (acl s m) then
ok; run (fpol acl (s::files))

else
run (fcloses files); halt

fclose(s) →
if (member files s) then
ok; run (fpol acl (delete files s))

else
sup; run (fpol acl files)

end
done →
run (fcloses files)

}

The main additional statement of interest in this policy is the sup state-
ment. We view an attempt to close a file that that has not been opened by the
application a benign error. In this case, we do not terminate the application,
we simply suppress the action and allow the application to continue (if it is able
to do so). In practice, the sup expression also throws a security exception that
may be caught by the target.

A second point of interest is the fact that our file-system policy is written
so that if the target terminates, it will close any files the target has left open.
It uses an auxiliary computation fcloses to close all the files in the list.

Once again, we must initialize our policy with appropriate arguments.

fileAccess = fpol (acl0,[]).

2.2 Composing Policies

One of the main novelties of our language is that policies are first-class values.
As a result, functions can abstract over policies and policies may be nested
inside other policies. Moreover, we provide a variety of combinators that allow
programmers to synthesize complex policies from simpler ones.

5

Parallel Conjunctive Policies A resource-management policy might want
to enforce policies on a variety of different sorts of resources, all defined inde-
pendently of one another. We use the conjunctive combinator M1∧M2 to create
such a policy. For example, the following policy controls both file access and
limits memory consumption.

RM = fileAccess ∧ memLimit

When this policy is run, target actions are streamed to both fileAccess and
memLimit. Actions such as malloc, which are not relevant to the fileAccess
policy, are ignored by it and automatically deemed okay. The same is true of
actions that are not relevant to memLimit. The two computations may be seen
as running in parallel and if either policy decides to halt the target then the
target will be stopped.

The result of a parallel conjunctive policy is a pair of values, one value being
returned from each of the two computations. Hence, our resource manager has
type M(unit× unit).

Closely related to the parallel conjunctive policy is the trivial policy >,
which immediately returns (). The trivial policy is the identity for the parallel
conjunctive policy. In other words, M ∧ > accepts exactly the same sequences
of program actions as M .

Higher-order Policies Since policies are ordinary values, we can parameter-
ize policies by other policies. For example, rather than fix a particular resource
management policy once and for all, a system designer might prefer to design a
generic resource manager that is composed of a file-access policy and a memory
limit policy.

genericRM = λfa:M(unit).λml:M(unit).{let {x} = fa ∧ ml in ()}

The generic resource manager above abstracts two policies and returns another
policy that runs the two policies in conjunction, discards their results and re-
turns unit. We can apply the generic resource manager to the two policies we
created above.

strictRM = genericRM fileAccess memLimit

However, we might need a different policy for a different application. For in-
stance, for a more trusted application, we might choose not to limit memory,
but still control file access. In this case, we use the trivial policy instead of
memLimit.

laxRM = genericRM fileAccess >

6

Parallel Disjunctive Policies A parallel disjunctive policy M1∨τM2 accepts
a sequence of operations and returns a result as soon as either M1 or M2 would
accept the sequence of operations and return. Both policies must agree to halt
the target in order to stop it. As in the conjunctive policy, target actions that
are not in the regulated set of one of the policies are simply passed over by that
policy and implicitly accepted. A disjunctive policy M1 ∨τ M2 has type M(τ)
when τ = τ1 + τ2, M1 has type M(τ1) and M2 has type M(τ2).

There are several uses for disjunctive policies. At the most basic level, a dis-
junctive policy can serve to widen an existing policy. For example, suppose we
have already implemented a policy for controlling arbitrary, untrusted applica-
tions (untrustedPol). Later, we might wish to develop a second policy for more
trusted applications that authenticate themselves first (authenticatedPol). By
using disjunction we allow applications either to authenticate themselves and
gain further privileges or to use the untrusted policy.

widenedPol = untrustedPol ∨τ authenticatedPol

It is likely possible to rewrite untrustedPol so that it grants extra privileges
when a user authenticates himself. However, modular design principles suggest
we should leave the code of the initial policy alone and create a separate module
(policy) to handle the details of authentication and the extended privileges.

Disjunctive policies also provide a convenient way to create Chinese wall
policies [BN89]. A Chinese wall policy allows the target to choose from one of
many possible policies. However, when one policy is chosen the others become
unavailable. For example, when designing a browser policy, we might expect
two different sorts of applets. One sort of applet acts like a proxy for a database
or service situated across the net. This kind of applet needs few host system
resources other than network access. It takes requests from a user and com-
municates back to the online database. In particular, it has no use for the file
system. Another sort of applet performs tasks for the host system and requires
access to host data. In order to allow both sorts of applets to run on the host
and yet to protect the privacy of host data, we can create a Chinese wall policy
which allows either file-system access or network access but not both.

In the code below, we implement this policy. The patterns File.* and
Network.* match all functions in the interface File and Network respectively.
We assume the policies filePolicy and networkPolicy have been defined ear-
lier.

7

fileNotNetwork =
{
actions: File.*, Network.*;
policy:

next →
case ? of
File.* → run (filePolicy)
Network.* → halt

end
done → ()

}
networkNotFile =
{
actions: File.*, Network.*;
policy:

next →
case ? of
File.* → halt
Network.* → run (networkPolicy)

end
done → ()

}
ChineseWall = fileNotNetwork ∨τ networkNotFile

Like conjunction, disjunction has an identity: ⊥ is the unsatisfiable policy,
which halts immediately regardless of any program actions. The policy M ∨τ ⊥
accepts the same sequences of actions as M .

2.3 Interfering Policies

Composition of policies can sometimes lead to policies that are ill-defined or
simply wrong. For example, consider the conjunction of two file-system policies,
liberalFilePolicy and stricterFilePolicy. The first policy okays each file-
system action while the second policy suppresses some of the file-system actions.
What should the result be when one policy suppresses an action and another
concurrently allows (and potentially requires) it to occur?

A similar problem would occur if we attempted to compose our original
file-system policy fileAccess with a logging policy logPolicy that stores the
sequence of all actions that occur in a system in order to detect suspicious access
patterns and to uncover mistakes in a policy. Our original fileAccess itself
performs certain actions on behalf of the target, including closing target files.
If the logging policy operates concurrently with the file-access policy, it cannot
detect and log the actions performed by fileAccess.

We propose a twofold solution to such problems. First, we use a type and
effect system to forbid ill-defined or interfering policies such as the ones con-
sidered above. Second, we provide an alternative set of combinators that allow

8

programmers to explicitly sequence policies rather than having them execute in
parallel. This gives programmers necessary flexibility in defining policies.

Types and Effects Our type and effect system gives policies refined types
with the formMAr

Ae
(τ). The set of actions Ar includes all the actions regulated

by the policy. The second set Ae specifies the effect of the policy. In other
words, it specifies the actions that may be suppressed or initiated on behalf of
the program.

These refined types give rise to a new typing rule for parallel conjunctive
policies. In the following rule, the context Γ maps variables to their types in
the usual way.

Γ `M1 :MA1
A2

(τ1) Γ `M2 :MA3
A4

(τ2)
A1 ∩ A4 = A2 ∩ A3 = ∅

Γ `M1 ∧M2 :MA1∪A3
A2∪A4

(τ1 × τ2)

The constraint in the rule specifies that the effects of one of the policies must
not overlap with the set of actions regulated by the other policy. A similar rule
constrains the policies that may be composed using parallel disjunction.

Γ `M1 :MA1
A2

(τ1) Γ `M2 :MA3
A4

(τ2)
A1 ∩ A4 = A2 ∩ A3 = ∅

Γ `M1 ∨τ1+τ2 M2 :MA1∪A2
A3∪A4

(τ1 + τ2)

Rules for typing other terms and rules for typing computations are explained in
Section 3.

Sequential Combinators Sequential combinators allow programmers to ex-
plicitly order the execution of effectful policies that apply to the same set of
target actions. The sequential conjunctive policy M14M2 operates as follows.
The policy M1 operates on the target action stream, creating an output stream
that may contain new actions that M1 has injected into the stream and may
be missing actions that M1 has suppressed. The policy M2 acts as it normally
would on the output of M1. Since this is a conjunctive policy, if either policy
decides to terminate the application then the application will be terminated.
The sequential disjunctive policy M15τM2 is similar: M2 operates on the out-
put of M1. In this case, however, both M1 and M2 must decide to terminate
the target in order for the target to be stopped. If one policy signals halt, the
disjunction continues to operate as if that policy has no effect on the target.

The typing rules for sequential combinators (shown below) are much more
liberal then the typing rules for parallel combinators. By explicit sequencing of
operations, the programmer determines how the conflicting decisions should be
resolved.

Γ `M1 :MA1
A2

(τ1) Γ `M2 :MA3
A4

(τ2)

Γ `M1 4M2 :MA1∪A3
A2∪A4

(τ1 × τ2)

9

Γ `M1 :MA1
A2

(τ1) Γ `M2 :MA3
A4

(τ2)

Γ `M15τ1+τ2 M2 :MA1∪A3
A2∪A4

(τ1 + τ2)

Because sequential operators accept a wider range of policies than parallel
ones, they can be used to implement any policy that can be implemented with
parallel combinators. Parallel combinators, however, ensure the often-desirable
property that the two policies being composed do not interfere with each other.

3 Formal Semantics

This section describes the syntax and formal semantics of our calculus. The
complete rules for the operational and static semantics are included in Appen-
dices A and B.

3.1 Syntax

The syntax of our formal language differs slightly from the syntax used in the
previous section. First, we use the metavariable a to range over actions and
consider them to be atomic symbols rather than decomposable into class name,
method name and arguments. Second, we write the regulated set for a policy
using superscript notation: {E}A is the simple policy with the regulated set A
and computation E.

There are also a number of differences in the computations. Our acase in-
struction chooses a control flow path based upon whether the current action
belongs to an arbitrary subset A of the current possible actions. If we want to
store or manipulate the current action, we use the primitive x → E to bind the
current action to the variable x, which may be used in E (intuitively, this takes
the place of pattern matching). To invoke one of the atomic program actions, we
explicitly write ins(a). Finally, for each of the policy combinators discussed in
the previous section, we add a corresponding computation. Each of these com-
putations is superscripted with the regulated sets for their subcomputations.
Figure 2 presents a formal syntax for our language. Note that the two unnamed
constructs that describe sequential conjunction (E1 4A1,A2 (β �

E2)) and dis-
junction (E1 5A1,A2

τ (β �
E2)) are used only at runtime. They encode the be-

havior of the first computation; in particular, whether it has inserted or accepted
the action currently being considered by the second computation. The β can
be either ins(a) or acc(a). The run-time let form (let {x} = (a . E1)A in E2)
is used when evaluating the suspended computation E1 on an action a that is
in E1’s regulated set A.

3.2 Operational Semantics

Terms We define execution of pure terms using a small-step semantics defined
in terms of contexts (see Appendix A.1). The notation C[M] indicates that
the hole in the context C has been filled with term M . Most of the rules

10

(Types) τ ::= act(A) | τ1→ τ2 | unit
| τ1 × τ2 | τ1 + τ2 | MA1

A2
(τ)

(Behaviors) β ::= · | ins(a) | sup(a) | acc(a)

(Terms) M ::= x (variable)
| a (action)
| fun f :τ (x).M (recursive function)
| M1 M2 (application)
| () (unit)
| 〈M1,M2〉 (pairing)
| π1 M | π2 M (first/second projections)
| inlτ (M1) | inrτ (M2) (left/right injections)
| caseM1 (x→M2 | x→M3) (case)
| {E}A (simple policy)
| > (trivially satisfiable policy)
| M1 ∧M2 (parallel-conjunctive policy)
| M1 4M2 (sequential-conjunctive policy)
| ⊥ (unsatisfiable policy)
| M1 ∨τ M2 (parallel-disjunctive policy)
| M1 5τ M2 (sequential-disjunctive policy)

(Values) v ::= x | a | fun f :τ (x).M | ()
| 〈v1, v2〉 | inlτ (v1)
| inrτ (v2) | {E}A

(Computations) E ::= M (return)
| let {x} = Min E (let)
| let {x} = (a . E1)A in E2 (run-time let)
| ok;E (accept action)
| sup;E (suppress action)
| ins(M);E (call action)
| (next→ E1 | done→ E2) (next action)
| x → E (bind action)
| acase (? ⊆ A) (E1 | E2) (action case)
| caseM (x→E1 | x→E2) (case)
| any (trivial computation)
| E1 ∧A1,A2 E2 (parallel-conjunctive computation)
| E1 4A1,A2 E2 (sequential-conjunctive computation)
| E1 4A1,A2 (β � E2)
| halt (terminal computation)
| E1 ∨A1,A2

τ E2 (parallel-disjunctive computation)
| E1 5A1,A2

τ E2 (sequential-disjunctive computation)
| E1 5A1,A2

τ (β � E2)

Figure 2: Syntax

11

are standard evaluation rules for the simply typed lambda calculus. The four
rules that describe evaluation of our combinators and the two rules for the
trivially satisfiable and the unsatisfiable policies (Figure 3) reduce terms to the
corresponding suspended computations.

> 7−→β {any}∅ (M-Top)

{E1}A1 ∧ {E2}A2 7−→β {E1 ∧A1,A2 E2}A1∪A2 (M-ParCon)

{E1}A1 4 {E2}A2 7−→β {E1 4A1,A2 E2}A1∪A2 (M-SeqCon)

⊥ 7−→β {halt}∅ (M-Bot)

{E1}A1 ∨τ {E2}A2 7−→β {E1 ∨A1,A2
τ E2}A1∪A2 (M-ParDis)

{E1}A1 5τ {E2}A2 7−→β {E1 5A1,A2
τ E2}A1∪A2 (M-SeqDis)

Figure 3: Dynamic Semantics: Terms (selected rules)

Computations The evaluation rules for computations are quite lengthy, so we
only present a few of them here. The remaining rules appear in Appendix A.2.
This small-step semantics depends upon system states, which are pairs of a
sequence of target program actions σ and a monitoring computation E which
we write σ.E. We write the empty sequence as · and concatenate two sequences
σ1 and σ2 using the notation σ1;σ2. Finally, we write σ 6∈ A to indicate that no
actions in the sequence σ appear in the set of actions A.

The rules have the form `Ar σ1 . E1
β7−→ σ2 . E2, where Ar is the regulated

set for this computation, σ1 . E1 is the initial system state, σ2 . E2 is the final
state, and β is the effect of the transition (i.e., insertion of an action, suppression
of an action, acceptance of an action, or nothing). When the effect β is ins(a)
or acc(a), the action a is emitted by the monitor at this step of the execution.

The dynamic semantics for the some of the basic computational operators
are given below.

a ∈ Ar
`Ar a;σ . ok;E

acc(a)7−→ σ . E (E-Acc)

a ∈ Ar
`Ar a;σ . sup;E

sup(a)7−→ σ . E (E-Sup)

`Ar σ . ins(a);E
ins(a)7−→ σ . E (E-Ins2)

12

a ∈ Ar
`Ar a;σ . (next→ E1 | done→ E2) ·7−→ a;σ . E1 (E-Next)

a 6∈ Ar
`Ar a;σ . (next→ E1 | done→ E2)

acc(a)7−→ σ . (next→ E1 | done→ E2)
(E-Next-Skip)

`Ar · . (next→ E1 | done→ E2) ·7−→ · . E2 (E-Done)

The rules (E-Acc) and (E-Sup) are fairly straightforward. One key difference
between the two is that the action a appears in the output in the former case
but not in the latter case (it is suppressed). Both rules require the input stream
to be non-empty and the first action in the stream to be part of the regulated
set. We consider it wrong for a monitor to act on or suppress actions that are
not in its regulated set. The static semantics will ensure that such errors do not
occur. We do, however, allow the monitor to call actions not in its regulated
set (rule (E-Ins2)).

The next construct operates similarly to a case statement. Rule (E-Next)
indicates that we take the first branch when the next action belongs to the
regulated set and (E-Done) indicates we take the second branch when there
are no more actions. (E-Next-Skip) specifies that we skip actions that do not
appear in the regulated set.

The rule for the trivial computation and the rules for parallel and sequential
conjunction are given below.

`Ar σ . any ·7−→ σ . () (E-Any)

`A1 σ . E1
β7−→ σ′ . E′1 ‖β‖ 6∈ A2 or (E2 = v and β = acc(a))

`Ar σ . (E1 ∧A1,A2 E2) β7−→ σ′ . (E′1 ∧A1,A2 E2) (E-ParCon1)

`A2 σ . E2
β7−→ σ′ . E′2 ‖β‖ 6∈ A1 or (E1 = v and β = acc(a))

`Ar σ . (E1 ∧A1,A2 E2)
β7−→ σ′ . (E1 ∧A1,A2 E′2) (E-ParCon2)

`A1 σ . E1
acc(a)7−→ σ′ . E′1 `A2 σ . E2

acc(a)7−→ σ′ . E′2

`Ar σ . (E1 ∧A1,A2 E2)
acc(a)7−→ σ′ . (E′1 ∧A1,A2 E′2) (E-ParCon3)

`Ar σ . (v1 ∧A1,A2 v2) ·7−→ σ . 〈v1, v2〉 (E-ParCon4)

E1 = halt or E2 = halt

`Ar σ . (E1 ∧A1,A2 E2) ·7−→ σ . halt (E-ParCon5)

13

`A1 σ . E1
β7−→ σ′ . E′1 β = sup(a) or β = ·

`Ar σ . (E1 4A1,A2 E2)
β7−→ σ′ . (E′1 4A1,A2 E2) (E-SeqCon1)

`A1 σ . E1
β7−→ σ′ . E′1 β = ins(a) or β = acc(a) a 6∈ A2

`Ar σ . (E1 4A1,A2 E2) β7−→ σ′ . (E′1 4A1,A2 E2) (E-SeqCon2)

`A1 σ . E1
β7−→ σ′ . E′1 β = ins(a) or β = acc(a) a ∈ A2

`Ar σ . (E1 4A1,A2 E2) ·7−→ σ′ . (E′1 4A1,A2 (β � E2)) (E-SeqCon3)

`A2 ‖β‖ . E2
β′7−→ ‖β‖ . E′2

`Ar σ . (E1 4A1,A2 (β � E2))
β′7−→ σ . (E1 4A1,A2 (β � E′2)) (E-SeqCon4)

`A2 ‖β‖ . E2
β′7−→ · . E′2

`Ar σ . (E1 4A1,A2 (β � E2)) β′′7−→ σ . (E1 4A1,A2 E′2) (E-SeqCon5)

where β′′ =

���� ���
· if β = ins(a) and β′ = sup(a)

ins(a) if β = ins(a) and β′ = acc(a)
sup(a) if β = acc(a) and β′ = sup(a)
acc(a) if β = acc(a) and β′ = acc(a)

`Ar σ . (E1 4A1,A2 (β � v))
β7−→ σ . (E1 4A1,A2 v) (E-SeqCon6)

`Ar σ . (E1 4A1,A2 (β � halt)) ·7−→ σ . halt (E-SeqCon7)

E2 6= v E2 6= halt

`Ar a;σ . (v4A1,A2 E2) ·7−→ σ . (v4A1,A2 (acc(a) � E2)) (E-SeqCon8)

`A2 · . E2
β7−→ · . E′2

`Ar · . (v4A1,A2 E2) β7−→ · . (v4A1,A2 E′2) (E-SeqCon9)

`Ar σ . (v1 4A1,A2 v2) ·7−→ σ . 〈v1, v2〉 (E-SeqCon10)

E1 = halt or E2 = halt

`Ar σ . (E1 4A1,A2 E2) ·7−→ σ . halt (E-SeqCon11)

The trivial computation immediately returns () without effect (E-Any). The
first rule for parallel conjunction (E-ParCon1) allows the first subcomputation
(E1) to call functions and suppress actions that do not appear in the regulated
set of the second subcomputation (E2). We use the notation ‖β‖ to extract

14

the action inserted, accepted, or suppressed by E1. Formally, we define ‖β‖ as
follows.

‖β‖ =

a if β = ins(a)
a if β = acc(a)
a if β = sup(a)
· if β = ·

This rule (E-ParCon1) states one of the main safety conditions for our system:
E1 may not interfere with E2 by inserting or suppressing actions that should be
regulated by E2. If the first subcomputation wants to accept an action that is in
the second subcomputation’s regulated set, and the second subcomputation has
already evaluated to a value, the conjunction automatically accepts the action.
A symmetric rule (E-ParCon2) allows the second subcomputation to execute in
an analogous way. When an action is in the regulated set of both subcompu-
tations, and one accepts it, so too must the other (E-ParCon3). The last two
rules rules for parallel conjunction ((E-ParCon4) and (E-ParCon5)) state the
termination conditions for a conjunctive policy. When both subcomputations
produce a value, the conjunction will produce a pair. When either subcompu-
tation decides that the target should be terminated, the conjunction will halt
the target.

In sequential conjunction, the target input is fed into the first subcomputa-
tion, E1. E1 feeds its output, an action a that it has either inserted or accepted,
into E2 if E2 regulates a. Execution of the sequential conjunction alternates be-
tween execution of the first subcomputation and, when it produces some output,
execution of the second subcomputation until it has consumed that output. To
describe this behavior, we introduce the runtime form E1 4A1,A2 (β �

E2),
which we use to keep track of whether the action a being considered by E2 is
the result of insertion (ins(a)) or acceptance (acc(a)) by E1.

The first rule for sequential conjunction (E-SeqCon1) states that as long
as the first subcomputation neither accepts nor inserts an action, the second
subcomputation has no input to process, so the behavior of the composition is
determined solely by the behavior of the first subcomputation. If the output
of the first subcomputation is not regulated by the second subcomputation,
again the behavior of the first subcomputation determines the behavior of the
composition (E-SeqCon2). On the other hand, if the second subcomputation
regulates the output of the first subcomputation, this output is fed to the second
subcomputation (E-SeqCon3), whose behavior determines the behavior of the
composition (E-SeqCon4 and E-SeqCon5). The second subcomputation can
consume the action fed to it by the first subcomputation by either accepting or
suppressing it (E-SeqCon5). If E2 suppresses an action a inserted by E1, the
composition emits nothing; if a was accepted by E1, the composition suppresses
a. If E2 accepts an action a inserted by E1, the composition inserts a; if a was
accepted by E1, the composition accepts a. The remaining rules for sequential
conjunction describe cases when one of the subcomputations has evaluated to a
value or halted.

The disjunctive combinators (see Appendix A.2) are very similar to their

15

conjunctive counterparts, except for their termination conditions. When either
subcomputation produces a value, the disjunction will inject the value into a
sum and return. On the other hand, both subcomputations must decide to
terminate the target in order for the disjunction to halt the target.

The operational semantics for the let construct (see Appendix A.2) specifies
that the suspended computation is first evaluated with respect to the input
stream. The value it returns is bound to a variable, and execution continues
with the body of the let computation.

System Execution A running system S is a sequence of program actions
paired with a monitoring computation and some set of regulated actions. A
fully evaluated system is either a value (indicating that the monitor processed
all input actions and the computation is fully evaluated) or the special halt
symbol (indicating that the monitor terminated the target while processing the
input sequence).

S ::= run(σ,Ar , E) | v | halt

We represent system execution using the judgment S σ
↪→S ′ where σ repre-

sents the final observable output of the system.

a 6∈ Ar
run(a;σ, Ar, E)

a
↪→ run(σ, Ar, E) (R-Skip)

`Ar σ . E β7−→ σ′ . E′ σ = · or (σ = a′;σ′′ and a′ ∈ Ar) β = · or β = sup(a)

run(σ,Ar, E)
·
↪→ run(σ′, Ar, E′)

(R-Step1)

`Ar σ . E β7−→ σ′ . E′ σ = · or (σ = a′;σ′′ and a′ ∈ Ar) β = ins(a) or β = acc(a)

run(σ,Ar, E)
a
↪→ run(σ′, Ar, E′)

(R-Step2)

run(a;σ, Ar, v)
a
↪→ run(σ, Ar, v) (R-Val1)

run(·, Ar, v)
·
↪→ v (R-Val2)

run(σ,Ar, halt)
·
↪→ halt (R-Halt)

3.3 Static Semantics

We specify the static semantics for the language using four main judgments.

16

Subtyping: ` τ1 ≤ τ2 The rules for subtyping are mostly standard (see
Appendix B.1). Unit, pairs, sums and function types have their usual subtyping
rules. We say the type of actions act(A) is covariant in A since act(A) is a
subtype of act(A′) when A ⊆ A′. Policy types are covariant in their return type
and effect set but invariant in their regulated set. In other words, it is safe for
policies to appear to have a larger effect than they actually do, but they must
regulate the set that they claim to regulate.

Term Typing: Γ ` M : τ The term typing rules contain the ordinary in-
troduction and elimination rules for functions, unit, pairs and sums (see Ap-
pendix B.2). The treatment of variables is also standard. The basic rule for
actions gives an action a the singleton type act({a}). When this rule is used in
conjunction with the subsumption rule, an action may be given any type act(A)
such that a ∈ A. The typing rules for policy terms are given below.

Γ; � `Ar E : τ, Ae
Γ ` {E}Ar :MAr

Ae
(τ) (S-Sus)

Γ ` > :M∅∅(unit) (S-Top)

Γ `M1 :MA1
A2

(τ1) Γ `M2 :MA3
A4

(τ2) A1 ∩A4 = A2 ∩A3 = ∅
Γ `M1 ∧M2 :MA1∪A3

A2∪A4
(τ1 × τ2) (S-ParCon)

Γ `M1 :MA1
A2

(τ1) Γ `M2 :MA3
A4

(τ2)

Γ `M1 4M2 :MA1∪A3
A2∪A4

(τ1 × τ2) (S-SeqCon)

Γ ` ⊥ :M∅∅(τ) (S-Bot)

Γ `M1 :MA1
A2

(τ1) Γ `M2 :MA3
A4

(τ2) A1 ∩A4 = A2 ∩A3 = ∅
Γ `M1 ∨τ1+τ2 M2 :MA1∪A2

A3∪A4
(τ1 + τ2) (S-ParDis)

Γ `M1 :MA1
A2

(τ1) Γ `M2 :MA3
A4

(τ2)

Γ `M1 5τ1+τ2 M2 :MA1∪A3
A2∪A4

(τ1 + τ2) (S-SeqDis)

Elementary policies (rule (S-Sus)) are given the type MAr
Ae

(τ) when the
suspended computation regulates the actions in Ar, has effect Ae and produces
a value of type τ . The trivial policy (rule (S-Top)) makes its decisions based
upon no regulated actions, has no effect and simply returns unit. The terminal
policy (rule (S-Bot)) also makes its decision based upon no regulated actions, has
no effect, but instead of returning a value, it immediately calls for termination
of the target. Since the terminal policy never returns, we allow its return type
to be any type τ .

17

Rules (S-ParCon) and (S-SeqCon) give types to the two conjunctive policies.
In each case, the type of the resulting computation involves taking the union of
the regulated sets and the union of the effects since a conjunctive policy makes
its decisions based on the regulated actions of both policies and potentially has
the effects of either policy. These combinators return a pair of values, which is
reflected in the type of the conjunctive combinator. The parallel conjunction is
constrained so that the regulated set of one conjunct is disjoint from the effect of
the other and vice versa. This constraint prevents one conjunct from inserting
or suppressing actions that should be regulated by the other conjunct. Typing
for the sequential conjunction is more liberal. It allows one policy to supersede
another regardless of the effects of either policy. The rules for the disjunctive
combinators ((S-ParDis) and (S-SeqDis)) are analogous to their conjunctive
counterparts except that disjunctions return sums rather than pairs.

Computation Typing: Γ;B `Ar E : τ, Ae The basic judgment for typing
computations may be read “Computation E produces a value with type τ and
has effect Ae in Γ when run against a target whose next action is in B.” B
ranges over non-empty sets A or the symbol �, which represents no knowledge
about the next action. The next action might not even exist, as is the case when
the target has terminated. We maintain this set of possible next actions so that
we know what actions to consider as possible effects of a suppress statement
and what actions may be bound to a variable in a bind statement. We do not
consider computation judgments to be valid unless either B ⊆ Ar or B = �. We
define B tAr to be B if B ⊆ Ar and � otherwise. Finally, set intersect and set
minus operators ∩� and \� act like standard set operators, except that instead
of returning ∅ they return �.

The computation typing rules are given below.

Γ `M : τ
Γ;B `Ar M : τ, ∅ (SE-Ret)

Γ `M :MA′r
A2

(τ ′) Γ, x:τ ′; � `Ar E : τ, A A′r ⊆ Ar
Γ;B `Ar let {x} = Min E : τ, A ∪A2 (SE-Let1)

·; {a} `A E1 : τ ′, A1 x:τ ′; � `Ar E2 : τ, A2 A ⊆ Ar a ∈ A
·; {a} `Ar let {x} = (a . E1)Ain E2 : τ, A1 ∪A2 (SE-Let2)

Γ; � `Ar E : τ, A B 6= �
Γ;B `Ar ok;E : τ, A (SE-Acc)

Γ; � `Ar E : τ, A B 6= �
Γ;B `Ar sup;E : τ, A ∪B (SE-Sup)

Γ `M : act(A′) Γ;B `Ar E : τ, A

Γ;B `Ar ins(M);E : τ, A ∪A′ (SE-Ins)

18

Γ;Ar `Ar E1 : τ, A Γ; � `Ar E2 : τ, A

Γ;B `Ar (next→ E1 | done→ E2) : τ, A (SE-Next)

Γ, x:act(B);B `Ar E : τ, A B 6= �
Γ;B `Ar x → E : τ, A (SE-Bind)

Γ;B ∩� A′ `Ar E1 : τ, A Γ;B \� A′ `Ar E2 : τ, A
A′ ⊆ Ar B 6= �

Γ;B `Ar acase (? ⊆ A′) (E1 | E2) : τ, A (SE-Acase)

Γ `M : τ1 + τ2
Γ, x:τ1;B `Ar E1 : τ, A Γ, x:τ2;B `Ar E2 : τ, A

Γ;B `Ar caseM (x→E1 | x→E2) : τ, A (SE-Case)

Γ;B `Ar any : unit, ∅ (SE-Any)

Γ;B tA1 `A1 E1 : τ1, A3 Γ;B tA2 `A2 E2 : τ2, A4

A1 ∩A4 = A2 ∩A3 = ∅ A1 ∪A2 = Ar

Γ;B `Ar E1 ∧A1,A2 E2 : τ1 × τ2, A3 ∪A4 (SE-ParCon)

Γ;B tA1 `A1 E1 : τ1, A3 Γ; � `A2 E2 : τ2, A4 A1 ∪A2 = Ar

Γ;B `Ar E1 4A1,A2 E2 : τ1 × τ2, A3 ∪A4 (SE-SeqCon1)

·;B tA1 `A1 E1 : τ1, A3 ·; {a} `A2 E2 : τ2, A4

A1 ∪A2 = Ar a ∈ A2 a ∈ A3

·;B `Ar E1 4A1,A2 (ins(a) � E2) : τ1 × τ2, A3 ∪ A4 (SE-SeqCon2)

·;B tA1 `A1 E1 : τ1, A3 ·; {a} `A2 E2 : τ2, A4

A1 ∪A2 = Ar a ∈ A2

·;B `Ar E1 4A1,A2 (acc(a) � E2) : τ1 × τ2, A3 ∪ A4 (SE-SeqCon3)

Γ;B `Ar halt : τ, ∅ (SE-Halt)

Γ;B tA1 `A1 E1 : τ1, A3 Γ;B tA2 `A2 E2 : τ2, A4

A1 ∩A4 = A2 ∩A3 = ∅ A1 ∪A2 = Ar

Γ;B `Ar E1 ∨A1,A2
τ1+τ2 E2 : τ1 + τ2, A3 ∪A4 (SE-ParDis)

Γ;B tA1 `A1 E1 : τ1, A3 Γ; � `A2 E2 : τ2, A4 A1 ∪A2 = Ar

Γ;B `Ar E1 5A1,A2
τ1+τ2 E2 : τ1 + τ2, A3 ∪A4 (SE-SeqDis1)

·;B tA1 `A1 E1 : τ1, A3 ·; {a} `A2 E2 : τ2, A4

A1 ∪A2 = Ar a ∈ A2 a ∈ A3

·;B `Ar E1 5A1,A2
τ1+τ2 (ins(a) � E2) : τ1 + τ2, A3 ∪ A4 (SE-SeqDis2)

19

·;B tA1 `A1 E1 : τ1, A3 ·; {a} `A2 E2 : τ2, A4

A1 ∪A2 = Ar a ∈ A2

·;B `Ar E1 5A1,A2
τ1+τ2 (acc(a) � E2) : τ1 + τ2, A3 ∪ A4 (SE-SeqDis3)

Γ;B′ `Ar E : τ ′, A′ (B′ = � or B ⊆ B′) ` τ ′ ≤ τ A′ ⊆ A
Γ;B `Ar E : τ, A (SE-Sub)

Terms have no effects, so they are well typed with respect to any next action
(SE-Ret).

The let rule (SE-Let1) requires M to be a policy with a regulated set that is
a subset of the current computation’s regulated set. When this policy returns,
we will have no information regarding the next action because the suspended
policy may have accepted or suppressed an arbitrary number of actions. As a
result, we check E in a context involving �. The secondary let rule (SE-Let2)
records a few further invariants necessary for the proof of safety, namely, that
the suspended computation E1 is well typed with respect to the action it is
currently processing, and that that action is an element of E1’s regulated set.

Rules (SE-Acc) and (SE-Sup) have similar structure. In both cases, we must
be sure that the target has produced some action to be accepted or suppressed
(i.e., B 6= �). The main difference between the two rules is that we record the
effect of the suppression, whereas acceptance has no effect. The rule for invoking
actions (SE-Ins) adds A′ to the effect of the computation when the action called
belongs to the set A′ (in other words, when the action has type act(A′)).

The next/done construct adds Ar to the context for checking E1 and � for
checking E2 since we only take the first branch when we see an action in the
regulated set and we take the second branch when there are no more actions
(rule (SE-Next)). Rule (SE-Acase) takes the first or second branch depending
upon whether the current action is in the set A1. We refine the context in each
branch to reflect the information that we have about the current action.

Rule (SE-ParCon) places several constraints on parallel conjunction of com-
putations. Since the next action could be in the regulated set of the conjunction
but not in the regulated sets of both E1 and E2, E1 and E2 must both be well
typed either with respect to a subset of their regulated sets or with respect to
�. This is ensured by typing the subcomputations with respect to B t A1 and
B t A2. In addition, there is not allowed to be a conflict between the regu-
lated actions of one subcomputation and the effects of the other. Finally, the
regulated set of the conjunction must be the union of the regulated sets of the
subcomputations.

The first rule for sequential conjunction (SE-SeqCon1) is similar, with two
exceptions. First, there is no constraint on the regulated and effect sets of the
subcomputations. Second, E2 must be well typed with respect to � because
we cannot make any assumption about what the next action will be (it may
be an action emitted by E1, or E1 may suppress all actions until the target
has finished executing). The second sequential conjunction rule (SE-SeqCon2)

20

records several run-time invariants. The second subcomputation is well typed
with respect to any action a fed to it by the first subcomputation. In addition,
a must be in E2’s regulated set and, because a was inserted by E1, in the effect
set of the well-typed first subcomputation. Rule (SE-SeqCon3) is similar and
describes the situation when a was accepted by E1.

The rules for the disjunctive operators (SE-ParDis and SE-SeqDis1 through
SE-SeqDis3) are identical to their conjunctive counterparts except that they
have sum types rather than pair types.

The subsumption rule for computations (SE-Sub) is invariant in regulated
sets, covariant in type and effect sets, and contravariant in the type of the next
action. It is always OK to consider that a computation has more effects than
it actually does. In addition, a computation typed with respect to the possible
next actions B′ continues to be well typed even if more information about the
next action is available.

System Typing The rules for concluding that a running system is well formed
depend upon an auxiliary judgment for giving types to the first action in a
sequence (` σ : A).

` σ : B ·;B tAr `Ar E : τ, A

`Ar σ . E ok (S-Ok)

` · : � (Seq-Empty)

` a;σ : {a} (Seq-Act)

`Ar σ . E ok
` run(σ,Ar, E) ok (Run-Ok)

` v : τ
` v ok (Val-Ok)

` halt ok (Halt-Ok)

3.4 Properties

Because this calculus describes high-level running systems as somewhat complex
compositions of action streams, sets of regulated actions, and computations
(which may themselves be terms), the proof of type safety is necessarily lengthy
and rather intricate. The safety proof for running systems is built upon proofs of
safety for terms and computations, with each of these proofs requiring canonical
forms, inversion of typing, preservation, and progress lemmas. All the lemmas
are given in Appendix C. We also provide proof outlines and, for non-trivial
cases, actual proofs.

21

Lemma 24 (Preservation: Running System)
If ` S ok and S σ

↪→S ′ then ` S ′ ok.

Lemma 25 (Progress: Running System)
If ` S ok then S σ

↪→S ′, or S = v, or S = halt.

Definition 26 (σ
↪→*)

We extend the single-step dynamic semantics of running systems to a multi-step
semantics with the usual reflexive and transitive rules.

S ·
↪→*S (R*-Reflex)

S σ
↪→S ′ S ′ σ

′
↪→*S ′′

S σ; σ′
↪→* S ′′ (R*-Trans)

Definition 27 (Stuck System)
A system S is “stuck” if S 6= v and S 6= halt and there does not exist a system
S ′ such that S σ

↪→S ′.

Theorem 28 (System Safety)
If ` S ok and S σ

↪→*S ′ then ` S ′ ok and S ′ is not stuck.

4 Implementation

In order to confirm that our policy calculus is feasible and useful, we have
developed a practical implementation of it. Polymer, our language for writing
policies, implements most of the policy calculus and allows the use of many of
the features and most of the syntax of Java. For simplicity, the target programs
we currently consider are Java source programs, but many of the techniques
we use can also be extended to handle Java bytecode. We have not yet fully
implemented static checking of effects.

Polymer We illustrate the main differences between our calculus and Polymer
using as an example a policy that restricts the number and type of files that
may be opened via a FileWriter.

polinterface SystemInterface =
... java.io.FileWriter(String path);

java.io.FileWriter.close();
java.lang.System.err.println(String s); ...

22

policy limitWriter(int maxopen) : SystemInterface =
actions = { java.io.FileWriter(String path);

java.io.FileWriter.close(); }
state = { int cur = 0; }
policy = {

aswitch {
case java.io.FileWriter(String path) :
if (cur >= maxopen) suppress;
if (path.startsWith("/tmp")) {
cur++; ok;

}
else {
emit(System.err.println("Can’t open."));
suppress;

}
case java.io.FileWriter.close() :
cur--;

case done :
}

}

In the implemented version of the language, policies are accompanied by an
interface (polinterface SystemInterface). Informally, an interface is the set
of all security-relevant actions that we wish to regulate. Keeping the interface
separate from the policies allows us to instrument a target program indepen-
dently and then run it in combination with any policy whose regulated set is
a subset of the interface. It also helps us to keep track of which of the Java
statements executed by the policy represent effects and which are merely part of
the policy’s computation. This makes it relatively straightforward to statically
check for interference between policies.

The first line of the policy,

policy limitWriter(int maxopen) : SystemInterface

specifies its name and parameters (in this case, an int representing the maxi-
mum number of files that may be opened), and that its regulated and effect sets
are subsets of the set of actions listed in SystemInterface. The parameters
can be policies or have standard Java types.

The body of the policy declaration consists of three blocks. The actions
and policy blocks are as described in Section 2. The state block is used
for declaring persistent variables and for importing other policies. Importing a
policy allows it to be used within the policy block.

The body of the policy block is composed of a sequence of Java statements
written as if they were in the body of an ordinary Java method. In addition to
standard Java, Polymer supports several additional statements. The aswitch
statement has syntax similar to the Java switch statement and allows us to
pattern match against method calls. Variables from the pattern (such as the

23

string path) have as their scope the matching case block. ok and suppress have
the obvious meanings. If the policy wishes to add actions to the program stream
(in this case by printing an error message), it does so via the emit statement.
Any emitted action must be in the interface that accompanies the policy; a
policy can invoke an action that is in its interface only by enclosing it in an
emit statement. halt signals that the target program should be terminated. In
contrast to the calculus, where the recursion in a policy is explicit, in practice
all our policies are implicitly recursive; that is, they will continue processing
instructions until explicitly told otherwise. To stop executing a policy and
return a value we use the stop statement. The run statement executes a policy
that was either passed to the current policy as an argument or imported in the
state block.

To write compound policies, one can replace the actions, state and policy
blocks with the statement of the compound policy, e.g., a parallel conjunction
(PolicyA parallelAnd PolicyB).

Instrumenting target programs We allow a monitor to interpose itself
between the action stream and the runtime system by rewriting the method
calls of a target program. A call to a monitored method is rewritten as a call
to the monitor. A new method is added to the target program, which allows
the monitor to execute the original call via a call-back. If it wishes to allow
the method call, the monitor explicitly makes the call and then returns; to
suppress it, it ignores the call and it throws a SuppressionException. The
target program can catch the exception and amend its behavior accordingly. If
it does not have an appropriate exception handler, one is added during rewriting.
This allows the target program to get feedback while ensuring that the monitor
is not circumvented.

Representing policies Policies are implemented as classes. We have devel-
oped a hierarchy of policy classes that contains implementations of the seman-
tics of the various types of policies we have in our calculus. A policy written
in Polymer compiles into a class that extends the appropriate policy class. For
example, the class in the hierarchy that implements the semantics for sequential
conjunction will be the superclass of all sequential-conjunctive policies written
in Polymer.

Enforcing policies In our system the monitor is a program independent from
a particular policy. To enforce a policy on a target program, we first instrument
the target and compile the policy, and then run the monitor program with the
target and the policy as parameters. The instrumented target passes control
to the monitor at appropriate times, and the monitor forwards the call to the
instantiated policy object and relays its decision back to the target. The policy
communicates with the monitor by either returning (to indicate that the action
which triggered the call to the monitor should be allowed to execute) or throwing
an exception.

24

Compound policies, such as parameterized or parallel policies, communicate
internally in the same manner. Sequentially composed policies are more com-
plicated because they require that any actions emitted by the first policy are
seen by the second policy before they are executed. Since the first policy in a
sequence could be a compound policy which is assembled only at runtime (a
parameterized policy, for example), we need a dynamic mechanism for regulat-
ing emitted actions. Hence, we implement the emit statement by throwing an
exception that is caught by the enclosing policy or by the monitor, which then
either executes the emitted action or allows another policy to decide whether
the action should be executed.

5 Discussion

5.1 Related Work

The SDS-940 system at Berkeley [DG71] was the first to use code rewriting to
enforce security properties. More recently, the advent of safe languages such as
Java, Haskell, ML, Modula, and Scheme, which allow untrusted applications to
interoperate in the same address space with system services, has led to renewed
efforts to design flexible and secure monitoring systems. For example, Evans
and Twyman’s Naccio system [ET99] allows security architects to declare re-
sources, which are security-relevant interfaces, and to attach properties, which
are bundles of security state and checking code, to these resources. Erlingsson
and Schneider’s SASI language [ES99] and later Poet and Pslang system [ES00]
provide similar power. Grimm and Bershad [GB01] describe and evaluate a
flexible mechanism that separates the access-control mechanism from policy in
the SPIN extensible operating system. Finally, the Ariel project [PH00] allows
security experts to write boolean constraints that determine whether or not a
method can be invoked.

A shortcoming of all these projects is a lack of formal semantics for the
proposed languages and systems. Without a formal semantics, system imple-
menters have no tools for precise reasoning about their systems. They also do
not provide a general set of primitives that programmers can use to explicitly
construct complex policies from simpler ones.

A slightly different approach to program monitoring is taken by Lee et
al. [KVBA+99, LKK+99] and Sandholm and Schwarzbach [SS98]. Rather than
writing an explicit program to monitor applications as we do, they specify the
safety property in which they are interested either in a specialized temporal
logic (Lee et al.) or second-order monadic logic (Sandholm and Schwarzbach).

Many monitoring systems may be viewed as a specialized form of aspect-
oriented programming. Aspect-oriented programming languages such as As-
pectJ [KHH+01] allow programmers to specify pointcuts, which are collections
of program points and advice, which is code that is inserted at a specified point-
cut. Wand et al. [WKD02] give a denotational semantics for these features using
monadic operations. Conflicting advice inserted at the same pointcut is a known

25

problem in aspect-oriented programming. AspectJ solves the problem by spec-
ifying a list of rules that determine the order in which advice will be applied.
We believe that our language, which allows explicit composition of policies and
makes it possible to statically check composed policies for interference, is a more
flexible approach to solving this problem.

Theoretical work by Alpern and Schneider [AS87, Sch00] gives an automaton-
theoretic characterization of safety, liveness, and execution monitoring (EM)
policies. EM policies are the class of policies enforceable by a general-purpose
program monitor that may terminate the target, but may not otherwise modify
target behavior. This class of program monitors (called security automata) cor-
responds precisely to our effect-free monitors, and consequently, as pointed out
by Schneider, they are easily composed. We have previously extended Schnei-
der’s work by defining a new class of automata [BLW02a, BLW02b], the edit
automata, which are able to insert and suppress target actions as well as termi-
nate the target. Edit automata more accurately characterize practical security
monitors that modify program behavior. We proved such automata are strictly
more powerful than security automata.

5.2 Current and Future Work

Our immediate concern is to acquire more experience applying our tool to enforc-
ing security policies on realistic applications. We are interested both in testing
our tool on untrusted mobile programs as well as using it to make programs
and services written by trusted programmers more robust. As an example of
the latter application, we intend to follow Qie et al. [QPP02] and use our tool
to control resource consumption and to help prevent denial of service in Web
servers.

Rather than having an external tool that rewrites Java programs to enforce
policies, we plan to internalize the rewriting process within an extension to
the Java language. We hope to develop techniques that allow programmers to
dynamically rewrite programs or parts of programs and to update or modify
security policies without necessarily bringing down the system. We believe the
idea of policies as first-class objects will be crucial in this enterprise.

We plan to investigate additional combinators that could be added to our
language. In particular, we are interested in developing a precise semantics for
fixed point combinators that extend our sequential operators. This would make
it possible to iteratively combine two policies without restricting their effects or
requiring that one supersedes the other.

Acknowledgments

The authors would like to thank Dan Wallach for suggesting the Chinese wall
policy as a good example of a disjunctive policy. We are also grateful to Dan
Grossman for commenting on a draft of this paper.

26

References
[AS87] Bowen Alpern and Fred Schneider. Recognizing safety and liveness. Dis-

tributed Computing, 2:117–126, 1987.

[BLW02a] Lujo Bauer, Jarred Ligatti, and David Walker. More enforceable security
policies. In Foundations of Computer Security, Copenhagen, Denmark,
July 2002.

[BLW02b] Lujo Bauer, Jarred Ligatti, and David Walker. More enforceable security
policies. Technical Report TR-649-02, Princeton University, June 2002.

[BN89] David Brewer and Michael Nash. The Chinese wall security policy. In
IEEE Symposium on Security and Privacy, pages 206–214, Oakland, May
1989.

[DG71] P. Deutsch and C. A. Grant. A flexible measurement tool for software
systems. In Information Processing, pages 320–326, 1971. Appeared in
the proceedings of the IFIP Congress.

[ES99] Úlfar Erlingsson and Fred B. Schneider. SASI enforcement of security
policies: A retrospective. In Proceedings of the New Security Paradigms
Workshop, pages 87–95, Caledon Hills, Canada, September 1999.

[ES00] Úlfar Erlingsson and Fred B. Schneider. IRM enforcement of Java stack
inspection. In IEEE Symposium on Security and Privacy, pages 246–255,
Oakland, California, May 2000.

[ET99] David Evans and Andrew Twyman. Flexible policy-directed code safety.
In IEEE Security and Privacy, Oakland, CA, May 1999.

[GB01] Robert Grimm and Brian Bershad. Separating access control policy,
enforcement and functionality in extensible systems. ACM Transactions
on Computer Systems, pages 36–70, February 2001.

[Gou01] John Gough. Compiling for the .NET Common Language Runtime. Pren-
tice Hall, 2001.

[GS01] Andrew D. Gordon and Don Syme. Typing a multi-language intermediate
code. In ACM Symposium on Principles of Programming Languages,
London, UK, January 2001.

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William Griswold. An overview of AspectJ. In European Conference
on Object-oriented Programming. Springer-Verlag, 2001.

[KVBA+99] Moonjoo Kim, Mahesh Viswanathan, Hanene Ben-Abdallah, Sampath
Kannan, Insup Lee, and Oleg Sokolsky. Formally specified monitoring
of temporal properties. In European Conference on Real-time Systems,
York, UK, June 1999.

[LKK+99] Insup Lee, Sampath Kannan, Moonjoo Kim, Oleg Sokolsky, and Mahesh
Viswanathan. Run-time assurance based on formal specifications. In In-
ternational Conference on Parallel and Distributed Processing Techniques
and Applications, Las Vegas, June 1999.

[LY99] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.
Addison-Wesley, 2nd edition, 1999.

27

[MG] Erik Meijer and John Gough. A technical overview of the Common
Language Infrastructure. http://research.microsoft.com/~emeijer/
Papers/CLR.pdf.

[Mog91] Eugenio Moggi. Notions of computation and monads. Information and
Computation, 93:55–92, 1991.

[PH00] R. Pandey and B. Hashii. Providing fine-grained access control for Java
programs through binary editing. Concurrency: Practice and Experience,
12(14):1405–1430, 2000.

[QPP02] Xiaohu Qie, Ruoming Pang, and Larry Peterson. Defensive programming:
Using an annotation toolkit to build DoS-resistant software. Technical
Report TR-658-02, Princeton University, July 2002.

[Sch00] Fred B. Schneider. Enforceable security policies. ACM Transactions on
Information and Systems Security, 3(1):30–50, February 2000.

[SS98] Anders Sandholm and Michael Schwartzbach. Distributed safety con-
trollers for web services. In Fundamental Approaches to Software Engi-
neering, volume 1382 of Lecture Notes in Computer Science, pages 270–
284. Springer-Verlag, 1998.

[WKD02] Mitchell Wand, Gregor Kiczales, and Christopher Dutchyn. A semantics
for advice and dynamic join points in aspect-oriented programming. In
Workshop on Foundations of Aspect-Oriented Languages, 2002.

A Dynamic Semantics

A.1 Terms

(Context) C ::= [] | C M | v C | 〈C,M〉 | 〈v, C〉
| π1 C | π2 C | inlτ (C) | inrτ (C)
| case C (x→M1 | x→M2)
| C ∧M2 | v ∧ C | C 4M2 | v4 C
| C ∨τ M2 | v ∨τ C | C 5τ M2 | v5τ C

fun f :τ (x).M v 7−→β [fun f :τ (x).M/f][v/x]M (M-App)

π1 〈v1, v2〉 7−→β v1 (M-Proj1)

π2 〈v1, v2〉 7−→β v2 (M-Proj2)

case inlτ (v) (x→M1 | x→M2) 7−→β [v/x]M1 (M-CaseL)

case inrτ (v) (x→M1 | x→M2) 7−→β [v/x]M2 (M-CaseR)

> 7−→β {any}∅ (M-Top)

{E1}A1 ∧ {E2}A2 7−→β {E1 ∧A1,A2 E2}A1∪A2 (M-ParCon)

28

{E1}A1 4 {E2}A2 7−→β {E1 4A1,A2 E2}A1∪A2 (M-SeqCon)

⊥ 7−→β {halt}∅ (M-Bot)

{E1}A1 ∨τ {E2}A2 7−→β {E1 ∨A1,A2
τ E2}A1∪A2 (M-ParDis)

{E1}A1 5τ {E2}A2 7−→β {E1 5A1,A2
τ E2}A1∪A2 (M-SeqDis)

M 7−→β M
′

C[M] 7−→ C[M ′] (Ctx)

A.2 Computations
M1 7−→M2

`Ar σ . M1
·7−→ σ .M2 (E-Ret)

M1 7−→M2

`Ar σ . let {x} = M1 in E
·7−→ σ . let {x} = M2 in E (E-Let1)

`Ar σ . let {x} = {v}A in E
·7−→ σ . E[v/x] (E-Let2)

`Ar σ . let {x} = {halt}A in E
·7−→ σ . halt (E-Let3)

`A · . E′ β7−→ · . E′′

`Ar · . let {x} = {E′}A in E
β7−→ · . let {x} = {E′′}Ain E (E-Let4)

a 6∈ A
`Ar a;σ . let {x} = {E′}A in E

acc(a)7−→ σ . let {x} = {E′}A in E (E-Let5)

a ∈ A
`Ar a;σ . let {x} = {E′}A in E

·7−→ σ . let {x} = (a . E′)A in E (E-Let6)

`A a . E′ β7−→ a . E′′

`Ar σ . let {x} = (a . E′)A in E
β7−→ σ . let {x} = (a . E′′)A in E

(E-Let7)

`A a . E′ β7−→ · . E′′

`Ar σ . let {x} = (a . E′)A in E
β7−→ σ . let {x} = {E′′}A in E (E-Let8)

`Ar σ . let {x} = (a . v)A in E
acc(a)7−→ σ . E[v/x] (E-Let9)

29

`Ar σ . let {x} = (a . halt)A in E
·7−→ σ . halt (E-Let10)

a ∈ Ar
`Ar a;σ . ok;E

acc(a)7−→ σ . E (E-Acc)

a ∈ Ar
`Ar a;σ . sup;E

sup(a)7−→ σ . E (E-Sup)

M1 7−→M2

`Ar σ . ins(M1);E ·7−→ σ . ins(M2);E (E-Ins1)

`Ar σ . ins(a);E
ins(a)7−→ σ . E (E-Ins2)

a ∈ Ar
`Ar a;σ . (next→ E1 | done→ E2) ·7−→ a;σ . E1 (E-Next)

a 6∈ Ar
`Ar a;σ . (next→ E1 | done→ E2)

acc(a)7−→ σ . (next→ E1 | done→ E2)
(E-Next-Skip)

`Ar · . (next→ E1 | done→ E2) ·7−→ · . E2 (E-Done)

a ∈ Ar
`Ar a;σ . x → E

·7−→ a;σ . E[a/x] (E-Bind)

a ∈ A′ a ∈ Ar
`Ar a;σ . acase (? ⊆ A′) (E1 | E2) ·7−→ a;σ . E1 (E-Acase1)

a 6∈ A′ a ∈ Ar
`Ar a;σ . acase (? ⊆ A′) (E1 | E2) ·7−→ a;σ . E2 (E-Acase2)

M1 7−→M2

`Ar σ . caseM1 (x→E1 | x→E2)
·7−→ σ . caseM2 (x→E1 | x→E2)

(E-CaseM)

`Ar σ . case inlτ (v) (x→E1 | x→E2) ·7−→ σ . E1[v/x] (E-CaseL)

`Ar σ . case inrτ (v) (x→E1 | x→E2) ·7−→ σ . E2[v/x] (E-CaseR)

`Ar σ . any ·7−→ σ . () (E-Any)

30

`A1 σ . E1
β7−→ σ′ . E′1 ‖β‖ 6∈ A2 or (E2 = v and β = acc(a))

`Ar σ . (E1 ∧A1,A2 E2)
β7−→ σ′ . (E′1 ∧A1,A2 E2) (E-ParCon1)

`A2 σ . E2
β7−→ σ′ . E′2 ‖β‖ 6∈ A1 or (E1 = v and β = acc(a))

`Ar σ . (E1 ∧A1,A2 E2) β7−→ σ′ . (E1 ∧A1,A2 E′2) (E-ParCon2)

`A1 σ . E1
acc(a)7−→ σ′ . E′1 `A2 σ . E2

acc(a)7−→ σ′ . E′2

`Ar σ . (E1 ∧A1,A2 E2)
acc(a)7−→ σ′ . (E′1 ∧A1,A2 E′2) (E-ParCon3)

`Ar σ . (v1 ∧A1,A2 v2) ·7−→ σ . 〈v1, v2〉 (E-ParCon4)

E1 = halt or E2 = halt

`Ar σ . (E1 ∧A1,A2 E2) ·7−→ σ . halt (E-ParCon5)

`A1 σ . E1
β7−→ σ′ . E′1 β = sup(a) or β = ·

`Ar σ . (E1 4A1,A2 E2)
β7−→ σ′ . (E′1 4A1,A2 E2) (E-SeqCon1)

`A1 σ . E1
β7−→ σ′ . E′1 β = ins(a) or β = acc(a) a 6∈ A2

`Ar σ . (E1 4A1,A2 E2)
β7−→ σ′ . (E′1 4A1,A2 E2) (E-SeqCon2)

`A1 σ . E1
β7−→ σ′ . E′1 β = ins(a) or β = acc(a) a ∈ A2

`Ar σ . (E1 4A1,A2 E2) ·7−→ σ′ . (E′1 4A1,A2 (β � E2)) (E-SeqCon3)

`A2 ‖β‖ . E2
β′7−→ ‖β‖ . E′2

`Ar σ . (E1 4A1,A2 (β � E2))
β′7−→ σ . (E1 4A1,A2 (β � E′2)) (E-SeqCon4)

`A2 ‖β‖ . E2
β′7−→ · . E′2

`Ar σ . (E1 4A1,A2 (β � E2))
β′′7−→ σ . (E1 4A1,A2 E′2) (E-SeqCon5)

where β′′ =

���	 ��

· if β = ins(a) and β′ = sup(a)

ins(a) if β = ins(a) and β′ = acc(a)
sup(a) if β = acc(a) and β′ = sup(a)
acc(a) if β = acc(a) and β′ = acc(a)

`Ar σ . (E1 4A1,A2 (β � v)) β7−→ σ . (E1 4A1,A2 v) (E-SeqCon6)

`Ar σ . (E1 4A1,A2 (β � halt)) ·7−→ σ . halt (E-SeqCon7)

31

E2 6= v E2 6= halt

`Ar a;σ . (v4A1,A2 E2) ·7−→ σ . (v4A1,A2 (acc(a) � E2)) (E-SeqCon8)

`A2 · . E2
β7−→ · . E′2

`Ar · . (v4A1,A2 E2)
β7−→ · . (v4A1,A2 E′2) (E-SeqCon9)

`Ar σ . (v1 4A1,A2 v2) ·7−→ σ . 〈v1, v2〉 (E-SeqCon10)

E1 = halt or E2 = halt

`Ar σ . (E1 4A1,A2 E2) ·7−→ σ . halt (E-SeqCon11)

`A1 σ . E1
β7−→ σ′ . E′1 ‖β‖ 6∈ A2 or (E2 = halt and β = acc(a))

`Ar σ . (E1 ∨A1,A2
τ E2)

β7−→ σ′ . (E′1 ∨A1,A2
τ E2) (E-ParDis1)

`A2 σ . E2
β7−→ σ′ . E′2 ‖β‖ 6∈ A1 or (E1 = halt and β = acc(a))

`Ar σ . (E1 ∨A1,A2
τ E2)

β7−→ σ′ . (E1 ∨A1,A2
τ E′2) (E-ParDis2)

`A1 σ . E1
acc(a)7−→ σ′ . E′1 `A2 σ . E2

acc(a)7−→ σ′ . E′2

`Ar σ . (E1 ∨A1,A2
τ E2)

acc(a)7−→ σ′ . (E′1 ∨A1,A2
τ E′2) (E-ParDis3)

`Ar σ . (halt ∨A1,A2
τ halt) ·7−→ σ . halt (E-ParDis4)

`Ar σ . (v ∨A1,A2
τ E2) ·7−→ σ . inlτ (v) (E-ParDis5)

`Ar σ . (E1 ∨A1,A2
τ v) ·7−→ σ . inrτ (v) (E-ParDis6)

`A1 σ . E1
β7−→ σ′ . E′1 β = sup(a) or β = ·

`Ar σ . (E1 5A1,A2
τ E2) ·7−→ σ′ . (E′1 5A1,A2

τ E2) (E-SeqDis1)

`A1 σ . E1
β7−→ σ′ . E′1 β = ins(a) or β = acc(a) a 6∈ A2

`Ar σ . (E1 5A1,A2
τ E2)

acc(a)7−→ σ′ . (E′1 5A1,A2
τ E2) (E-SeqDis2)

`A1 σ . E1
β7−→ σ′ . E′1 β = ins(a) or β = acc(a) a ∈ A2

`Ar σ . (E1 5A1,A2
τ E2) ·7−→ σ′ . (E′1 5A1,A2

τ (β � E2)) (E-SeqDis3)

`A2 ‖β‖ . E2
β′7−→ ‖β‖ . E′2

`Ar σ . (E1 5A1,A2
τ (β � E2)) β′7−→ σ . (E1 5A1,A2

τ (β � E′2)) (E-SeqDis4)

32

`A2 ‖β‖ . E2
β′7−→ · . E′2

`Ar σ . (E1 5A1,A2
τ (β � E2))

β′′7−→ σ . (E1 5A1,A2
τ E′2) (E-SeqDis5)

where β′′ =

���	 ��

· if β = ins(a) and β′ = sup(a)

ins(a) if β = ins(a) and β′ = acc(a)
sup(a) if β = acc(a) and β′ = sup(a)
acc(a) if β = acc(a) and β′ = acc(a)

`Ar σ . (E1 5A1,A2
τ (β � halt)) β7−→ σ . (E1 5A1,A2

τ halt) (E-SeqDis6)

`Ar σ . (E1 5A1,A2
τ (β � v))

β7−→ σ . inrτ (v) (E-SeqDis7)

E2 6= v E2 6= halt

`Ar a;σ . (halt5A1,A2
τ E2)

β7−→ σ . (halt5A1,A2
τ (acc(a) � E2)) (E-SeqDis8)

`A2 · . E2
β7−→ · . E′2

`Ar · . (halt5A1,A2
τ E2) β7−→ · . (halt5A1,A2

τ E′2) (E-SeqDis9)

`Ar σ . (halt5A1,A2
τ halt) ·7−→ σ . halt (E-SeqDis10)

`Ar σ . (v5A1,A2
τ E2) ·7−→ σ . inlτ (v) (E-SeqDis11)

`Ar σ . (E1 5A1,A2
τ v) ·7−→ σ . inrτ (v) (E-SeqDis12)

A.3 System
a 6∈ Ar

run(a;σ, Ar, E)
a
↪→ run(σ, Ar, E) (R-Skip)

`Ar σ . E β7−→ σ′ . E′ σ = · or (σ = a′;σ′′ and a′ ∈ Ar) β = · or β = sup(a)

run(σ,Ar, E)
·
↪→ run(σ′, Ar, E′)

(R-Step1)

`Ar σ . E β7−→ σ′ . E′ σ = · or (σ = a′;σ′′ and a′ ∈ Ar) β = ins(a) or β = acc(a)

run(σ,Ar, E)
a
↪→ run(σ′, Ar, E′)

(R-Step2)

run(a;σ, Ar, v)
a
↪→ run(σ, Ar, v) (R-Val1)

run(·, Ar, v)
·
↪→ v (R-Val2)

33

run(σ,Ar, halt)
·
↪→ halt (R-Halt)

B Static Semantics

B.1 Subtyping
A ⊆ A′

` act(A) ≤ act(A′) (Sub-Act)

` τ ′1 ≤ τ1 ` τ2 ≤ τ ′2
` τ1→ τ2 ≤ τ ′1→ τ ′2 (Sub-Arrow)

` τ1 ≤ τ ′1 ` τ2 ≤ τ ′2
` τ1 × τ2 ≤ τ ′1 × τ ′2 (Sub-Pair)

` τ1 ≤ τ ′1 ` τ2 ≤ τ ′2
` τ1 + τ2 ≤ τ ′1 + τ ′2 (Sub-Sum)

A2 ⊆ A′2 ` τ ≤ τ ′

` MAr
A2

(τ) ≤MAr
A′2

(τ ′) (Sub-Monad)

` τ ≤ τ (Sub-Reflex)

` τ1 ≤ τ2 ` τ2 ≤ τ3
` τ1 ≤ τ3 (Sub-Trans)

B.2 Ordinary Terms

Γ ` x : Γ(x) (S-Var)

Γ ` a : act({a}) (S-Act)

Γ, f :τ1→ τ2, x:τ1 `M : τ2
Γ ` fun f :τ1→ τ2 (x).M : τ1→ τ2 (S-Fun)

Γ `M1 : τ1→ τ2 Γ `M2 : τ1
Γ `M1M2 : τ2 (S-App)

Γ ` () : unit (S-Unit)

Γ `M1 : τ1 Γ `M2 : τ2
Γ ` 〈M1,M2〉 : τ1 × τ2 (S-Pair)

34

Γ `M : τ1 × τ2
Γ ` π1 M : τ1 (S-Proj1)

Γ `M : τ1 × τ2
Γ ` π2 M : τ2 (S-Proj2)

Γ `M : τ1
Γ ` inlτ1+τ2(M) : τ1 + τ2 (S-Inl)

Γ `M : τ2
Γ ` inrτ1+τ2(M) : τ1 + τ2 (S-Inr)

Γ `M1 : τ1 + τ2 Γ, x:τ1 `M2 : τ Γ, x:τ2 `M3 : τ
Γ ` caseM1 (x→M2 | x→M3) : τ (S-Case)

Γ `M : τ ′ ` τ ′ ≤ τ
Γ `M : τ (S-Sub)

B.3 Policies
Γ; � `Ar E : τ, Ae

Γ ` {E}Ar :MAr
Ae

(τ) (S-Sus)

Γ ` > :M∅∅(unit) (S-Top)

Γ `M1 :MA1
A2

(τ1) Γ `M2 :MA3
A4

(τ2) A1 ∩A4 = A2 ∩A3 = ∅
Γ `M1 ∧M2 :MA1∪A3

A2∪A4
(τ1 × τ2) (S-ParCon)

Γ `M1 :MA1
A2

(τ1) Γ `M2 :MA3
A4

(τ2)

Γ `M1 4M2 :MA1∪A3
A2∪A4

(τ1 × τ2) (S-SeqCon)

Γ ` ⊥ :M∅∅(τ) (S-Bot)

Γ `M1 :MA1
A2

(τ1) Γ `M2 :MA3
A4

(τ2) A1 ∩A4 = A2 ∩A3 = ∅
Γ `M1 ∨τ1+τ2 M2 :MA1∪A2

A3∪A4
(τ1 + τ2) (S-ParDis)

Γ `M1 :MA1
A2

(τ1) Γ `M2 :MA3
A4

(τ2)

Γ `M1 5τ1+τ2 M2 :MA1∪A3
A2∪A4

(τ1 + τ2) (S-SeqDis)

35

B.4 Computations
Γ `M : τ

Γ;B `Ar M : τ, ∅ (SE-Ret)

Γ `M :MA′r
A2

(τ ′) Γ, x:τ ′; � `Ar E : τ, A A′r ⊆ Ar
Γ;B `Ar let {x} = Min E : τ, A ∪A2 (SE-Let1)

·; {a} `A E1 : τ ′, A1 x:τ ′; � `Ar E2 : τ, A2 A ⊆ Ar a ∈ A
·; {a} `Ar let {x} = (a . E1)Ain E2 : τ, A1 ∪A2 (SE-Let2)

Γ; � `Ar E : τ, A B 6= �
Γ;B `Ar ok;E : τ, A (SE-Acc)

Γ; � `Ar E : τ, A B 6= �
Γ;B `Ar sup;E : τ, A ∪B (SE-Sup)

Γ `M : act(A′) Γ;B `Ar E : τ, A

Γ;B `Ar ins(M);E : τ, A ∪A′ (SE-Ins)

Γ;Ar `Ar E1 : τ, A Γ; � `Ar E2 : τ, A

Γ;B `Ar (next→ E1 | done→ E2) : τ, A (SE-Next)

Γ, x:act(B);B `Ar E : τ, A B 6= �
Γ;B `Ar x → E : τ, A (SE-Bind)

Γ;B ∩� A′ `Ar E1 : τ, A Γ;B \� A′ `Ar E2 : τ, A
A′ ⊆ Ar B 6= �

Γ;B `Ar acase (? ⊆ A′) (E1 | E2) : τ, A (SE-Acase)

Γ `M : τ1 + τ2
Γ, x:τ1;B `Ar E1 : τ, A Γ, x:τ2;B `Ar E2 : τ, A

Γ;B `Ar caseM (x→E1 | x→E2) : τ, A (SE-Case)

Γ;B `Ar any : unit, ∅ (SE-Any)

Γ;B tA1 `A1 E1 : τ1, A3 Γ;B tA2 `A2 E2 : τ2, A4

A1 ∩A4 = A2 ∩A3 = ∅ A1 ∪A2 = Ar

Γ;B `Ar E1 ∧A1,A2 E2 : τ1 × τ2, A3 ∪A4 (SE-ParCon)

Γ;B tA1 `A1 E1 : τ1, A3 Γ; � `A2 E2 : τ2, A4 A1 ∪A2 = Ar

Γ;B `Ar E1 4A1,A2 E2 : τ1 × τ2, A3 ∪A4 (SE-SeqCon1)

36

·;B tA1 `A1 E1 : τ1, A3 ·; {a} `A2 E2 : τ2, A4

A1 ∪A2 = Ar a ∈ A2 a ∈ A3

·;B `Ar E1 4A1,A2 (ins(a) � E2) : τ1 × τ2, A3 ∪ A4 (SE-SeqCon2)

·;B tA1 `A1 E1 : τ1, A3 ·; {a} `A2 E2 : τ2, A4

A1 ∪A2 = Ar a ∈ A2

·;B `Ar E1 4A1,A2 (acc(a) � E2) : τ1 × τ2, A3 ∪ A4 (SE-SeqCon3)

Γ;B `Ar halt : τ, ∅ (SE-Halt)

Γ;B tA1 `A1 E1 : τ1, A3 Γ;B tA2 `A2 E2 : τ2, A4

A1 ∩A4 = A2 ∩A3 = ∅ A1 ∪A2 = Ar

Γ;B `Ar E1 ∨A1,A2
τ1+τ2 E2 : τ1 + τ2, A3 ∪A4 (SE-ParDis)

Γ;B tA1 `A1 E1 : τ1, A3 Γ; � `A2 E2 : τ2, A4 A1 ∪A2 = Ar

Γ;B `Ar E1 5A1,A2
τ1+τ2 E2 : τ1 + τ2, A3 ∪A4 (SE-SeqDis1)

·;B tA1 `A1 E1 : τ1, A3 ·; {a} `A2 E2 : τ2, A4

A1 ∪A2 = Ar a ∈ A2 a ∈ A3

·;B `Ar E1 5A1,A2
τ1+τ2 (ins(a) � E2) : τ1 + τ2, A3 ∪ A4 (SE-SeqDis2)

·;B tA1 `A1 E1 : τ1, A3 ·; {a} `A2 E2 : τ2, A4

A1 ∪A2 = Ar a ∈ A2

·;B `Ar E1 5A1,A2
τ1+τ2 (acc(a) � E2) : τ1 + τ2, A3 ∪ A4 (SE-SeqDis3)

Γ;B′ `Ar E : τ ′, A′ (B′ = � or B ⊆ B′) ` τ ′ ≤ τ A′ ⊆ A
Γ;B `Ar E : τ, A (SE-Sub)

B.5 System
` σ : B ·;B tAr `Ar E : τ, A

`Ar σ . E ok (S-Ok)

` · : � (Seq-Empty)

` a;σ : {a} (Seq-Act)

`Ar σ . E ok
` run(σ,Ar, E) ok (Run-Ok)

` v : τ
` v ok (Val-Ok)

37

` halt ok (Halt-Ok)

C Proof of Safety
We define new notation in order to reduce the verbosity of our lemmas and proofs.
First, we say that B is first-action compatible with B ′ (written B � B′ or B′ � B)
when either B′ = � or B ⊆ B′. Intuitively, this first-action compatibility operator
behaves like the standard subset operator, except that � is considered to be larger than
any set; therefore, anything (including � itself) is first-action compatible with �. This
ensures that B contains no less knowledge of the next possible action than B ′ when
B � B′. We use first-action compatibility to define subtyping compatibility as follows:
(B′, τ ′, A′)� (B, τ,A) indicates that B � B′, ` τ ′ ≤ τ , and A′ ⊆ A. This states that
computation subtyping is contravariant in first-action sets but covariant in type and
effect sets. Thus, by rule (SE-Sub), if (B ′, τ ′, A′)� (B, τ, A) and Γ;B′ `Ar E : τ ′, A′

then Γ;B `Ar E : τ, A.
We state the main lemmas in our proof of type safety and provide the proof tech-

nique for each lemma. For the lemmas with non-trivial proofs, we also provide proofs
for a selection of interesting cases.

Lemma 1 (Substitution)
1. If Γ, x : τ ′ `M : τ and Γ `M ′ : τ ′ then Γ `M [M ′/x] : τ , and

2. If Γ, x : τ ′;B `Ar E : τ, A and Γ `M ′ : τ ′ then Γ;B `Ar E[M ′/x] : τ, A.

Proof: By mutual induction on the typing derivations of Γ, x : τ ′ ` M : τ and
Γ, x : τ ′;B `Ar E : τ, A.
Lemma 2 (Inversion of Subtyping)
If ` τ ≤ τ ′ then

1. τ ′ = unit if and only if τ = unit

2. If τ ′ = τ ′1 × τ ′2 then τ = τ1 × τ2, ` τ1 ≤ τ ′1, and ` τ2 ≤ τ ′2
3. If τ = τ1 × τ2 then τ ′ = τ ′1 × τ ′2, ` τ1 ≤ τ ′1, and ` τ2 ≤ τ ′2
4. If τ ′ = τ ′1 + τ ′2 then τ = τ1 + τ2, ` τ1 ≤ τ ′1, and ` τ2 ≤ τ ′2
5. If τ = τ1 + τ2 then τ ′ = τ ′1 + τ ′2, ` τ1 ≤ τ ′1, and ` τ2 ≤ τ ′2
6. If τ ′ = τ ′1→ τ ′2 then τ = τ1→ τ2, ` τ ′1 ≤ τ1, and ` τ2 ≤ τ ′2
7. If τ = τ1→ τ2 then τ ′ = τ ′1→ τ ′2, ` τ ′1 ≤ τ1, and ` τ2 ≤ τ ′2
8. If τ ′ =MAr

A′e
(τ ′1) then τ =MAr

Ae
(τ1), ` τ1 ≤ τ ′1, and Ae ⊆ A′e

9. If τ =MAr
Ae

(τ1) then τ ′ =MAr
A′e

(τ ′1), ` τ1 ≤ τ ′1, and Ae ⊆ A′e
10. If τ ′ = act(A′) then τ = act(A) and A ⊆ A′

11. If τ = act(A) then τ ′ = act(A′) and A ⊆ A′

38

Proof: By induction on the derivation of ` τ ≤ τ ′. The interesting proof cases are
similar, so we show only case 8. The final rule deriving ` τ ≤ MAr

A′e
(τ ′1) is either

(Sub-Monad), (Sub-Reflex), or (Sub-Trans), with the result being immediate in the
first two cases.

Case (Sub-Trans):
By assumption,

τ ′ =MAr
A′e

(τ ′1) (1)
` τ ≤ τ ′′ (2)
` τ ′′ ≤ τ ′ (3)

By Inductive Hypothesis (IH), (1), and (3),
τ ′′ =MAr

A′′e
(τ ′′1) (4)

` τ ′′1 ≤ τ ′1 (5)
A′′e ⊆ A′e (6)

By IH, (2), and (4),
τ =MAr

Ae
(τ1) (7)

` τ1 ≤ τ ′′1 (8)
Ae ⊆ A′′e (9)

By (5), (8), and rule (Sub-Trans),
` τ1 ≤ τ ′1 (10)

By (6) and (9),
Ae ⊆ A′e (11)

Result is from (7), (10), and (11).
Lemma 3 (Canonical Forms: Values)
If · ` v : τ then

1. If τ = unit then v = ()

2. If τ = act(A) then v = a and a ∈ A.

3. If τ = τ1→ τ2 then

• v = fun f : τ ′1→ τ ′2(x).M

• ` τ1 ≤ τ ′1
• ` τ ′2 ≤ τ2

4. If τ = τ1 × τ2 then

• v = 〈v1, v2〉
• · ` v1 : τ1

• · ` v2 : τ2

5. If τ = τ1 + τ2 then either

• v = inlτ ′1+τ ′2
(v1)

• · ` v1 : τ ′1
• ` τ ′1 ≤ τ1
• ` τ ′2 ≤ τ2

or

39

• v = inrτ ′1+τ ′2
(v2)

• · ` v2 : τ ′2
• ` τ ′1 ≤ τ1
• ` τ ′2 ≤ τ2

6. If τ =MAr
Ae

(τ1) then

• v = {E}Ar

• ·; � `Ar E : τ ′1, A′e
• ` MAr

A′e
(τ ′1) ≤MAr

Ae
(τ1)

Proof: By induction on the derivation of · ` v : τ . We show the interesting case for
monadic types. The final rule deriving · ` v :MAr

Ae
(τ1) is either (S-Sus) (from which

the result is immediate) or (S-Sub).

Case (S-Sub):
By assumption,

· ` v : τ ′ (1)
` τ ′ ≤ τ (2)
τ =MAr

Ae
(τ1) (3)

By Lemma 2, (2), and (3),
τ ′ =MAr

A′e
(τ ′1) (4)

` τ ′1 ≤ τ1 (5)
A′e ⊆ Ae (6)

By IH, (1), and (4),
v = {E}Ar (7)
·; � `Ar E : τ ′′1 , A′′e (8)
` MAr

A′′e
(τ ′′1) ≤MAr

A′e
(τ ′1) (9)

By Lemma 2 and (9),
` τ ′′1 ≤ τ ′1 (10)
A′′e ⊆ A′e (11)

By (8), (10), (11), and rule (SE-Sub),
·; � `Ar E : τ ′1, A′e (12)

By (5), (6), and rule (Sub-Monad),
` MAr

A′e
(τ ′1) ≤MAr

Ae
(τ1) (13)

Result is from (7), (12), and (13).
Lemma 4 (Inversion of Term Typing)
If Γ `M : τ then

1. If M = x then

• Γ(x) = τ ′

• τ ′ ≤ τ
2. If M = a then

• τ = act(A)

• a ∈ A

40

3. If M = () then τ = unit

4. If M = M1M2 then

• Γ `M1 : τ1→ τ

• Γ `M2 : τ1

5. If M = 〈M1,M2〉 then

• τ = τ1 × τ2
• Γ `M1 : τ1

• Γ `M2 : τ2

6. If M = fun f : τ1→ τ2(x).M ′ then

• Γ, f : τ1→ τ2, x : τ1 `M ′ : τ2

• ` τ1→ τ2 ≤ τ
7. If M = π1 M1 then Γ `M1 : τ × τ2
8. If M = π2 M2 then Γ `M2 : τ1 × τ
9. If M = inlτ1+τ2(M ′) then

• τ = τ ′1 + τ ′2

• Γ `M ′ : τ1

• ` τ1 ≤ τ ′1
• ` τ2 ≤ τ ′2

10. If M = inrτ1+τ2(M ′) then

• τ = τ ′1 + τ ′2

• Γ `M ′ : τ2

• ` τ1 ≤ τ ′1
• ` τ2 ≤ τ ′2

11. If M = caseM1 (x→M2 | x→M3) then

• Γ `M1 : τ1 + τ2

• Γ, x : τ1 `M2 : τ

• Γ, x : τ2 `M3 : τ

12. If M = {E}Ar then

• τ =MAr
Ae

(τ ′′)

• Γ; � `Ar E : τ ′, A′e
• ` MAr

A′e
(τ ′) ≤MAr

Ae
(τ ′′)

13. If M = > then τ =M∅Ae(unit)

14. If M = M1 ∧M2 then

• ` MA1∪A3
A2∪A4

(τ1 × τ2) ≤ τ
• Γ `M1 :MA1

A2
(τ1)

41

• Γ `M2 :MA3
A4

(τ2)

• A1 ∩A4 = A2 ∩ A3 = ∅
15. If M = M1 4M2 then

• ` MA1∪A3
A2∪A4

(τ1 × τ2) ≤ τ
• Γ `M1 :MA1

A2
(τ1)

• Γ `M2 :MA3
A4

(τ2)

16. If M = ⊥ then τ =M∅Ae(τ ′)
17. If M = M1 ∨τ1+τ2 M2 then

• ` MA1∪A3
A2∪A4

(τ1 + τ2) ≤ τ
• Γ `M1 :MA1

A2
(τ1)

• Γ `M2 :MA3
A4

(τ2)

• A1 ∩A4 = A2 ∩ A3 = ∅
18. If M = M1 5τ1+τ2 M2 then

• ` MA1∪A3
A2∪A4

(τ1 + τ2) ≤ τ
• Γ `M1 :MA1

A2
(τ1)

• Γ `M2 :MA3
A4

(τ2)

Proof: By induction on the derivation of Γ ` M : τ . In every case, the final rule
deriving Γ ` M : τ is either some base case, from which the result is immediate, or
(S-Sub), from which the result is also immediate either directly by induction or by
induction and the transitivity of the subtyping relation.
Definition 5 (Context and Hole Typing)
To facilitate the proof of preservation for terms, we define what it means for a context
C to be well-typed. We write Cτ for a context with a hole of type τ . More formally,

[] : τ ` C : τ ′

` Cτ : τ ′ (S-Context)

Lemma 6 (Context Substitution)
If ` Cτ : τ ′ and `M : τ then ` C[M] : τ ′.

Proof: Immediate by inversion of (S-Context) and the Substitution Lemma (Lemma 1).
Lemma 7 (Context Typing)
If ` C[M] : τ then there exists a τ ′ such that ` Cτ ′ : τ and `M : τ ′.

Proof: By induction on the structure of C. We show two cases; the others are similar
to the latter case.

42

Case C=[]:
By assumption,

` C[M] : τ (1)
C = [] (2)

By (1) and (2),
[] : τ ` C : τ (3)
`M : τ (4)

By (S-Context) and (3),
` Cτ : τ (5)

Case C= 〈C′,M ′〉:
By assumption,

` C[M] : τ (1)
C = 〈C′,M ′〉 (2)

By (1) and (2),
` 〈C′[M],M ′〉 : τ (3)

By Lemma 4 and (3),
τ = τ1 × τ2 (4)
` C′[M] : τ1 (5)
`M ′ : τ2 (6)

By IH and (5),
` C′τ ′ : τ1 (7)
`M : τ ′ (8)

By inversion of (S-Context) and (7),
[] : τ ′ ` C′ : τ1 (9)

By (2), (6), (9), and rule (S-Pair),
[] : τ ′ ` C : τ1 × τ2 (10)

By (4) and (10),
[] : τ ′ ` C : τ (11)

By (11) and rule (S-Context),
` Cτ ′ : τ (12)

Result is from (8) and (12).
Lemma 8 (Preservation: 7−→β)
If `M : τ and M 7−→β M

′ then `M ′ : τ .

Proof: By induction on the derivation of M 7−→β M
′, using Inversion of Term Typ-

ing (Lemma 4).
Lemma 9 (Preservation: Terms)
If `M1 : τ and M1 7−→M2 then `M2 : τ .

Proof: By rule (Ctx) and Lemmas 6, 7, and 8.

By assumption,
`M1 : τ (1)
M1 7−→M2 (2)

By (2) and rule (Ctx),
M1 = C[M ′1] (3)

43

M2 = C[M ′2] (4)
M ′1 7−→M ′2 (5)

By (1) and (3),
C[M ′1] : τ (6)

By Lemma 7 and (6),
` Cτ ′ : τ (7)
`M ′1 : τ ′ (8)

By Lemma 8, (8), and (5),
`M ′2 : τ ′ (9)

By Lemma 6, (7), and (9),
` C[M ′2] : τ (10)

By (4) and (10),
`M2 : τ (11)

Lemma 10 (Progress: Terms and Redexes)
If `M : τ then either

1. M = C[R], where R is a redex of one of the following forms

• fun f :τ (x).M v

• π1 〈v1, v2〉
• π2 〈v1, v2〉
• case inlτ (v) (x→M1 | x→M2)

• case inrτ (v) (x→M1 | x→M2)

• >
• {E1}A1 ∧ {E2}A2

• {E1}A1 4 {E2}A2

• ⊥
• {E1}A1 ∨τ {E2}A2

• {E1}A1 5τ {E2}A2

Or

2. M = v

Proof: By induction on the derivation of `M : τ , using the Canonical Forms Lemma
(Lemma 3).
Lemma 11 (Progress: Terms)
If · `M : τ then

1. M = v, or

2. M 7−→M ′

Proof: Immediate by Lemma 10 above and rule (Ctx).

44

Lemma 12 (Transitivity of Subtyping Compatibility)
If (B′′, τ ′′, A′′)� (B′, τ ′, A′) and (B′, τ ′, A′)� (B, τ,A) then (B′′, τ ′′, A′′)� (B, τ,A).

Proof: By transitivity of the relations defining subtyping compatibility.
Lemma 13 (Inversion of Computation Typing)
If Γ;B `Ar E : τ, A then

1. If E = M then Γ `M : τ

2. If E = let {x} = Min E′ then

• Γ `M :MA′r
A2

(τ ′′)

• Γ, x : τ ′′; � `Ar E′ : τ ′, A1

• A′r ⊆ Ar
• (B, τ ′, A1 ∪A2)� (B, τ, A)

3. If E = let {x} = (a . E1)A
′
in E2 then

• ·; {a} `A′ E1 : τ ′′, A1

• a ∈ A′

• x : τ ′′; � `Ar E2 : τ ′, A2

• A′ ⊆ Ar
• (B, τ ′, A1 ∪A2)� (B, τ, A)

4. If E = ok;E′ then

• Γ; � `Ar E′ : τ ′, A′

• B′ 6= �
• (B′, τ ′, A′)� (B, τ,A)

5. If E = sup;E′ then

• Γ; � `Ar E′ : τ ′, A′

• B′ 6= �
• (B′, τ ′, A′ ∪B′)� (B, τ,A)

6. If E = ins(M);E′ then

• Γ `M : act(A′′)

• Γ;B′ `Ar E′ : τ ′, A′

• (B′, τ ′, A′ ∪A′′)� (B, τ,A)

7. If E = (next→ E1 | done→ E2) then

• Γ;Ar `Ar E1 : τ ′, A′

• Γ; � `Ar E2 : τ ′, A′

• (B, τ ′, A′)� (B, τ,A)

8. If E = x → E′ then

45

• Γ, x : act(B′);B′ `Ar E′ : τ ′, A′

• B′ 6= �
• (B′, τ ′, A′)� (B, τ,A)

9. If E = acase (? ⊆ A1) (E1 | E2) then

• Γ;B′ ∩� A1 `Ar E1 : τ ′, A′

• Γ;B′ \� A1 `Ar E2 : τ ′, A′

• A1 ⊆ Ar
• B′ 6= �
• (B′, τ ′, A′)� (B, τ,A)

10. If E = caseM (x→E1 | x→E2) then

• Γ `M : τ1 + τ2

• Γ, x : τ1;B′ `Ar E1 : τ ′, A′

• Γ, x : τ2;B′ `Ar E2 : τ ′, A′

• (B′, τ ′, A′)� (B, τ,A)

11. If E = any then τ = unit

12. If E = E1 ∧A1,A2 E2 then

• Γ;B′ t A1 `A1 E1 : τ1, A3

• Γ;B′ t A2 `A2 E2 : τ2, A4

• A1 ∩A4 = A2 ∩ A3 = ∅
• A1 ∪A2 = Ar

• (B′, τ1 × τ2, A3 ∪A4)� (B, τ,A)

13. If E = E1 4A1,A2 E2 then

• Γ;B′ t A1 `A1 E1 : τ1, A3

• Γ; � `A2 E2 : τ2, A4

• A1 ∪A2 = Ar

• (B′, τ1 × τ2, A3 ∪A4)� (B, τ,A)

14. If E = E1 4A1,A2 (ins(a) � E2) then

• ·;B′ tA1 `A1 E1 : τ1, A3

• ·; {a} `A2 E2 : τ2, A4

• A1 ∪A2 = Ar

• a ∈ A2

• a ∈ A3

• (B′, τ1 × τ2, A3 ∪A4)� (B, τ,A)

15. If E = E1 4A1,A2 (acc(a) � E2) then

• ·;B′ tA1 `A1 E1 : τ1, A3

• ·; {a} `A2 E2 : τ2, A4

46

• A1 ∪A2 = Ar

• a ∈ A2

• (B′, τ1 × τ2, A3 ∪A4)� (B, τ,A)

16. If E = E1 ∨A1,A2
τ1+τ2 E2 then

• Γ;B′ t A1 `A1 E1 : τ1, A3

• Γ;B′ t A2 `A2 E2 : τ2, A4

• A1 ∩A4 = A2 ∩ A3 = ∅
• A1 ∪A2 = Ar

• (B′, τ1 + τ2, A3 ∪A4)� (B, τ,A)

17. If E = E1 5A1,A2
τ1+τ2 E2 then

• Γ;B′ t A1 `A1 E1 : τ1, A3

• Γ; � `A2 E2 : τ2, A4

• A1 ∪A2 = Ar

• (B′, τ1 + τ2, A3 ∪A4)� (B, τ,A)

18. If E = E1 5A1,A2
τ1+τ2 (ins(a) � E2) then

• ·;B′ tA1 `A1 E1 : τ1, A3

• ·; {a} `A2 E2 : τ2, A4

• A1 ∪A2 = Ar

• a ∈ A2

• a ∈ A3

• (B′, τ1 + τ2, A3 ∪A4)� (B, τ,A)

19. If E = E1 5A1,A2
τ1+τ2 (acc(a) � E2) then

• ·;B′ tA1 `A1 E1 : τ1, A3

• ·; {a} `A2 E2 : τ2, A4

• A1 ∪A2 = Ar

• a ∈ A2

• (B′, τ1 + τ2, A3 ∪A4)� (B, τ,A)

Proof: By induction on the derivation of Γ;B `Ar E : τ, A. In every case, the final
rule deriving Γ;B `Ar E : τ, A is either some base case, from which the result is im-
mediate, or (SE-Sub), from which the result is also immediate directly by induction,
Lemma 12, and the definition of subtyping compatibility.
Lemma 14 (Forms of Streams in Evaluation)
If `Ar σ . E β7−→ σ′ . E′ then either

1. σ = σ′, or

2. σ = a;σ′

47

Proof: By induction on the single-step operational semantics for computations.
Lemma 15 (Canonical Forms: Streams)
If ` σ : B then either

1. B = {a} and σ = a;σ′, or

2. B = � and σ = ·

Proof: Immediate by inspection of rules (Seq-Empty) and (Seq-Act).
Lemma 16 (Compatibility with Subsets)
If A ⊆ Ar and B tAr � B′ then B tA � B′ tA.

Proof: There are two cases to consider. When B ⊆ Ar, B t Ar � B′ reduces to
B � B′, from which the result is obtained easily. In the other case, B 6⊆ Ar, so
B tAr � B′ reduces to � � B′, implying that B′ = � and the result is again immedi-
ate.
Lemma 17 (Inversion of System Typing)
If `Ar σ . E ok then ` σ : B and ·;B tAr `Ar E : τ, A.

Proof: By examination of (S-Ok).
Lemma 18 (Effects are in Effect Set)
If

• `Ar σ . E β7−→ σ′ . E′

• ` σ : B

• ·;B tAr `Ar E : τ, A

• β = ins(a) or β = sup(a)

then a ∈ A.

Proof: By induction on the single-step operational semantics for computations. Most
of the rules are uninteresting because β cannot be ins(a) or sup(a). We show two of
the interesting cases; the others are very similar.

Case (E-Sup):
By assumption,

E = sup;E′ (1)
` σ : B (2)
·;B tAr `Ar E : τ, A (3)
a ∈ Ar (4)
σ = a;σ′ (5)

By Lemma 13, (3), and (1),
B′ 6= � (6)
(B′, τ ′, A′ ∪ B′)� (B tAr, τ, A) (7)

By Lemma 15, (2), and (5),

48

B = {a} (8)
By (4) and (8),

B tAr = {a} (9)
By (6), (7), and (9),

{a} ⊆ B′ (10)
A′ ∪ B′ ⊆ A (11)

By (10) and (11),
a ∈ A (12)

Case (E-SeqCon5):
By assumption,

E = (E1 4A1,A2 (β′′ � E2)) (1)
·;B tAr `Ar E : τ, A (2)

`A2 ‖β′′‖ . E2
β′7−→ · . E′2 (3)

`Ar σ . E β7−→ σ . (E1 4A1,A2 E′2) (4)
β = ins(a) or β = sup(a) (5)

By (4), (5), and the definition of β in rule (E-SeqCon5),
β′′ = ins(a) or (β′ = sup(a) and β′′ = acc(a)) (6)

By Lemma 13, (1), (2), and the definition of subtyping compatibility,
(β′′ = ins(a))⇒

a ∈ A3 (7)
A3 ∪ A4 ⊆ A (8)

By (7) and (8),
(β′′ = ins(a))⇒ a ∈ A (9)

By Lemma 13, (1), (2), and the definition of subtyping compatibility,
·; {a} `A2 E2 : τ2, A4 (10)
a ∈ A2 (11)
A3 ∪ A4 ⊆ A (12)

By (10) and (11),
(β′ = sup(a) and β′′ = acc(a))⇒

` ‖β′′‖ : {a} (13)
·; ‖β′′‖ t A2 `A2 E2 : τ2, A4 (14)

By IH, (3), (13), and (14),
(β′ = sup(a) and β′′ = acc(a))⇒ a ∈ A4 (15)

By (15) and (12),
(β′ = sup(a) and β′′ = acc(a))⇒ a ∈ A (16)

By (6), (9), and (16),
a ∈ A (17)

Lemma 19 (Preservation of Computations 1)
If

1. ` σ : B

2. ·;B tAr `Ar E : τ, A

3. `Ar σ . E β7−→ σ′ . E′

then

49

1. ` σ′ : B′

2. ·;B′ tAr `Ar E′ : τ, A

Proof: By induction on the derivation of `Ar σ . E β7−→ σ′ . E′. We have chosen
three representative cases to show below; the others use the same techniques.

Case (E-Ret):
By assumption,

` σ : B (1)
·;B tAr `Ar M1 : τ, A (2)
M1 7−→M2 (3)

By Lemma 13 and (2),
`M1 : τ (4)

By Lemma 9, (3), and (4),
`M2 : τ (5)

By (5) and rule (SE-Ret),
·;B tAr `Ar M2 : τ, ∅ (6)

By (6) and rule (SE-Sub),
·;B tAr `Ar M2 : τ, A (7)

Case (E-Let2):
By assumption,

` σ : B (1)
·;B tAr `Ar let {x} = {v}A′in E1 : τ, A (2)

By Lemma 13 and (2),
` {v}A′ :MA′r

A2
(τ ′′) (3)

x : τ ′′; � `Ar E1 : τ ′, A1 (4)
` τ ′ ≤ τ (5)
A1 ∪ A2 ⊆ A (6)

By Lemma 3 and (3),
·; � `A′r v : τ ′1, A′e (7)
` MA′r

A′e
(τ ′1) ≤MA′r

A2
(τ ′′) (8)

By Lemma 2 and (8),
` τ ′1 ≤ τ ′′ (9)

By Lemma 13 and (7),
` v : τ ′1 (10)

By (9), (10), and rule (S-Sub),
` v : τ ′′ (11)

By Lemma 1, (4), and (11),
·; � `Ar E1[v/x] : τ ′, A1 (12)

By (5), (6), (12), and rule (SE-Sub),
·;B tAr `Ar E1[v/x] : τ, A (13)

Case (E-SeqCon3):
By assumption,

` σ : B (1)
·;B tAr `Ar (E1 4A1,A2 E2) : τ, A (2)
E′ = E′1 4A1,A2 (β′ � E2) (3)

`A1 σ . E1
β′7−→ σ′ . E′1 (4)

50

β′ = ins(a) or β′ = acc(a) (5)
a ∈ A2 (6)

By Lemma 13, (2),
·;B′ tA1 `A1 E1 : τ1, A3 (7)
·; � `A2 E2 : τ2, A4 (8)
A1 ∪ A2 = Ar (9)
(B′, τ1 × τ2, A3 ∪ A4)� (B tAr, τ, A) (10)

By Lemma 16, (9), and (10),
B tA1 � B′ tA1 (11)

By (7), (11), and rule (SE-Sub),
·;B tA1 `A1 E1 : τ1, A3 (12)

By IH, (1), (12), and (4),
` σ′ : B′′ (13)
·;B′′ tA1 `A1 E′1 : τ1, A3 (14)

By (6), (8), and rule (SE-Sub),
·; {a} `A2 E2 : τ2, A4 (15)

By Lemma 18, (4), (1), and (12),
(β′ = ins(a))⇒ a ∈ A3 (16)

By (6), (9), (14), (15), (3), and rule (SE-SeqCon3),
(β′ = acc(a))⇒ ·;B′′ `Ar E′ : τ1 × τ2, A3 ∪A4 (17)

By (6), (9), (14), (15), (16), (3), and rule (SE-SeqCon2),
(β′ = ins(a))⇒ ·;B′′ `Ar E′ : τ1 × τ2, A3 ∪A4 (18)

By (5), (17), and (18),
·;B′′ `Ar E′ : τ1 × τ2, A3 ∪A4 (19)

By (10), (19), and rule (SE-Sub),
·;B′′ `Ar E′ : τ, A (20)

By (20) and definition of valid computation-typing judgments,
B′′ ⊆ Ar or B′′ = � (21)

By (20), (21), and definition of t,
·;B′′ tAr `Ar E′ : τ, A (22)

Result is from (13) and (22)

Lemma 20 (Preservation of Computations 2)
If `Ar σ . E ok and `Ar σ . E β7−→ σ′ . E′ then `Ar σ′ . E′ ok.

Proof: Immediate by Lemmas 17 and 19.
Lemma 21 (Progress of Computations 1)
If ` σ : B and ·;B t Ar `Ar E : τ, A then

1. `Ar σ . E β7−→ σ′ . E′, or

2. E = v, or

3. E = halt

Proof: By induction on the derivation of ·;B t Ar `Ar E : τ, A. We have chosen
four representative cases to show below; the others use the same techniques.

51

Case (SE-Let1):
By assumption,

` σ : B (1)
E = let {x} = Min E1 (2)
`M :MA′r

A2
(τ ′) (3)

By Lemma 11 and (3),
M 7−→M ′ or M = v (4)

By Lemma 3 and (3),
(M = v)⇒

M = {E2}A
′
r (5)

·; � `A′r E2 : τ ′1, A′2 (6)
By (6) and rule (SE-Sub),

(M = v)⇒ ·;B t A′r `A
′
r E2 : τ ′1, A′2 (7)

By IH, (1), and (7),

(M = v)⇒ (E2 = v or E2 = halt or `A′r σ . E2
β′7−→ σ′ . E′2) (8)

By (4), (5), (8), and rules (E-Let1)-(E-Let6),

`Ar σ . E β7−→ σ′ . E′ (9)

Case (SE-Let2):
By assumption,

` σ : B (1)
E = let {x} = (a . E1)A

′
in E2 (2)

·; {a} `A′ E1 : τ ′, A1 (3)
a ∈ A′ (4)

By (3), (4), and definition of t,
·; {a} t A′ `A′ E1 : τ ′, A1 (5)

By rule (Seq-Act),
` a : {a} (6)

By IH, (5), and (6),

`A′ a . E1
β′7−→ σ′′ . E′1 or E1 = v or E1 = halt (7)

By Lemma 14,

(`A′ a . E1
β′7−→ σ′′ . E′1)⇒ (σ′′ = a or σ′′ = ·) (8)

By (7), (8), and rules (E-Let7)-(E-Let10),

`Ar σ . E β7−→ σ′ . E′ (9)

Case (SE-Acc):
By assumption,

` σ : B (1)
E = ok;E′ (2)
·;B tAr `Ar E : τ, A (3)
B tAr 6= � (4)

By (3) and definition of valid computation-typing judgments,
B tAr ⊆ Ar or B t Ar = � (5)

By (4) and (5),
B tAr ⊆ Ar (6)

By (6) and definition of t,
B ⊆ Ar (7)
B 6= � (8)

52

By Lemma 15, (1), and (8),
σ = a;σ′ (9)
B = {a} (10)

By (7) and (10),
a ∈ Ar (11)

By (9), (11), and rule (E-Acc),

`Ar σ . E β7−→ σ′ . E′ (12)

Case (SE-ParCon):
By assumption,

` σ : B (1)
E = E1 ∧A1,A2 E2 (2)
·;B tAr `Ar E : τ, A (3)
·; (B t Ar) tA1 `A1 E1 : τ1, A3 (4)
·; (B t Ar) tA2 `A2 E2 : τ2, A4 (5)
A1 ∩ A4 = A2 ∩A3 = ∅ (6)

By Lemma 15 and (1),
(σ = a;σ′ and B = {a}) or (σ = · and B = �) (7)

By (3) and definition of valid computation-typing judgments,
B tAr ⊆ Ar or B = � (8)

By (8) and definition of t,
B ⊆ Ar or B = � (9)

By (7), (9), and definition of t,
(σ = a;σ′ and B tAr = {a}) or (σ = · and B tAr = �) (10)

By (10) and rules (Seq-Empty) and (Seq-Act),
` σ : B tAr (11)

By IH, (11), and (4),

`A1 σ . E1
β′7−→ σ1 . E

′
1 or E1 = v or E1 = halt (12)

By IH, (11), and (5),

`A2 σ . E2
β′′7−→ σ2 . E

′
2 or E2 = v or E2 = halt (13)

By Lemma 18, (11), and (4),

(`A1 σ . E1
β′7−→ σ1 . E

′
1 and (β′ = ins(a) or β′ = sup(a)))⇒ a ∈ A3 (14)

By Lemma 18, (11), and (5),

(`A2 σ . E2
β′′7−→ σ2 . E

′
2 and (β′′ = ins(a) or β′′ = sup(a)))⇒ a ∈ A4 (15)

By (6), (14), and definition of ‖β ′‖,
(`A1 σ . E1

β′7−→ σ1 . E
′
1 and β

′ 6= acc(a))⇒ ‖β′‖ 6∈ A2 (16)
By (6), (15), and definition of ‖β ′′‖,

(`A2 σ . E2
β′′7−→ σ2 . E

′
2 and β

′′ 6= acc(a))⇒ ‖β′′‖ 6∈ A1 (17)
By (12), (13), (16), (17), and rules (E-ParCon1)-(E-ParCon5),

`Ar σ . E β7−→ σ′ . E′ (18)

Lemma 22 (Progress of Computations 2)
If `Ar σ . E ok then

1. `Ar σ . E β7−→ σ′ . E′, or

53

2. E = v, or

3. E = halt

Proof: Immediate by Lemmas 17 and 21.
Lemma 23 (Preservation: Running System)
If ` S ok and S σ

↪→S ′ then ` S ′ ok.

Proof: By inspection of the operational semantics of running systems, along with
inversion of (Run-Ok), Lemmas 17 and 20, and the rules for system typing.
Lemma 24 (Progress: Running System)
If ` S ok then S σ

↪→S ′, or S = v, or S = halt.

Proof: Immediate by inversion of (Run-Ok), Lemma 22, and examination of the
operational semantics of running systems.
Definition 25 (

σ
↪→*)

We extend the single-step dynamic semantics of running systems to a multi-step se-
mantics with the usual reflexive and transitive rules.

S ·↪→*S (R*-Reflex)

S σ
↪→S ′ S ′ σ

′
↪→*S ′′

S σ; σ′
↪→* S ′′ (R*-Trans)

Definition 26 (Stuck System)
A system S is “stuck” if S 6= v and S 6= halt and there does not exist a system S ′
such that S σ

↪→S ′.

Theorem 27 (System Safety)
If ` S ok and S σ

↪→*S ′ then ` S ′ ok and S ′ is not stuck.

Proof: Immediate by Lemmas 23 and 24.

54

