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II. Review: pdf, cdf and Entropy
a. Probability Density Functions (pdf) and Cumulative Density Functions (cdf)

• Abandon knowledge of the temporal / presentation order in time series data
• 3 pdf’s of interest: exponential, Gaussian, uniform
• cdf is the integral of the pdf

  

Note: Technically pdf of exponential distribution is only defined for x>0

b. Applying a function g(x) to a pdf P(x) produces a new pdf 

† 

P(y) =
P(x)

∂g(x) ∂x

 [4]



c. Entropy (H)
• A function of the pdf

† 

Hcont (x) = p(x)log(p(x))dxÚ
Hdisc (x) = p(xi)log(p(xi))

i
Â

• Main idea: More certainty about a value ‡ lower entropy (e.g. delta function)
 Less certainty about a value  ‡ higher entropy (e.g. uniform pdf)

II. The Goal of Independent Component Analysis
a. Preliminary: PCA

• The goal of PCA is to find a basis which maximizes the variance and along
which the data has no covariance

• If a and b are row vectors and projections of the data along two principal
component axes, then 

† 

abT = 0
• Only concerned with second-order (variance) statistics

b. Goal of ICA
• Find a basis along which the data (when projected) is statistically independent
• Formally, if (x,y) are two “independent” components (bases), then

† 

P[x, y] = P[x]P[y]

where  P[x], P[x] are the distributions along x and y
            P[x,y] is the joint distribution

• This is equivalent to saying: for a every data point, the knowledge of x in no
way provides you with any information about y.

• In information theory, the mutual information between P(x) and P(y) is zero.

† 

I(x, y) = 0   [short-hand]



c. Why neuroscience?
• Several papers have conjectured that the goal of cortical processing is

redundancy reduction [1,2]
• “the activation of each feature detector is supposed to be as statistically

independent from the others as possible” [5]

III. Several Solutions to ICA

a. Expectation Maximization (EM) with Maximum Likelihood Estimation (MLE)
• Dayan and Abbott; difficult to understand.

b. Other methods
• Kurtosis maximization: http://www.cs.toronto.edu/~roweis/kica.html
• Projection pursuit: http://www.cis.hut.fi/aapo/papers/IJCNN99_tutorialweb/

c. Information maximization
• The Bell and Sejnowski formulation

IV. Framework for ICA

a. Set-up  (2 signal example)
• An unknown set of statistically independent signals:   S
• An unknown mixing matrix:  A

† 

A =
1 0
-1 1
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• Assume the data we receive X is a mixture of the original signals

† 

X =

| |
mixed1 mixed2

| |
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¯ 

˜ 
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= AS

• Because X is a mixture of signals, the mixed components (e.g. mixed1, mixed2)
are not statistically independent.

b. The ICA Question
• Can we recover A and S just from X?
• Mathematically, can we find a matrix W such that:

† 

U = WX

where 

† 

AW = I or equivalently, 

† 

U = S

• (Yes. By finding the basis vectors A that are statistically independent.)



c. The Discovery / Trick: Information Maximization

• The Main Goal: Maximize the joint entropy of 

† 

Y = g(U)  where g is a sigmoid
function 

† 

g(x) = 1
1+e - x

1. Find a matrix W such that: 

† 

max H(g(WX)){ }
2. The matrix W becomes the inverse of A. (

† 

W = A-1)
3. Side note: We are coincidentally maximizing the mutual information

between X and Y if we assume our model does not magnify the entropy of
the noise. [5]

• An intuitive algorithm to implement this:

1. Define a surface 

† 

H(g(WX))

2. Find the gradient 

† 

∂
∂W

H(...) and ascend it!

3. When the gradient is zero, done.

V. Proof of Information Maximization: Why does this work?

a. Notes
• This section is basically a rip off of a not-commonly-cited paper [3].
• The “Why” is not discussed (fully) in the original papers [4,5]
• Also, for my convenience I am being “fast and loose” with my notation.

Namely, 

† 

yi could mean the “distribution of 

† 

yi” (technically denoted 

† 

P(yi)  or
just the variable 

† 

yi.

b. THE PROOF

1. If the columns of U are statistically independent, applying an invertible
transformation 

† 

Y = g(U)  can not make them dependent.

† 

I(ui,u j ) = 0 fi I(yi,y j ) = 0    where ui and yj are the columns of U and Y

2. The individual entropies

† 

H(yi) are maximized when the distribution of 

† 

yi is
the cdf of the distribution of ui (the pdf).

• 

† 

H(yi) is maximum when 

† 

yi = g(ui)  is the uniform distribution
• By review section (b), we can equate:

† 

P(yi) =
P(ui)

∂yi ∂ui

1=
P(ui)

∂yi ∂ui

yi = P(ui)duÚ



[4]
Note: At wopt the output distribution becomes uniform and the sigmoid

aligns to become the cdf of the input distribution.

3. The joint entropy of two sigmoidally-transformed outputs 

† 

H(y1,y2)  is
maximal when 

† 

y1, y2  are statistically independent and g is the cdf of 

† 

u1,u2 .
• Remember the definition of joint entropy

† 

H(y1,y2) = H(y1) + H(y2) - I(y1,y2)

• The mutual information is minimized (equal to zero) when 

† 

y1,y2  are
statistically independent.

• Via step 2, we know that that 

† 

H(yi) is maximized when the sigmoid is
the cdf of ui

4. When one combines 2 non-Gaussian pdf’s, the new pdf is more Gaussian.
• This is the Central Limit Theorem.

5. FINAL POINT: The big one!

• Reconsider the joint entropy for two variables: 

† 

H(y1,y2)
• This quantity is maximized when 

† 

y1,y2  are statistically independent and
when g is the cdf of ui. By Step 1, this statement is equivalent to
requiring 

† 

u1,u2  be statistically independent. Hence, it must be that

† 

ui = signali!
• If there is any deviation from this causing a mixing of the signals, then:

 i. There exists a statistical dependency between the ui. This
increases 

† 

I(ui,u j ), increasing 

† 

I(g(ui),g(u j )) and thus
decreasing the joint entropy.

 ii. There is a decrease in the individual entropies 

† 

H(yi) as the
individual distributions 

† 

yi deviate from a uniform distribution
(via Step 4 and Step 2). This also decreases the joint entropy.

• Therefore, maximizing the joint entropy is equivalent to 

† 

ui = signali .



c. Problems with Information Maximization

1. The cdf must be able to “match” the pdf of the signal distributions (

† 

signali).
• One must use a judicious choice of non-linearity
• The sigmoid works well in practice for super-Gaussian (or positive

kurtosis) distributions. Surprisingly, in practice the distribution of most
real-world sensory input has a high kurtosis. [See figure 5 in 5]

2. There can not be more than one Gaussian source. There is no statistical
information to “pull” these distributions apart because of the Central Limit
Theorem.

VI. The ICA Learning Rule

a. Use a simple, single layer network set-up which implements 

† 

Y = g(WX)

[6]

b. Perform gradient ascent on the joint entropy.
c. Here is the learning rule for a single input and output 

† 

y = g(wx) . (Following [5])

• The joint entropy (only one variable) is defined as:

† 

H(y) = - P(y)ln P(y)dyÚ
= - lnP(y)

= - ln P(x)
∂y ∂x

H(y) = ln ∂y
∂x

- ln P(x)

• We can now change our weights according to gradient ascent: 

† 

Dw µ
∂H(y)

∂w
• All that is left is to evaluate the 

† 

∂H(y) ∂w . Through a little calculus and
using the sigmoid function, one finds:

† 

Dw µ
1
w

+ x(1- 2y)

d. This learning rule can be generalized to multiply outputs and sped up (with the
natural gradient trick [7]), producing:

   

† 

DW µ (I + ˆ y uT )W    where 

† 

ˆ y i =
∂

∂ui

ln∂yi

∂ui

 and I is the identity matrix



e. General comments
• A competition between an “anti-Hebbian” (first) term and a “Hebbian”

(second) term.
• The learning rule is global (not local) making it not biologically plausible in

its current mathematical form.
• … although many believe ICA is begin performed somewhere (e.g. primary

visual cortex [5]) but using a different mathematical form.
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