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Abstract. The tutorial starts with an overview of the concepts of VC dimension and structural risk

minimization. We then describe linear Support Vector Machines (SVMs) for separable and non-separable

data, working through a non-trivial example in detail. We describe a mechanical analogy, and discuss

when SVM solutions are unique and when they are global. We describe how support vector training can

be practically implemented, and discuss in detail the kernel mapping technique which is used to construct

SVM solutions which are nonlinear in the data. We show how Support Vector machines can have very large
(even in�nite) VC dimension by computing the VC dimension for homogeneous polynomial and Gaussian

radial basis function kernels. While very high VC dimension would normally bode ill for generalization

performance, and while at present there exists no theory which shows that good generalization performance

is guaranteed for SVMs, there are several arguments which support the observed high accuracy of SVMs,

which we review. Results of some experiments which were inspired by these arguments are also presented.

We give numerous examples and proofs of most of the key theorems. There is new material, and I hope that

the reader will �nd that even old material is cast in a fresh light.
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1. Introduction

The purpose of this paper is to provide an introductory yet extensive tutorial on the basic
ideas behind Support Vector Machines (SVMs). The books (Vapnik, 1995; Vapnik, 1998)
contain excellent descriptions of SVMs, but they leave room for an account whose purpose
from the start is to teach. Although the subject can be said to have started in the late
seventies (Vapnik, 1979), it is only now receiving increasing attention, and so the time
appears suitable for an introductory review. The tutorial dwells entirely on the pattern
recognition problem. Many of the ideas there carry directly over to the cases of regression
estimation and linear operator inversion, but space constraints precluded the exploration of
these topics here.

The tutorial contains some new material. All of the proofs are my own versions, where
I have placed a strong emphasis on their being both clear and self-contained, to make the
material as accessible as possible. This was done at the expense of some elegance and
generality: however generality is usually easily added once the basic ideas are clear. The
longer proofs are collected in the Appendix.

By way of motivation, and to alert the reader to some of the literature, we summarize
some recent applications and extensions of support vector machines. For the pattern recog-
nition case, SVMs have been used for isolated handwritten digit recognition (Cortes and
Vapnik, 1995; Sch�olkopf, Burges and Vapnik, 1995; Sch�olkopf, Burges and Vapnik, 1996;
Burges and Sch�olkopf, 1997), object recognition (Blanz et al., 1996), speaker identi�cation
(Schmidt, 1996), charmed quark detection1, face detection in images (Osuna, Freund and
Girosi, 1997a), and text categorization (Joachims, 1997). For the regression estimation
case, SVMs have been compared on benchmark time series prediction tests (M�uller et al.,
1997; Mukherjee, Osuna and Girosi, 1997), the Boston housing problem (Drucker et al.,
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1997), and (on arti�cial data) on the PET operator inversion problem (Vapnik, Golowich
and Smola, 1996). In most of these cases, SVM generalization performance (i.e. error rates
on test sets) either matches or is signi�cantly better than that of competing methods. The
use of SVMs for density estimation (Weston et al., 1997) and ANOVA decomposition (Stit-
son et al., 1997) has also been studied. Regarding extensions, the basic SVMs contain no
prior knowledge of the problem (for example, a large class of SVMs for the image recogni-
tion problem would give the same results if the pixels were �rst permuted randomly (with
each image su�ering the same permutation), an act of vandalism that would leave the best
performing neural networks severely handicapped) and much work has been done on in-
corporating prior knowledge into SVMs (Sch�olkopf, Burges and Vapnik, 1996; Sch�olkopf et
al., 1998a; Burges, 1998). Although SVMs have good generalization performance, they can
be abysmally slow in test phase, a problem addressed in (Burges, 1996; Osuna and Girosi,
1998). Recent work has generalized the basic ideas (Smola, Sch�olkopf and M�uller, 1998a;
Smola and Sch�olkopf, 1998), shown connections to regularization theory (Smola, Sch�olkopf
and M�uller, 1998b; Girosi, 1998; Wahba, 1998), and shown how SVM ideas can be incorpo-
rated in a wide range of other algorithms (Sch�olkopf, Smola and M�uller, 1998b; Sch�olkopf
et al, 1998c). The reader may also �nd the thesis of (Sch�olkopf, 1997) helpful.

The problem which drove the initial development of SVMs occurs in several guises - the
bias variance tradeo� (Geman, Bienenstock and Doursat, 1992), capacity control (Guyon
et al., 1992), over�tting (Montgomery and Peck, 1992) - but the basic idea is the same.
Roughly speaking, for a given learning task, with a given �nite amount of training data, the
best generalization performance will be achieved if the right balance is struck between the
accuracy attained on that particular training set, and the \capacity" of the machine, that is,
the ability of the machine to learn any training set without error. A machine with too much
capacity is like a botanist with a photographic memory who, when presented with a new
tree, concludes that it is not a tree because it has a di�erent number of leaves from anything
she has seen before; a machine with too little capacity is like the botanist's lazy brother,
who declares that if it's green, it's a tree. Neither can generalize well. The exploration and
formalization of these concepts has resulted in one of the shining peaks of the theory of
statistical learning (Vapnik, 1979).

In the following, bold typeface will indicate vector or matrix quantities; normal typeface
will be used for vector and matrix components and for scalars. We will label components
of vectors and matrices with Greek indices, and label vectors and matrices themselves with
Roman indices. Familiarity with the use of Lagrange multipliers to solve problems with
equality or inequality constraints is assumed2.

2. A Bound on the Generalization Performance of a Pattern Recognition Learn-

ing Machine

There is a remarkable family of bounds governing the relation between the capacity of a
learning machine and its performance3. The theory grew out of considerations of under what
circumstances, and how quickly, the mean of some empirical quantity converges uniformly,
as the number of data points increases, to the true mean (that which would be calculated
from an in�nite amount of data) (Vapnik, 1979). Let us start with one of these bounds.

The notation here will largely follow that of (Vapnik, 1995). Suppose we are given l

observations. Each observation consists of a pair: a vector xi 2 Rn; i = 1; : : : ; l and the
associated \truth" yi, given to us by a trusted source. In the tree recognition problem, xi
might be a vector of pixel values (e.g. n = 256 for a 16x16 image), and yi would be 1 if the
image contains a tree, and -1 otherwise (we use -1 here rather than 0 to simplify subsequent
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formulae). Now it is assumed that there exists some unknown probability distribution
P (x; y) from which these data are drawn, i.e., the data are assumed \iid" (independently
drawn and identically distributed). (We will use P for cumulative probability distributions,
and p for their densities). Note that this assumption is more general than associating a
�xed y with every x: it allows there to be a distribution of y for a given x. In that case,
the trusted source would assign labels yi according to a �xed distribution, conditional on
xi. However, after this Section, we will be assuming �xed y for given x.

Now suppose we have a machine whose task it is to learn the mapping xi 7! yi. The
machine is actually de�ned by a set of possible mappings x 7! f(x; �), where the functions
f(x; �) themselves are labeled by the adjustable parameters �. The machine is assumed to
be deterministic: for a given input x, and choice of �, it will always give the same output
f(x; �). A particular choice of � generates what we will call a \trained machine." Thus,
for example, a neural network with �xed architecture, with � corresponding to the weights
and biases, is a learning machine in this sense.

The expectation of the test error for a trained machine is therefore:

R(�) =

Z
1

2
jy � f(x; �)jdP (x; y) (1)

Note that, when a density p(x; y) exists, dP (x; y) may be written p(x; y)dxdy. This is a
nice way of writing the true mean error, but unless we have an estimate of what P (x; y) is,
it is not very useful.

The quantity R(�) is called the expected risk, or just the risk. Here we will call it the
actual risk, to emphasize that it is the quantity that we are ultimately interested in. The
\empirical risk" Remp(�) is de�ned to be just the measured mean error rate on the training
set (for a �xed, �nite number of observations)4:

Remp(�) =
1

2l

lX
i=1

jyi � f(xi; �)j: (2)

Note that no probability distribution appears here. Remp(�) is a �xed number for a
particular choice of � and for a particular training set fxi; yig.
The quantity 1

2
jyi � f(xi; �)j is called the loss. For the case described here, it can only

take the values 0 and 1. Now choose some � such that 0 � � � 1. Then for losses taking
these values, with probability 1� �, the following bound holds (Vapnik, 1995):

R(�) � Remp(�) +

s�
h(log(2l=h) + 1)� log(�=4)

l

�
(3)

where h is a non-negative integer called the Vapnik Chervonenkis (VC) dimension, and is
a measure of the notion of capacity mentioned above. In the following we will call the right
hand side of Eq. (3) the \risk bound." We depart here from some previous nomenclature:
the authors of (Guyon et al., 1992) call it the \guaranteed risk", but this is something of a
misnomer, since it is really a bound on a risk, not a risk, and it holds only with a certain
probability, and so is not guaranteed. The second term on the right hand side is called the
\VC con�dence."

We note three key points about this bound. First, remarkably, it is independent of P (x; y).
It assumes only that both the training data and the test data are drawn independently
according to some P (x; y). Second, it is usually not possible to compute the left hand
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side. Third, if we know h, we can easily compute the right hand side. Thus given several
di�erent learning machines (recall that \learning machine" is just another name for a family
of functions f(x; �)), and choosing a �xed, suÆciently small �, by then taking that machine
which minimizes the right hand side, we are choosing that machine which gives the lowest
upper bound on the actual risk. This gives a principled method for choosing a learning
machine for a given task, and is the essential idea of structural risk minimization (see
Section 2.6). Given a �xed family of learning machines to choose from, to the extent that
the bound is tight for at least one of the machines, one will not be able to do better than
this. To the extent that the bound is not tight for any, the hope is that the right hand
side still gives useful information as to which learning machine minimizes the actual risk.
The bound not being tight for the whole chosen family of learning machines gives critics a
justi�able target at which to �re their complaints. At present, for this case, we must rely
on experiment to be the judge.

2.1. The VC Dimension

The VC dimension is a property of a set of functions ff(�)g (again, we use � as a generic set
of parameters: a choice of � speci�es a particular function), and can be de�ned for various
classes of function f . Here we will only consider functions that correspond to the two-class
pattern recognition case, so that f(x; �) 2 f�1; 1g 8x; �. Now if a given set of l points can
be labeled in all possible 2l ways, and for each labeling, a member of the set ff(�)g can
be found which correctly assigns those labels, we say that that set of points is shattered by
that set of functions. The VC dimension for the set of functions ff(�)g is de�ned as the
maximum number of training points that can be shattered by ff(�)g. Note that, if the VC
dimension is h, then there exists at least one set of h points that can be shattered, but it in
general it will not be true that every set of h points can be shattered.

2.2. Shattering Points with Oriented Hyperplanes in Rn

Suppose that the space in which the data live is R2, and the set ff(�)g consists of oriented
straight lines, so that for a given line, all points on one side are assigned the class 1, and all
points on the other side, the class �1. The orientation is shown in Figure 1 by an arrow,
specifying on which side of the line points are to be assigned the label 1. While it is possible
to �nd three points that can be shattered by this set of functions, it is not possible to �nd
four. Thus the VC dimension of the set of oriented lines in R2 is three.

Let's now consider hyperplanes in Rn. The following theorem will prove useful (the proof
is in the Appendix):

Theorem 1 Consider some set of m points in Rn. Choose any one of the points as origin.

Then the m points can be shattered by oriented hyperplanes5 if and only if the position

vectors of the remaining points are linearly independent6.

Corollary: The VC dimension of the set of oriented hyperplanes in Rn is n+1, since we
can always choose n + 1 points, and then choose one of the points as origin, such that the
position vectors of the remaining n points are linearly independent, but can never choose
n+ 2 such points (since no n+ 1 vectors in Rn can be linearly independent).

An alternative proof of the corollary can be found in (Anthony and Biggs, 1995), and
references therein.
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Figure 1. Three points in R2, shattered by oriented lines.

2.3. The VC Dimension and the Number of Parameters

The VC dimension thus gives concreteness to the notion of the capacity of a given set
of functions. Intuitively, one might be led to expect that learning machines with many
parameters would have high VC dimension, while learning machines with few parameters
would have low VC dimension. There is a striking counterexample to this, due to E. Levin
and J.S. Denker (Vapnik, 1995): A learning machine with just one parameter, but with
in�nite VC dimension (a family of classi�ers is said to have in�nite VC dimension if it can
shatter l points, no matter how large l). De�ne the step function �(x); x 2 R : f�(x) =
1 8x > 0; �(x) = �1 8x � 0g. Consider the one-parameter family of functions, de�ned by

f(x; �) � �(sin(�x)); x; � 2 R: (4)

You choose some number l, and present me with the task of �nding l points that can be
shattered. I choose them to be:

xi = 10�i; i = 1; � � � ; l: (5)

You specify any labels you like:

y1; y2; � � � ; yl; yi 2 f�1; 1g: (6)

Then f(�) gives this labeling if I choose � to be

� = �(1 +

lX
i=1

(1� yi)10
i

2
): (7)

Thus the VC dimension of this machine is in�nite.

Interestingly, even though we can shatter an arbitrarily large number of points, we can
also �nd just four points that cannot be shattered. They simply have to be equally spaced,
and assigned labels as shown in Figure 2. This can be seen as follows: Write the phase at
x1 as �1 = 2n� + Æ. Then the choice of label y1 = 1 requires 0 < Æ < �. The phase at x2,
mod 2�, is 2Æ; then y2 = 1 ) 0 < Æ < �=2. Similarly, point x3 forces Æ > �=3. Then at
x4, �=3 < Æ < �=2 implies that f(x4; �) = �1, contrary to the assigned label. These four
points are the analogy, for the set of functions in Eq. (4), of the set of three points lying
along a line, for oriented hyperplanes in Rn. Neither set can be shattered by the chosen
family of functions.
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1 2 3 4x=0

Figure 2. Four points that cannot be shattered by �(sin(�x)), despite in�nite VC dimension.

2.4. Minimizing The Bound by Minimizing h
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Figure 3. VC con�dence is monotonic in h

Figure 3 shows how the second term on the right hand side of Eq. (3) varies with h, given
a choice of 95% con�dence level (� = 0:05) and assuming a training sample of size 10,000.
The VC con�dence is a monotonic increasing function of h. This will be true for any value
of l.

Thus, given some selection of learning machines whose empirical risk is zero, one wants to
choose that learning machine whose associated set of functions has minimal VC dimension.
This will lead to a better upper bound on the actual error. In general, for non zero empirical
risk, one wants to choose that learning machine which minimizes the right hand side of Eq.
(3).

Note that in adopting this strategy, we are only using Eq. (3) as a guide. Eq. (3) gives
(with some chosen probability) an upper bound on the actual risk. This does not prevent a
particular machine with the same value for empirical risk, and whose function set has higher
VC dimension, from having better performance. In fact an example of a system that gives
good performance despite having in�nite VC dimension is given in the next Section. Note
also that the graph shows that for h=l > 0:37 (and for � = 0:05 and l = 10; 000), the VC
con�dence exceeds unity, and so for higher values the bound is guaranteed not tight.

2.5. Two Examples

Consider the k'th nearest neighbour classi�er, with k = 1. This set of functions has in�nite
VC dimension and zero empirical risk, since any number of points, labeled arbitrarily, will
be successfully learned by the algorithm (provided no two points of opposite class lie right
on top of each other). Thus the bound provides no information. In fact, for any classi�er
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with in�nite VC dimension, the bound is not even valid7. However, even though the bound
is not valid, nearest neighbour classi�ers can still perform well. Thus this �rst example is a
cautionary tale: in�nite \capacity" does not guarantee poor performance.

Let's follow the time honoured tradition of understanding things by trying to break them,
and see if we can come up with a classi�er for which the bound is supposed to hold, but
which violates the bound. We want the left hand side of Eq. (3) to be as large as possible,
and the right hand side to be as small as possible. So we want a family of classi�ers which
gives the worst possible actual risk of 0:5, zero empirical risk up to some number of training
observations, and whose VC dimension is easy to compute and is less than l (so that the
bound is non trivial). An example is the following, which I call the \notebook classi�er."
This classi�er consists of a notebook with enough room to write down the classes of m
training observations, where m � l. For all subsequent patterns, the classi�er simply says
that all patterns have the same class. Suppose also that the data have as many positive
(y = +1) as negative (y = �1) examples, and that the samples are chosen randomly. The
notebook classi�er will have zero empirical risk for up to m observations; 0:5 training error
for all subsequent observations; 0:5 actual error, and VC dimension h = m. Substituting
these values in Eq. (3), the bound becomes:

m

4l
� ln(2l=m) + 1� (1=m) ln(�=4) (8)

which is certainly met for all � if

f(z) =
�z
2

�
exp(z=4�1) � 1; z � (m=l); 0 � z � 1 (9)

which is true, since f(z) is monotonic increasing, and f(z = 1) = 0:236.

2.6. Structural Risk Minimization

We can now summarize the principle of structural risk minimization (SRM) (Vapnik, 1979).
Note that the VC con�dence term in Eq. (3) depends on the chosen class of functions,
whereas the empirical risk and actual risk depend on the one particular function chosen by
the training procedure. We would like to �nd that subset of the chosen set of functions, such
that the risk bound for that subset is minimized. Clearly we cannot arrange things so that
the VC dimension h varies smoothly, since it is an integer. Instead, introduce a \structure"
by dividing the entire class of functions into nested subsets (Figure 4). For each subset,
we must be able either to compute h, or to get a bound on h itself. SRM then consists of
�nding that subset of functions which minimizes the bound on the actual risk. This can be
done by simply training a series of machines, one for each subset, where for a given subset
the goal of training is simply to minimize the empirical risk. One then takes that trained
machine in the series whose sum of empirical risk and VC con�dence is minimal.

We have now laid the groundwork necessary to begin our exploration of support vector
machines.

3. Linear Support Vector Machines

3.1. The Separable Case

We will start with the simplest case: linear machines trained on separable data (as we shall
see, the analysis for the general case - nonlinear machines trained on non-separable data -
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h1h2h3h4 h1 < h2 < h3 ...

Figure 4. Nested subsets of functions, ordered by VC dimension.

results in a very similar quadratic programming problem). Again label the training data
fxi; yig; i = 1; � � � ; l; yi 2 f�1; 1g; xi 2 Rd. Suppose we have some hyperplane which
separates the positive from the negative examples (a \separating hyperplane"). The points
x which lie on the hyperplane satisfy w � x + b = 0, where w is normal to the hyperplane,
jbj=kwk is the perpendicular distance from the hyperplane to the origin, and kwk is the
Euclidean norm of w. Let d+ (d�) be the shortest distance from the separating hyperplane
to the closest positive (negative) example. De�ne the \margin" of a separating hyperplane
to be d++d�. For the linearly separable case, the support vector algorithm simply looks for
the separating hyperplane with largest margin. This can be formulated as follows: suppose
that all the training data satisfy the following constraints:

xi �w+ b � +1 for yi = +1 (10)

xi �w+ b � �1 for yi = �1 (11)

These can be combined into one set of inequalities:

yi(xi �w+ b)� 1 � 0 8i (12)

Now consider the points for which the equality in Eq. (10) holds (requiring that there
exists such a point is equivalent to choosing a scale for w and b). These points lie on
the hyperplane H1 : xi � w + b = 1 with normal w and perpendicular distance from the
origin j1� bj=kwk. Similarly, the points for which the equality in Eq. (11) holds lie on the
hyperplane H2 : xi � w + b = �1, with normal again w, and perpendicular distance from
the origin j � 1� bj=kwk. Hence d+ = d� = 1=kwk and the margin is simply 2=kwk. Note
that H1 and H2 are parallel (they have the same normal) and that no training points fall
between them. Thus we can �nd the pair of hyperplanes which gives the maximum margin
by minimizing kwk2, subject to constraints (12).

Thus we expect the solution for a typical two dimensional case to have the form shown
in Figure 5. Those training points for which the equality in Eq. (12) holds (i.e. those
which wind up lying on one of the hyperplanes H1, H2), and whose removal would change
the solution found, are called support vectors; they are indicated in Figure 5 by the extra
circles.

We will now switch to a Lagrangian formulation of the problem. There are two reasons
for doing this. The �rst is that the constraints (12) will be replaced by constraints on the
Lagrange multipliers themselves, which will be much easier to handle. The second is that in
this reformulation of the problem, the training data will only appear (in the actual training
and test algorithms) in the form of dot products between vectors. This is a crucial property
which will allow us to generalize the procedure to the nonlinear case (Section 4).



9

-b
|w|

w

Origin

Margin

H1

H2

Figure 5. Linear separating hyperplanes for the separable case. The support vectors are circled.

Thus, we introduce positive Lagrange multipliers �i; i = 1; � � � ; l, one for each of the
inequality constraints (12). Recall that the rule is that for constraints of the form ci � 0,
the constraint equations are multiplied by positive Lagrange multipliers and subtracted
from the objective function, to form the Lagrangian. For equality constraints, the Lagrange
multipliers are unconstrained. This gives Lagrangian:

LP � 1

2
kwk2 �

lX
i=1

�iyi(xi �w+ b) +

lX
i=1

�i (13)

We must now minimize LP with respect to w; b, and simultaneously require that the
derivatives of LP with respect to all the �i vanish, all subject to the constraints �i � 0
(let's call this particular set of constraints C1). Now this is a convex quadratic programming
problem, since the objective function is itself convex, and those points which satisfy the
constraints also form a convex set (any linear constraint de�nes a convex set, and a set of
N simultaneous linear constraints de�nes the intersection of N convex sets, which is also
a convex set). This means that we can equivalently solve the following \dual" problem:
maximize LP , subject to the constraints that the gradient of LP with respect to w and b

vanish, and subject also to the constraints that the �i � 0 (let's call that particular set of
constraints C2). This particular dual formulation of the problem is called the Wolfe dual
(Fletcher, 1987). It has the property that the maximum of LP , subject to constraints C2,
occurs at the same values of the w, b and �, as the minimum of LP , subject to constraints
C18.
Requiring that the gradient of LP with respect to w and b vanish give the conditions:

w =
X
i

�iyixi (14)

X
i

�iyi = 0: (15)

Since these are equality constraints in the dual formulation, we can substitute them into
Eq. (13) to give

LD =
X
i

�i �
1

2

X
i;j

�i�jyiyjxi � xj (16)
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Note that we have now given the Lagrangian di�erent labels (P for primal, D for dual) to
emphasize that the two formulations are di�erent: LP and LD arise from the same objective
function but with di�erent constraints; and the solution is found by minimizing LP or by
maximizing LD. Note also that if we formulate the problem with b = 0, which amounts to
requiring that all hyperplanes contain the origin, the constraint (15) does not appear. This
is a mild restriction for high dimensional spaces, since it amounts to reducing the number
of degrees of freedom by one.

Support vector training (for the separable, linear case) therefore amounts to maximizing
LD with respect to the �i, subject to constraints (15) and positivity of the �i, with solution
given by (14). Notice that there is a Lagrange multiplier �i for every training point. In
the solution, those points for which �i > 0 are called \support vectors", and lie on one of
the hyperplanes H1; H2. All other training points have �i = 0 and lie either on H1 or
H2 (such that the equality in Eq. (12) holds), or on that side of H1 or H2 such that the
strict inequality in Eq. (12) holds. For these machines, the support vectors are the critical
elements of the training set. They lie closest to the decision boundary; if all other training
points were removed (or moved around, but so as not to cross H1 or H2), and training was
repeated, the same separating hyperplane would be found.

3.2. The Karush-Kuhn-Tucker Conditions

The Karush-Kuhn-Tucker (KKT) conditions play a central role in both the theory and
practice of constrained optimization. For the primal problem above, the KKT conditions
may be stated (Fletcher, 1987):

@

@w�
LP = w� �

X
i

�iyixi� = 0 � = 1; � � � ; d (17)

@

@b
LP = �

X
i

�iyi = 0 (18)

yi(xi �w+ b)� 1 � 0 i = 1; � � � ; l (19)

�i � 0 8i (20)

�i(yi(w � xi + b)� 1) = 0 8i (21)

The KKT conditions are satis�ed at the solution of any constrained optimization problem
(convex or not), with any kind of constraints, provided that the intersection of the set
of feasible directions with the set of descent directions coincides with the intersection of
the set of feasible directions for linearized constraints with the set of descent directions
(see Fletcher, 1987; McCormick, 1983)). This rather technical regularity assumption holds
for all support vector machines, since the constraints are always linear. Furthermore, the
problem for SVMs is convex (a convex objective function, with constraints which give a
convex feasible region), and for convex problems (if the regularity condition holds), the
KKT conditions are necessary and suÆcient for w; b; � to be a solution (Fletcher, 1987).
Thus solving the SVM problem is equivalent to �nding a solution to the KKT conditions.
This fact results in several approaches to �nding the solution (for example, the primal-dual
path following method mentioned in Section 5).

As an immediate application, note that, while w is explicitly determined by the training
procedure, the threshold b is not, although it is implicitly determined. However b is easily
found by using the KKT \complementarity" condition, Eq. (21), by choosing any i for
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which �i 6= 0 and computing b (note that it is numerically safer to take the mean value of
b resulting from all such equations).

Notice that all we've done so far is to cast the problem into an optimization problem
where the constraints are rather more manageable than those in Eqs. (10), (11). Finding
the solution for real world problems will usually require numerical methods. We will have
more to say on this later. However, let's �rst work out a rare case where the problem is
nontrivial (the number of dimensions is arbitrary, and the solution certainly not obvious),
but where the solution can be found analytically.

3.3. Optimal Hyperplanes: An Example

While the main aim of this Section is to explore a non-trivial pattern recognition problem
where the support vector solution can be found analytically, the results derived here will
also be useful in a later proof. For the problem considered, every training point will turn
out to be a support vector, which is one reason we can �nd the solution analytically.

Consider n + 1 symmetrically placed points lying on a sphere Sn�1 of radius R: more
precisely, the points form the vertices of an n-dimensional symmetric simplex. It is conve-
nient to embed the points in Rn+1 in such a way that they all lie in the hyperplane which
passes through the origin and which is perpendicular to the (n+1)-vector (1; 1; :::; 1) (in this
formulation, the points lie on Sn�1, they span Rn, and are embedded in Rn+1). Explicitly,
recalling that vectors themselves are labeled by Roman indices and their coordinates by
Greek, the coordinates are given by:

xi� = �(1� Æi;�)

s
R

n(n+ 1)
+ Æi;�

r
Rn

n+ 1
(22)

where the Kronecker delta, Æi;�, is de�ned by Æi;� = 1 if � = i, 0 otherwise. Thus, for
example, the vectors for three equidistant points on the unit circle (see Figure 12) are:

x1 = (

r
2

3
;
�1p
6
;
�1p
6
)

x2 = (
�1p
6
;

r
2

3
;
�1p
6
)

x3 = (
�1p
6
;
�1p
6
;

r
2

3
) (23)

One consequence of the symmetry is that the angle between any pair of vectors is the
same (and is equal to arccos(�1=n)):

kxik2 = R2 (24)

xi � xj = �R2=n (25)

or, more succinctly,

xi � xj
R2

= Æi;j � (1� Æi;j)
1

n
: (26)

Assigning a class label C 2 f+1;�1g arbitrarily to each point, we wish to �nd that
hyperplane which separates the two classes with widest margin. Thus we must maximize
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LD in Eq. (16), subject to �i � 0 and also subject to the equality constraint, Eq. (15).
Our strategy is to simply solve the problem as though there were no inequality constraints.
If the resulting solution does in fact satisfy �i � 0 8i, then we will have found the general
solution, since the actual maximum of LD will then lie in the feasible region, provided the
equality constraint, Eq. (15), is also met. In order to impose the equality constraint we
introduce an additional Lagrange multiplier �. Thus we seek to maximize

LD �
n+1X
i=1

�i �
1

2

n+1X
i;j=1

�iHij�j � �

n+1X
i=1

�iyi; (27)

where we have introduced the Hessian

Hij � yiyjxi � xj : (28)

Setting @LD
@�i

= 0 gives

(H�)i + �yi = 1 8i (29)

Now H has a very simple structure: the o�-diagonal elements are �yiyjR2=n, and the
diagonal elements are R2. The fact that all the o�-diagonal elements di�er only by factors
of yi suggests looking for a solution which has the form:

�i =

�
1 + yi

2

�
a+

�
1� yi

2

�
b (30)

where a and b are unknowns. Plugging this form in Eq. (29) gives:�
n+ 1

n

��
a+ b

2

�
� yip

n

�
a+ b

2

�
=

1� �yi

R2
(31)

where p is de�ned by

p �
n+1X
i=1

yi: (32)

Thus

a+ b =
2n

R2(n+ 1)
(33)

and substituting this into the equality constraint Eq. (15) to �nd a, b gives

a =
n

R2(n+ 1)

�
1� p

n+ 1

�
; b =

n

R2(n+ 1)

�
1 +

p

n+ 1

�
(34)

which gives for the solution

�i =
n

R2(n+ 1)

�
1� yip

n+ 1

�
(35)

Also,

(H�)i = 1� yip

n+ 1
: (36)
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Hence

kwk2 =

n+1X
i;j=1

�i�jyiyjxi � xj = �TH�

=

n+1X
i=1

�i

�
1� yip

n+ 1

�
=

n+1X
i=1

�i =
� n

R2

� 
1�

�
p

n+ 1

�2
!

(37)

Note that this is one of those cases where the Lagrange multiplier � can remain undeter-
mined (although determining it is trivial). We have now solved the problem, since all the
�i are clearly positive or zero (in fact the �i will only be zero if all training points have
the same class). Note that kwk depends only on the number of positive (negative) polarity
points, and not on how the class labels are assigned to the points in Eq. (22). This is clearly
not true of w itself, which is given by

w =
n

R2(n+ 1)

n+1X
i=1

�
yi �

p

n+ 1

�
xi (38)

The margin, M = 2=kwk, is thus given by

M =
2Rp

n (1� (p=(n+ 1))2)
: (39)

Thus when the number of points n+ 1 is even, the minimum margin occurs when p = 0
(equal numbers of positive and negative examples), in which case the margin is Mmin =
2R=

p
n. If n+ 1 is odd, the minimum margin occurs when p = �1, in which case Mmin =

2R(n+1)=(n
p
n+ 2). In both cases, the maximum margin is given byMmax = R(n+1)=n.

Thus, for example, for the two dimensional simplex consisting of three points lying on S1

(and spanning R2), and with labeling such that not all three points have the same polarity,
the maximum and minimum margin are both 3R=2 (see Figure (12)).

Note that the results of this Section amount to an alternative, constructive proof that the
VC dimension of oriented separating hyperplanes in Rn is at least n+ 1.

3.4. Test Phase

Once we have trained a Support Vector Machine, how can we use it? We simply determine
on which side of the decision boundary (that hyperplane lying half way between H1 and H2

and parallel to them) a given test pattern x lies and assign the corresponding class label,
i.e. we take the class of x to be sgn(w � x+ b).

3.5. The Non-Separable Case

The above algorithm for separable data, when applied to non-separable data, will �nd no
feasible solution: this will be evidenced by the objective function (i.e. the dual Lagrangian)
growing arbitrarily large. So how can we extend these ideas to handle non-separable data?
We would like to relax the constraints (10) and (11), but only when necessary, that is, we
would like to introduce a further cost (i.e. an increase in the primal objective function) for
doing so. This can be done by introducing positive slack variables �i; i = 1; � � � ; l in the
constraints (Cortes and Vapnik, 1995), which then become:



14

xi �w+ b � +1� �i for yi = +1 (40)

xi �w+ b � �1 + �i for yi = �1 (41)

�i � 0 8i: (42)

Thus, for an error to occur, the corresponding �i must exceed unity, so
P

i �i is an upper
bound on the number of training errors. Hence a natural way to assign an extra cost
for errors is to change the objective function to be minimized from kwk2=2 to kwk2=2 +
C (
P

i �i)
k
, where C is a parameter to be chosen by the user, a larger C corresponding to

assigning a higher penalty to errors. As it stands, this is a convex programming problem
for any positive integer k; for k = 2 and k = 1 it is also a quadratic programming problem,
and the choice k = 1 has the further advantage that neither the �i, nor their Lagrange
multipliers, appear in the Wolfe dual problem, which becomes:

Maximize:

LD �
X
i

�i �
1

2

X
i;j

�i�jyiyjxi � xj (43)

subject to:

0 � �i � C; (44)

X
i

�iyi = 0: (45)

The solution is again given by

w =

NSX
i=1

�iyixi: (46)

where NS is the number of support vectors. Thus the only di�erence from the optimal
hyperplane case is that the �i now have an upper bound of C. The situation is summarized
schematically in Figure 6.

We will need the Karush-Kuhn-Tucker conditions for the primal problem. The primal
Lagrangian is

LP =
1

2
kwk2 + C

X
i

�i �
X
i

�ifyi(xi �w+ b)� 1 + �ig �
X
i

�i�i (47)

where the �i are the Lagrange multipliers introduced to enforce positivity of the �i. The
KKT conditions for the primal problem are therefore (note i runs from 1 to the number of
training points, and � from 1 to the dimension of the data)

@LP

@w�
= w� �

X
i

�iyixi� = 0 (48)

@LP

@b
= �

X
i

�iyi = 0 (49)
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@LP

@�i
= C � �i � �i = 0 (50)

yi(xi �w+ b)� 1 + �i � 0 (51)

�i � 0 (52)

�i � 0 (53)

�i � 0 (54)

�ifyi(xi �w+ b)� 1 + �ig = 0 (55)

�i�i = 0 (56)

As before, we can use the KKT complementarity conditions, Eqs. (55) and (56), to
determine the threshold b. Note that Eq. (50) combined with Eq. (56) shows that �i = 0 if
�i < C. Thus we can simply take any training point for which 0 < �i < C to use Eq. (55)
(with �i = 0) to compute b. (As before, it is numerically wiser to take the average over all
such training points.)

-b

−ξ
|w|

|w|

w

Figure 6. Linear separating hyperplanes for the non-separable case.

3.6. A Mechanical Analogy

Consider the case in which the data are in R2. Suppose that the i'th support vector exerts
a force Fi = �iyiŵ on a sti� sheet lying along the decision surface (the \decision sheet")
(here ŵ denotes the unit vector in the direction w). Then the solution (46) satis�es the
conditions of mechanical equilibrium:

X
Forces =

X
i

�iyiŵ = 0 (57)

X
Torques =

X
i

si ^ (�iyiŵ) = ŵ ^w = 0: (58)

(Here the si are the support vectors, and ^ denotes the vector product.) For data in Rn,
clearly the condition that the sum of forces vanish is still met. One can easily show that
the torque also vanishes.9

This mechanical analogy depends only on the form of the solution (46), and therefore holds
for both the separable and the non-separable cases. In fact this analogy holds in general
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(i.e., also for the nonlinear case described below). The analogy emphasizes the interesting
point that the \most important" data points are the support vectors with highest values of
�, since they exert the highest forces on the decision sheet. For the non-separable case, the
upper bound �i � C corresponds to an upper bound on the force any given point is allowed
to exert on the sheet. This analogy also provides a reason (as good as any other) to call
these particular vectors \support vectors"10.

3.7. Examples by Pictures

Figure 7 shows two examples of a two-class pattern recognition problem, one separable and
one not. The two classes are denoted by circles and disks respectively. Support vectors are
identi�ed with an extra circle. The error in the non-separable case is identi�ed with a cross.
The reader is invited to use Lucent's SVM Applet (Burges, Knirsch and Haratsch, 1996) to
experiment and create pictures like these (if possible, try using 16 or 24 bit color).

Figure 7. The linear case, separable (left) and not (right). The background colour shows the shape of the

decision surface.

4. Nonlinear Support Vector Machines

How can the above methods be generalized to the case where the decision function11 is not
a linear function of the data? (Boser, Guyon and Vapnik, 1992), showed that a rather old
trick (Aizerman, 1964) can be used to accomplish this in an astonishingly straightforward
way. First notice that the only way in which the data appears in the training problem, Eqs.
(43) - (45), is in the form of dot products, xi � xj . Now suppose we �rst mapped the data
to some other (possibly in�nite dimensional) Euclidean space H, using a mapping which we
will call �:

� : Rd 7! H: (59)

Then of course the training algorithm would only depend on the data through dot products
in H, i.e. on functions of the form �(xi) � �(xj). Now if there were a \kernel function" K

such that K(xi;xj) = �(xi) ��(xj), we would only need to use K in the training algorithm,
and would never need to explicitly even know what � is. One example is



17

K(xi;xj) = e�kxi�xjk
2=2�2 : (60)

In this particular example, H is in�nite dimensional, so it would not be very easy to work
with � explicitly. However, if one replaces xi � xj by K(xi;xj) everywhere in the training
algorithm, the algorithm will happily produce a support vector machine which lives in an
in�nite dimensional space, and furthermore do so in roughly the same amount of time it
would take to train on the un-mapped data. All the considerations of the previous sections
hold, since we are still doing a linear separation, but in a di�erent space.

But how can we use this machine? After all, we need w, and that will live in H also (see
Eq. (46)). But in test phase an SVM is used by computing dot products of a given test
point x with w, or more speci�cally by computing the sign of

f(x) =

NSX
i=1

�iyi�(si) ��(x) + b =

NSX
i=1

�iyiK(si;x) + b (61)

where the si are the support vectors. So again we can avoid computing �(x) explicitly
and use the K(si;x) = �(si) � �(x) instead.
Let us call the space in which the data live, L. (Here and below we use L as a mnemonic

for \low dimensional", and H for \high dimensional": it is usually the case that the range of
� is of much higher dimension than its domain). Note that, in addition to the fact that w
lives in H, there will in general be no vector in L which maps, via the map �, to w. If there
were, f(x) in Eq. (61) could be computed in one step, avoiding the sum (and making the
corresponding SVM NS times faster, where NS is the number of support vectors). Despite
this, ideas along these lines can be used to signi�cantly speed up the test phase of SVMs
(Burges, 1996). Note also that it is easy to �nd kernels (for example, kernels which are
functions of the dot products of the xi in L) such that the training algorithm and solution
found are independent of the dimension of both L and H.

In the next Section we will discuss which functions K are allowable and which are not.
Let us end this Section with a very simple example of an allowed kernel, for which we can
construct the mapping �.

Suppose that your data are vectors in R2, and you choose K(xi;xj) = (xi � xj)2. Then
it's easy to �nd a space H, and mapping � from R2 to H, such that (x � y)2 = �(x) ��(y):
we choose H = R3 and

�(x) =

0
@ x21p

2 x1x2
x22

1
A (62)

(note that here the subscripts refer to vector components). For data in L de�ned on the
square [�1; 1] � [�1; 1] 2 R2 (a typical situation, for grey level image data), the (entire)
image of � is shown in Figure 8. This Figure also illustrates how to think of this mapping:
the image of � may live in a space of very high dimension, but it is just a (possibly very
contorted) surface whose intrinsic dimension12 is just that of L.
Note that neither the mapping � nor the space H are unique for a given kernel. We could

equally well have chosen H to again be R3 and

�(x) =
1p
2

0
@ (x21 � x22)

2x1x2
(x21 + x22)

1
A (63)
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Figure 8. Image, in H, of the square [�1; 1]� [�1; 1] 2 R2 under the mapping �.

or H to be R4 and

�(x) =

0
BB@

x21
x1x2
x1x2
x22

1
CCA : (64)

The literature on SVMs usually refers to the space H as a Hilbert space, so let's end this
Section with a few notes on this point. You can think of a Hilbert space as a generalization
of Euclidean space that behaves in a gentlemanly fashion. Speci�cally, it is any linear space,
with an inner product de�ned, which is also complete with respect to the corresponding
norm (that is, any Cauchy sequence of points converges to a point in the space). Some
authors (e.g. (Kolmogorov, 1970)) also require that it be separable (that is, it must have a
countable subset whose closure is the space itself), and some (e.g. Halmos, 1967) don't. It's a
generalization mainly because its inner product can be any inner product, not just the scalar
(\dot") product used here (and in Euclidean spaces in general). It's interesting that the
older mathematical literature (e.g. Kolmogorov, 1970) also required that Hilbert spaces be
in�nite dimensional, and that mathematicians are quite happy de�ning in�nite dimensional
Euclidean spaces. Research on Hilbert spaces centers on operators in those spaces, since
the basic properties have long since been worked out. Since some people understandably
blanch at the mention of Hilbert spaces, I decided to use the term Euclidean throughout
this tutorial.

4.1. Mercer's Condition

For which kernels does there exist a pair fH;�g, with the properties described above, and
for which does there not? The answer is given by Mercer's condition (Vapnik, 1995; Courant
and Hilbert, 1953): There exists a mapping � and an expansion

K(x;y) =
X
i

�(x)i�(y)i (65)
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if and only if, for any g(x) such thatZ
g(x)2dx is �nite (66)

thenZ
K(x;y)g(x)g(y)dxdy � 0: (67)

Note that for speci�c cases, it may not be easy to check whether Mercer's condition is
satis�ed. Eq. (67) must hold for every g with �nite L2 norm (i.e. which satis�es Eq. (66)).
However, we can easily prove that the condition is satis�ed for positive integral powers of
the dot product: K(x;y) = (x � y)p. We must show that

Z
(

dX
i=1

xiyi)
pg(x)g(y)dxdy � 0: (68)

The typical term in the multinomial expansion of (
Pd

i=1 xiyi)
p contributes a term of the

form

p!

r1!r2! � � � (p� r1 � r2 � � �)!

Z
xr11 x

r2
2 � � � yr11 yr22 � � � g(x)g(y)dxdy (69)

to the left hand side of Eq. (67), which factorizes:

=
p!

r1!r2! � � � (p� r1 � r2 � � �)!
(

Z
xr11 x

r2
2 � � � g(x)dx)2 � 0: (70)

One simple consequence is that any kernel which can be expressed asK(x;y) =
P1

p=0 cp(x�
y)p, where the cp are positive real coeÆcients and the series is uniformly convergent, satis�es
Mercer's condition, a fact also noted in (Smola, Sch�olkopf and M�uller, 1998b).

Finally, what happens if one uses a kernel which does not satisfy Mercer's condition? In
general, there may exist data such that the Hessian is inde�nite, and for which the quadratic
programming problem will have no solution (the dual objective function can become arbi-
trarily large). However, even for kernels that do not satisfy Mercer's condition, one might
still �nd that a given training set results in a positive semide�nite Hessian, in which case the
training will converge perfectly well. In this case, however, the geometrical interpretation
described above is lacking.

4.2. Some Notes on � and H

Mercer's condition tells us whether or not a prospective kernel is actually a dot product
in some space, but it does not tell us how to construct � or even what H is. However, as
with the homogeneous (that is, homogeneous in the dot product in L) quadratic polynomial
kernel discussed above, we can explicitly construct the mapping for some kernels. In Section
6.1 we show how Eq. (62) can be extended to arbitrary homogeneous polynomial kernels,
and that the corresponding space H is a Euclidean space of dimension

�
d+p�1

p

�
. Thus for

example, for a degree p = 4 polynomial, and for data consisting of 16 by 16 images (d=256),
dim(H) is 183,181,376.

Usually, mapping your data to a \feature space" with an enormous number of dimensions
would bode ill for the generalization performance of the resulting machine. After all, the
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set of all hyperplanes fw; bg are parameterized by dim(H) +1 numbers. Most pattern
recognition systems with billions, or even an in�nite, number of parameters would not make
it past the start gate. How come SVMs do so well? One might argue that, given the form
of solution, there are at most l+1 adjustable parameters (where l is the number of training
samples), but this seems to be begging the question13. It must be something to do with our
requirement of maximum margin hyperplanes that is saving the day. As we shall see below,
a strong case can be made for this claim.

Since the mapped surface is of intrinsic dimension dim(L), unless dim(L) = dim(H), it
is obvious that the mapping cannot be onto (surjective). It also need not be one to one
(bijective): consider x1 ! �x1; x2 ! �x2 in Eq. (62). The image of � need not itself be
a vector space: again, considering the above simple quadratic example, the vector ��(x) is
not in the image of � unless x = 0. Further, a little playing with the inhomogeneous kernel

K(xi;xj) = (xi � xj + 1)2 (71)

will convince you that the corresponding � can map two vectors that are linearly dependent
in L onto two vectors that are linearly independent in H.

So far we have considered cases where � is done implicitly. One can equally well turn
things around and start with �, and then construct the corresponding kernel. For example
(Vapnik, 1996), if L = R1, then a Fourier expansion in the data x, cut o� after N terms,
has the form

f(x) =
a0

2
+

NX
r=1

(a1r cos(rx) + a2r sin(rx)) (72)

and this can be viewed as a dot product between two vectors inR2N+1: a = ( a0p
2
; a11; : : : ; a21; : : :),

and the mapped �(x) = ( 1p
2
; cos(x); cos(2x); : : : ; sin(x); sin(2x); : : :). Then the correspond-

ing (Dirichlet) kernel can be computed in closed form:

�(xi) � �(xj) = K(xi; xj) =
sin((N + 1=2)(xi � xj))

2 sin((xi � xj)=2)
: (73)

This is easily seen as follows: letting Æ � xi � xj ,

�(xi) � �(xj) =
1

2
+

NX
r=1

cos(rxi) cos(rxj ) + sin(rxi) sin(rxj)

= �1

2
+

NX
r=0

cos(rÆ) = �1

2
+Ref

NX
r=0

e(irÆ)g

= �1

2
+Ref(1� ei(N+1)Æ)=(1� eiÆ)g

= (sin((N + 1=2)Æ))=2 sin(Æ=2):

Finally, it is clear that the above implicit mapping trick will work for any algorithm in
which the data only appear as dot products (for example, the nearest neighbor algorithm).
This fact has been used to derive a nonlinear version of principal component analysis by
(Sch�olkopf, Smola and M�uller, 1998b); it seems likely that this trick will continue to �nd
uses elsewhere.
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4.3. Some Examples of Nonlinear SVMs

The �rst kernels investigated for the pattern recognition problem were the following:

K(x;y) = (x � y+ 1)p (74)

K(x;y) = e�kx�yk
2=2�2 (75)

K(x;y) = tanh(�x � y� Æ) (76)

Eq. (74) results in a classi�er that is a polynomial of degree p in the data; Eq. (75) gives
a Gaussian radial basis function classi�er, and Eq. (76) gives a particular kind of two-layer
sigmoidal neural network. For the RBF case, the number of centers (NS in Eq. (61)),
the centers themselves (the si), the weights (�i), and the threshold (b) are all produced
automatically by the SVM training and give excellent results compared to classical RBFs,
for the case of Gaussian RBFs (Sch�olkopf et al, 1997). For the neural network case, the
�rst layer consists of NS sets of weights, each set consisting of dL (the dimension of the
data) weights, and the second layer consists of NS weights (the �i), so that an evaluation
simply requires taking a weighted sum of sigmoids, themselves evaluated on dot products of
the test data with the support vectors. Thus for the neural network case, the architecture
(number of weights) is determined by SVM training.

Note, however, that the hyperbolic tangent kernel only satis�es Mercer's condition for
certain values of the parameters � and Æ (and of the data kxk2). This was �rst noticed
experimentally (Vapnik, 1995); however some necessary conditions on these parameters for
positivity are now known14.

Figure 9 shows results for the same pattern recognition problem as that shown in Figure
7, but where the kernel was chosen to be a cubic polynomial. Notice that, even though
the number of degrees of freedom is higher, for the linearly separable case (left panel), the
solution is roughly linear, indicating that the capacity is being controlled; and that the
linearly non-separable case (right panel) has become separable.

Figure 9. Degree 3 polynomial kernel. The background colour shows the shape of the decision surface.

Finally, note that although the SVM classi�ers described above are binary classi�ers, they
are easily combined to handle the multiclass case. A simple, e�ective combination trains
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N one-versus-rest classi�ers (say, \one" positive, \rest" negative) for the N -class case and
takes the class for a test point to be that corresponding to the largest positive distance
(Boser, Guyon and Vapnik, 1992).

4.4. Global Solutions and Uniqueness

When is the solution to the support vector training problem global, and when is it unique?
By \global", we mean that there exists no other point in the feasible region at which the
objective function takes a lower value. We will address two kinds of ways in which uniqueness
may not hold: solutions for which fw; bg are themselves unique, but for which the expansion
of w in Eq. (46) is not; and solutions whose fw; bg di�er. Both are of interest: even if the
pair fw; bg is unique, if the �i are not, there may be equivalent expansions of w which
require fewer support vectors (a trivial example of this is given below), and which therefore
require fewer instructions during test phase.

It turns out that every local solution is also global. This is a property of any convex
programming problem (Fletcher, 1987). Furthermore, the solution is guaranteed to be
unique if the objective function (Eq. (43)) is strictly convex, which in our case means
that the Hessian must be positive de�nite (note that for quadratic objective functions F ,
the Hessian is positive de�nite if and only if F is strictly convex; this is not true for non-
quadratic F : there, a positive de�nite Hessian implies a strictly convex objective function,
but not vice versa (consider F = x4) (Fletcher, 1987)). However, even if the Hessian is
positive semide�nite, the solution can still be unique: consider two points along the real
line with coordinates x1 = 1 and x2 = 2, and with polarities + and �. Here the Hessian is
positive semide�nite, but the solution (w = �2; b = 3; �i = 0 in Eqs. (40), (41), (42)) is
unique. It is also easy to �nd solutions which are not unique in the sense that the �i in the
expansion of w are not unique:: for example, consider the problem of four separable points
on a square in R2: x1 = [1; 1], x2 = [�1; 1], x3 = [�1;�1] and x4 = [1;�1], with polarities
[+;�;�;+] respectively. One solution is w = [1; 0], b = 0, � = [0:25; 0:25; 0:25; 0:25];
another has the same w and b, but � = [0:5; 0:5; 0; 0] (note that both solutions satisfy the
constraints �i > 0 and

P
i �iyi = 0). When can this occur in general? Given some solution

�, choose an �0 which is in the null space of the Hessian Hij = yiyjxi � xj , and require that
�0 be orthogonal to the vector all of whose components are 1. Then adding �0 to � in Eq.
(43) will leave LD unchanged. If 0 � �i + �0i � C and �0 satis�es Eq. (45), then � + �0 is
also a solution15.

How about solutions where the fw; bg are themselves not unique? (We emphasize that
this can only happen in principle if the Hessian is not positive de�nite, and even then,
the solutions are necessarily global). The following very simple theorem shows that if non-
unique solutions occur, then the solution at one optimal point is continuously deformable
into the solution at the other optimal point, in such a way that all intermediate points are
also solutions.

Theorem 2 Let the variable X stand for the pair of variables fw; bg. Let the Hessian for

the problem be positive semide�nite, so that the objective function is convex. Let X0 and X1

be two points at which the objective function attains its minimal value. Then there exists a

path X = X(�) = (1� �)X0 + �X1; � 2 [0; 1], such that X(�) is a solution for all � .

Proof: Let the minimum value of the objective function be Fmin. Then by assumption,
F (X0) = F (X1) = Fmin. By convexity of F , F (X(�)) � (1� �)F (X0) + �F (X1) = Fmin.
Furthermore, by linearity, the X(�) satisfy the constraints Eq. (40), (41): explicitly (again
combining both constraints into one):
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yi(w� � xi + b� ) = yi((1� �)(w0 � xi + b0) + �(w1 � xi + b1))

� (1� �)(1� �i) + �(1� �i) = 1� �i (77)

Although simple, this theorem is quite instructive. For example, one might think that the
problems depicted in Figure 10 have several di�erent optimal solutions (for the case of linear
support vector machines). However, since one cannot smoothly move the hyperplane from
one proposed solution to another without generating hyperplanes which are not solutions,
we know that these proposed solutions are in fact not solutions at all. In fact, for each
of these cases, the optimal unique solution is at w = 0, with a suitable choice of b (which
has the e�ect of assigning the same label to all the points). Note that this is a perfectly
acceptable solution to the classi�cation problem: any proposed hyperplane (with w 6= 0)
will cause the primal objective function to take a higher value.

Figure 10. Two problems, with proposed (incorrect) non-unique solutions.

Finally, note that the fact that SVM training always �nds a global solution is in contrast
to the case of neural networks, where many local minima usually exist.

5. Methods of Solution

The support vector optimization problem can be solved analytically only when the number
of training data is very small, or for the separable case when it is known beforehand which
of the training data become support vectors (as in Sections 3.3 and 6.2). Note that this can
happen when the problem has some symmetry (Section 3.3), but that it can also happen
when it does not (Section 6.2). For the general analytic case, the worst case computational
complexity is of order N3

S (inversion of the Hessian), where NS is the number of support
vectors, although the two examples given both have complexity of O(1).

However, in most real world cases, Equations (43) (with dot products replaced by ker-
nels), (44), and (45) must be solved numerically. For small problems, any general purpose
optimization package that solves linearly constrained convex quadratic programs will do. A
good survey of the available solvers, and where to get them, can be found16 in (Mor�e and
Wright, 1993).

For larger problems, a range of existing techniques can be brought to bear. A full ex-
ploration of the relative merits of these methods would �ll another tutorial. Here we just
describe the general issues, and for concreteness, give a brief explanation of the technique
we currently use. Below, a \face" means a set of points lying on the boundary of the feasible
region, and an \active constraint" is a constraint for which the equality holds. For more
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on nonlinear programming techniques see (Fletcher, 1987; Mangasarian, 1969; McCormick,
1983).

The basic recipe is to (1) note the optimality (KKT) conditions which the solution must
satisfy, (2) de�ne a strategy for approaching optimality by uniformly increasing the dual
objective function subject to the constraints, and (3) decide on a decomposition algorithm
so that only portions of the training data need be handled at a given time (Boser, Guyon
and Vapnik, 1992; Osuna, Freund and Girosi, 1997a). We give a brief description of some
of the issues involved. One can view the problem as requiring the solution of a sequence
of equality constrained problems. A given equality constrained problem can be solved in
one step by using the Newton method (although this requires storage for a factorization of
the projected Hessian), or in at most l steps using conjugate gradient ascent (Press et al.,
1992) (where l is the number of data points for the problem currently being solved: no extra
storage is required). Some algorithms move within a given face until a new constraint is
encountered, in which case the algorithm is restarted with the new constraint added to the
list of equality constraints. This method has the disadvantage that only one new constraint
is made active at a time. \Projection methods" have also been considered (Mor�e, 1991),
where a point outside the feasible region is computed, and then line searches and projections
are done so that the actual move remains inside the feasible region. This approach can add
several new constraints at once. Note that in both approaches, several active constraints
can become inactive in one step. In all algorithms, only the essential part of the Hessian
(the columns corresponding to �i 6= 0) need be computed (although some algorithms do
compute the whole Hessian). For the Newton approach, one can also take advantage of the
fact that the Hessian is positive semide�nite by diagonalizing it with the Bunch-Kaufman
algorithm (Bunch and Kaufman, 1977; Bunch and Kaufman, 1980) (if the Hessian were
inde�nite, it could still be easily reduced to 2x2 block diagonal form with this algorithm).
In this algorithm, when a new constraint is made active or inactive, the factorization of
the projected Hessian is easily updated (as opposed to recomputing the factorization from
scratch). Finally, in interior point methods, the variables are essentially rescaled so as to
always remain inside the feasible region. An example is the \LOQO" algorithm of (Vander-
bei, 1994a; Vanderbei, 1994b), which is a primal-dual path following algorithm. This last
method is likely to be useful for problems where the number of support vectors as a fraction
of training sample size is expected to be large.

We briey describe the core optimization method we currently use17. It is an active set
method combining gradient and conjugate gradient ascent. Whenever the objective function
is computed, so is the gradient, at very little extra cost. In phase 1, the search directions
s are along the gradient. The nearest face along the search direction is found. If the dot
product of the gradient there with s indicates that the maximum along s lies between the
current point and the nearest face, the optimal point along the search direction is computed
analytically (note that this does not require a line search), and phase 2 is entered. Otherwise,
we jump to the new face and repeat phase 1. In phase 2, Polak-Ribiere conjugate gradient
ascent (Press et al., 1992) is done, until a new face is encountered (in which case phase 1 is
re-entered) or the stopping criterion is met. Note the following:

� Search directions are always projected so that the �i continue to satisfy the equality
constraint Eq. (45). Note that the conjugate gradient algorithm will still work; we
are simply searching in a subspace. However, it is important that this projection is
implemented in such a way that not only is Eq. (45) met (easy), but also so that the
angle between the resulting search direction, and the search direction prior to projection,
is minimized (not quite so easy).
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� We also use a \sticky faces" algorithm: whenever a given face is hit more than once,
the search directions are adjusted so that all subsequent searches are done within that
face. All \sticky faces" are reset (made \non-sticky") when the rate of increase of the
objective function falls below a threshold.

� The algorithm stops when the fractional rate of increase of the objective function F falls
below a tolerance (typically 1e-10, for double precision). Note that one can also use
as stopping criterion the condition that the size of the projected search direction falls
below a threshold. However, this criterion does not handle scaling well.

� In my opinion the hardest thing to get right is handling precision problems correctly
everywhere. If this is not done, the algorithm may not converge, or may be much slower
than it needs to be.

A good way to check that your algorithm is working is to check that the solution satis�es
all the Karush-Kuhn-Tucker conditions for the primal problem, since these are necessary
and suÆcient conditions that the solution be optimal. The KKT conditions are Eqs. (48)
through (56), with dot products between data vectors replaced by kernels wherever they
appear (note w must be expanded as in Eq. (48) �rst, since w is not in general the mapping
of a point in L). Thus to check the KKT conditions, it is suÆcient to check that the
�i satisfy 0 � �i � C, that the equality constraint (49) holds, that all points for which
0 � �i < C satisfy Eq. (51) with �i = 0, and that all points with �i = C satisfy Eq. (51)
for some �i � 0. These are suÆcient conditions for all the KKT conditions to hold: note
that by doing this we never have to explicitly compute the �i or �i, although doing so is
trivial.

5.1. Complexity, Scalability, and Parallelizability

Support vector machines have the following very striking property. Both training and test
functions depend on the data only through the kernel functions K(xi;xj). Even though it
corresponds to a dot product in a space of dimension dH , where dH can be very large or
in�nite, the complexity of computing K can be far smaller. For example, for kernels of the
form K = (xi �xj)p, a dot product in H would require of order

�
dL+p�1

p

�
operations, whereas

the computation of K(xi;xj) requires only O(dL) operations (recall dL is the dimension of
the data). It is this fact that allows us to construct hyperplanes in these very high dimen-
sional spaces yet still be left with a tractable computation. Thus SVMs circumvent both
forms of the \curse of dimensionality": the proliferation of parameters causing intractable
complexity, and the proliferation of parameters causing over�tting.

5.1.1. Training For concreteness, we will give results for the computational complexity of
one the the above training algorithms (Bunch-Kaufman)18 (Kaufman, 1998). These results
assume that di�erent strategies are used in di�erent situations. We consider the problem of
training on just one \chunk" (see below). Again let l be the number of training points, NS

the number of support vectors (SVs), and dL the dimension of the input data. In the case
where most SVs are not at the upper bound, and NS=l << 1, the number of operations C
is O(N3

S + (N2
S)l+NSdLl). If instead NS=l � 1, then C is O(N3

S +NSl+NSdLl) (basically
by starting in the interior of the feasible region). For the case where most SVs are at the
upper bound, and NS=l << 1, then C is O(N2

S + NSdLl). Finally, if most SVs are at the
upper bound, and NS=l � 1, we have C of O(DLl

2).

For larger problems, two decomposition algorithms have been proposed to date. In the
\chunking" method (Boser, Guyon and Vapnik, 1992), one starts with a small, arbitrary
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subset of the data and trains on that. The rest of the training data is tested on the resulting
classi�er, and a list of the errors is constructed, sorted by how far on the wrong side of the
margin they lie (i.e. how egregiously the KKT conditions are violated). The next chunk is
constructed from the �rst N of these, combined with the NS support vectors already found,
where N +NS is decided heuristically (a chunk size that is allowed to grow too quickly or
too slowly will result in slow overall convergence). Note that vectors can be dropped from
a chunk, and that support vectors in one chunk may not appear in the �nal solution. This
process is continued until all data points are found to satisfy the KKT conditions.

The above method requires that the number of support vectorsNS be small enough so that
a Hessian of size NS by NS will �t in memory. An alternative decomposition algorithm has
been proposed which overcomes this limitation (Osuna, Freund and Girosi, 1997b). Again,
in this algorithm, only a small portion of the training data is trained on at a given time, and
furthermore, only a subset of the support vectors need be in the \working set" (i.e. that set
of points whose �'s are allowed to vary). This method has been shown to be able to easily
handle a problem with 110,000 training points and 100,000 support vectors. However, it
must be noted that the speed of this approach relies on many of the support vectors having
corresponding Lagrange multipliers �i at the upper bound, �i = C.

These training algorithms may take advantage of parallel processing in several ways. First,
all elements of the Hessian itself can be computed simultaneously. Second, each element
often requires the computation of dot products of training data, which could also be par-
allelized. Third, the computation of the objective function, or gradient, which is a speed
bottleneck, can be parallelized (it requires a matrix multiplication). Finally, one can envision
parallelizing at a higher level, for example by training on di�erent chunks simultaneously.
Schemes such as these, combined with the decomposition algorithm of (Osuna, Freund and
Girosi, 1997b), will be needed to make very large problems (i.e. >> 100,000 support vectors,
with many not at bound), tractable.

5.1.2. Testing In test phase, one must simply evaluate Eq. (61), which will require
O(MNS) operations, where M is the number of operations required to evaluate the kernel.
For dot product and RBF kernels, M is O(dL), the dimension of the data vectors. Again,
both the evaluation of the kernel and of the sum are highly parallelizable procedures.

In the absence of parallel hardware, one can still speed up test phase by a large factor, as
described in Section 9.

6. The VC Dimension of Support Vector Machines

We now show that the VC dimension of SVMs can be very large (even in�nite). We will
then explore several arguments as to why, in spite of this, SVMs usually exhibit good
generalization performance. However it should be emphasized that these are essentially
plausibility arguments. Currently there exists no theory which guarantees that a given
family of SVMs will have high accuracy on a given problem.

We will call any kernel that satis�es Mercer's condition a positive kernel, and the corre-
sponding spaceH the embedding space. We will also call any embedding space with minimal
dimension for a given kernel a \minimal embedding space". We have the following

Theorem 3 Let K be a positive kernel which corresponds to a minimal embedding space

H. Then the VC dimension of the corresponding support vector machine (where the error

penalty C in Eq. (44) is allowed to take all values) is dim(H) + 1.
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Proof: If the minimal embedding space has dimension dH , then dH points in the image of
L under the mapping � can be found whose position vectors in H are linearly independent.
From Theorem 1, these vectors can be shattered by hyperplanes in H. Thus by either
restricting ourselves to SVMs for the separable case (Section 3.1), or for which the error
penalty C is allowed to take all values (so that, if the points are linearly separable, a C can
be found such that the solution does indeed separate them), the family of support vector
machines with kernel K can also shatter these points, and hence has VC dimension dH +1.

Let's look at two examples.

6.1. The VC Dimension for Polynomial Kernels

Consider an SVM with homogeneous polynomial kernel, acting on data in RdL :

K(x1;x2) = (x1 � x2)p; x1; x2 2 RdL (78)

As in the case when dL = 2 and the kernel is quadratic (Section 4), one can explicitly
construct the map �. Letting zi = x1ix2i, so that K(x1;x2) = (z1+ � � �+ zdL)

p, we see that
each dimension of H corresponds to a term with given powers of the zi in the expansion of
K. In fact if we choose to label the components of �(x) in this manner, we can explicitly
write the mapping for any p and dL:

�r1r2���rdL (x) =

s�
p!

r1!r2! � � � rdL !

�
xr11 x

r2
2 � � �xrdLdL

;

dLX
i=1

ri = p; ri � 0 (79)

This leads to

Theorem 4 If the space in which the data live has dimension dL (i.e. L = RdL), the

dimension of the minimal embedding space, for homogeneous polynomial kernels of degree p

(K(x1;x2) = (x1 � x2)p; x1; x2 2 RdL), is
�
dL+p�1

p

�
.

(The proof is in the Appendix). Thus the VC dimension of SVMs with these kernels is�
dL+p�1

p

�
+ 1. As noted above, this gets very large very quickly.

6.2. The VC Dimension for Radial Basis Function Kernels

Theorem 5 Consider the class of Mercer kernels for which K(x1;x2)! 0 as kx1�x2k !
1, and for which K(x;x) is O(1), and assume that the data can be chosen arbitrarily from

Rd. Then the family of classi�ers consisting of support vector machines using these kernels,

and for which the error penalty is allowed to take all values, has in�nite VC dimension.

Proof: The kernel matrix, Kij � K(xi;xj), is a Gram matrix (a matrix of dot products:
see (Horn, 1985)) in H. Clearly we can choose training data such that all o�-diagonal
elements Ki6=j can be made arbitrarily small, and by assumption all diagonal elements Ki=j

are of O(1). The matrix K is then of full rank; hence the set of vectors, whose dot products
in H formK, are linearly independent (Horn, 1985); hence, by Theorem 1, the points can be
shattered by hyperplanes in H, and hence also by support vector machines with suÆciently
large error penalty. Since this is true for any �nite number of points, the VC dimension of
these classi�ers is in�nite.
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Note that the assumptions in the theorem are stronger than necessary (they were chosen
to make the connection to radial basis functions clear). In fact it is only necessary that l
training points can be chosen such that the rank of the matrix Kij increases without limit
as l increases. For example, for Gaussian RBF kernels, this can also be accomplished (even
for training data restricted to lie in a bounded subset of RdL) by choosing small enough
RBF widths. However in general the VC dimension of SVM RBF classi�ers can certainly be
�nite, and indeed, for data restricted to lie in a bounded subset of RdL , choosing restrictions
on the RBF widths is a good way to control the VC dimension.

This case gives us a second opportunity to present a situation where the SVM solution
can be computed analytically, which also amounts to a second, constructive proof of the
Theorem. For concreteness we will take the case for Gaussian RBF kernels of the form
K(x1;x2) = e�kx1�x2k2=2�2 . Let us choose training points such that the smallest distance
between any pair of points is much larger than the width �. Consider the decision function
evaluated on the support vector sj :

f(sj) =
X
i

�iyie
�ksi�sjk2=2�2 + b: (80)

The sum on the right hand side will then be largely dominated by the term i = j; in fact
the ratio of that term to the contribution from the rest of the sum can be made arbitrarily
large by choosing the training points to be arbitrarily far apart. In order to �nd the SVM
solution, we again assume for the moment that every training point becomes a support
vector, and we work with SVMs for the separable case (Section 3.1) (the same argument
will hold for SVMs for the non-separable case if C in Eq. (44) is allowed to take large
enough values). Since all points are support vectors, the equalities in Eqs. (10), (11)
will hold for them. Let there be N+ (N�) positive (negative) polarity points. We further
assume that all positive (negative) polarity points have the same value �+ (��) for their
Lagrange multiplier. (We will know that this assumption is correct if it delivers a solution
which satis�es all the KKT conditions and constraints). Then Eqs. (19), applied to all the
training data, and the equality constraint Eq. (18), become

�+ + b = 1

��� + b = �1
N+�+ �N��� = 0 (81)

which are satis�ed by

�+ =
2N�

N� +N+

�� =
2N+

N� +N+

b =
N+ �N�

N� +N+

(82)

Thus, since the resulting �i are also positive, all the KKT conditions and constraints are
satis�ed, and we must have found the global solution (with zero training errors). Since the
number of training points, and their labeling, is arbitrary, and they are separated without
error, the VC dimension is in�nite.

The situation is summarized schematically in Figure 11.
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Figure 11. Gaussian RBF SVMs of suÆciently small width can classify an arbitrarily large number of

training points correctly, and thus have in�nite VC dimension

Now we are left with a striking conundrum. Even though their VC dimension is in�nite (if
the data is allowed to take all values in RdL), SVM RBFs can have excellent performance
(Sch�olkopf et al, 1997). A similar story holds for polynomial SVMs. How come?

7. The Generalization Performance of SVMs

In this Section we collect various arguments and bounds relating to the generalization perfor-
mance of SVMs. We start by presenting a family of SVM-like classi�ers for which structural
risk minimization can be rigorously implemented, and which will give us some insight as to
why maximizing the margin is so important.

7.1. VC Dimension of Gap Tolerant Classi�ers

Consider a family of classi�ers (i.e. a set of functions � on Rd) which we will call \gap
tolerant classi�ers." A particular classi�er � 2 � is speci�ed by the location and diameter
of a ball in Rd, and by two hyperplanes, with parallel normals, also in Rd. Call the set of
points lying between, but not on, the hyperplanes the \margin set." The decision functions
� are de�ned as follows: points that lie inside the ball, but not in the margin set, are assigned
class f�1g, depending on which side of the margin set they fall. All other points are simply
de�ned to be \correct", that is, they are not assigned a class by the classi�er, and do not
contribute to any risk. The situation is summarized, for d = 2, in Figure 12. This rather
odd family of classi�ers, together with a condition we will impose on how they are trained,
will result in systems very similar to SVMs, and for which structural risk minimization can
be demonstrated. A rigorous discussion is given in the Appendix.

Label the diameter of the ball D and the perpendicular distance between the two hyper-
planesM . The VC dimension is de�ned as before to be the maximum number of points that
can be shattered by the family, but by \shattered" we mean that the points can occur as
errors in all possible ways (see the Appendix for further discussion). Clearly we can control
the VC dimension of a family of these classi�ers by controlling the minimum margin M

and maximum diameter D that members of the family are allowed to assume. For example,
consider the family of gap tolerant classi�ers in R2 with diameter D = 2, shown in Figure
12. Those with margin satisfying M � 3=2 can shatter three points; if 3=2 < M < 2, they
can shatter two; and if M � 2, they can shatter only one. Each of these three families of
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classi�ers corresponds to one of the sets of classi�ers in Figure 4, with just three nested
subsets of functions, and with h1 = 1, h2 = 2, and h3 = 3.

M = 3/2
D = 2

Φ=0

Φ=0

Φ=1

Φ=−1
Φ=0

Figure 12. A gap tolerant classi�er on data in R2.

These ideas can be used to show how gap tolerant classi�ers implement structural risk
minimization. The extension of the above example to spaces of arbitrary dimension is
encapsulated in a (modi�ed) theorem of (Vapnik, 1995):

Theorem 6 For data in Rd, the VC dimension h of gap tolerant classi�ers of minimum

margin Mmin and maximum diameter Dmax is bounded above19 by minfdD2
max=M

2
mine; dg+

1.

For the proof we assume the following lemma, which in (Vapnik, 1979) is held to follow
from symmetry arguments20:

Lemma: Consider n � d+1 points lying in a ball B 2 Rd. Let the points be shatterable
by gap tolerant classi�ers with marginM . Then in order forM to be maximized, the points
must lie on the vertices of an (n� 1)-dimensional symmetric simplex, and must also lie on
the surface of the ball.

Proof: We need only consider the case where the number of points n satis�es n � d + 1.
(n > d+1 points will not be shatterable, since the VC dimension of oriented hyperplanes in
Rd is d+1, and any distribution of points which can be shattered by a gap tolerant classi�er
can also be shattered by an oriented hyperplane; this also shows that h � d+1). Again we
consider points on a sphere of diameter D, where the sphere itself is of dimension d� 2. We
will need two results from Section 3.3, namely (1) if n is even, we can �nd a distribution of n
points (the vertices of the (n�1)-dimensional symmetric simplex) which can be shattered by
gap tolerant classi�ers if D2

max=M
2
min = n�1, and (2) if n is odd, we can �nd a distribution

of n points which can be so shattered if D2
max=M

2
min = (n� 1)2(n+ 1)=n2.

If n is even, at most n points can be shattered whenever

n� 1 � D2
max=M

2
min < n: (83)
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Thus for n even the maximum number of points that can be shattered may be written
bD2

max=M
2
minc+ 1.

If n is odd, at most n points can be shattered when D2
max=M

2
min = (n � 1)2(n + 1)=n2.

However, the quantity on the right hand side satis�es

n� 2 < (n� 1)2(n+ 1)=n2 < n� 1 (84)

for all integer n > 1. Thus for n odd the largest number of points that can be shattered
is certainly bounded above by dD2

max=M
2
mine + 1, and from the above this bound is also

satis�ed when n is even. Hence in general the VC dimension h of gap tolerant classi�ers
must satisfy

h � dD
2
max

M2
min

e+ 1: (85)

This result, together with h � d+ 1, concludes the proof.

7.2. Gap Tolerant Classi�ers, Structural Risk Minimization, and SVMs

Let's see how we can do structural risk minimization with gap tolerant classi�ers. We need
only consider that subset of the �, call it �S , for which training \succeeds", where by success
we mean that all training data are assigned a label 2 f�1g (note that these labels do not
have to coincide with the actual labels, i.e. training errors are allowed). Within �S , �nd
the subset which gives the fewest training errors - call this number of errors Nmin. Within
that subset, �nd the function � which gives maximum margin (and hence the lowest bound
on the VC dimension). Note the value of the resulting risk bound (the right hand side of
Eq. (3), using the bound on the VC dimension in place of the VC dimension). Next, within
�S , �nd that subset which gives Nmin + 1 training errors. Again, within that subset, �nd
the � which gives the maximum margin, and note the corresponding risk bound. Iterate,
and take that classi�er which gives the overall minimum risk bound.

An alternative approach is to divide the functions � into nested subsets �i; i 2 Z ; i � 1,
as follows: all � 2 �i have fD;Mg satisfying dD2=M2e � i. Thus the family of functions
in �i has VC dimension bounded above by min(i; d) + 1. Note also that �i � �i+1. SRM
then proceeds by taking that � for which training succeeds in each subset and for which
the empirical risk is minimized in that subset, and again, choosing that � which gives the
lowest overall risk bound.

Note that it is essential to these arguments that the bound (3) holds for any chosen decision
function, not just the one that minimizes the empirical risk (otherwise eliminating solutions
for which some training point x satis�es �(x) = 0 would invalidate the argument).

The resulting gap tolerant classi�er is in fact a special kind of support vector machine
which simply does not count data falling outside the sphere containing all the training data,
or inside the separating margin, as an error. It seems very reasonable to conclude that
support vector machines, which are trained with very similar objectives, also gain a similar
kind of capacity control from their training. However, a gap tolerant classi�er is not an
SVM, and so the argument does not constitute a rigorous demonstration of structural risk
minimization for SVMs. The original argument for structural risk minimization for SVMs is
known to be awed, since the structure there is determined by the data (see (Vapnik, 1995),
Section 5.11). I believe that there is a further subtle problem with the original argument.
The structure is de�ned so that no training points are members of the margin set. However,
one must still specify how test points that fall into the margin are to be labeled. If one simply
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assigns the same, �xed class to them (say +1), then the VC dimension will be higher21 than
the bound derived in Theorem 6. However, the same is true if one labels them all as errors
(see the Appendix). If one labels them all as \correct", one arrives at gap tolerant classi�ers.

On the other hand, it is known how to do structural risk minimization for systems where
the structure does depend on the data (Shawe-Taylor et al., 1996a; Shawe-Taylor et al.,
1996b). Unfortunately the resulting bounds are much looser than the VC bounds above,
which are already very loose (we will examine a typical case below where the VC bound is
a factor of 100 higher than the measured test error). Thus at the moment structural risk
minimization alone does not provide a rigorous explanation as to why SVMs often have good
generalization performance. However, the above arguments strongly suggest that algorithms
that minimize D2=M2 can be expected to give better generalization performance. Further
evidence for this is found in the following theorem of (Vapnik, 1998), which we quote without
proof22:

Theorem 7 For optimal hyperplanes passing through the origin, we have

E[P (error)] � E[D2=M2]

l
(86)

where P (error) is the probability of error on the test set, the expectation on the left is over

all training sets of size l� 1, and the expectation on the right is over all training sets of size

l.

However, in order for these observations to be useful for real problems, we need a way to
compute the diameter of the minimal enclosing sphere described above, for any number of
training points and for any kernel mapping.

7.3. How to Compute the Minimal Enclosing Sphere

Again let � be the mapping to the embedding space H. We wish to compute the radius
of the smallest sphere in H which encloses the mapped training data: that is, we wish to
minimize R2 subject to

k�(xi)�Ck2 � R2 8i (87)

where C 2 H is the (unknown) center of the sphere. Thus introducing positive Lagrange
multipliers �i, the primal Lagrangian is

LP = R2 �
X
i

�i(R
2 � k�(xi)�Ck2): (88)

This is again a convex quadratic programming problem, so we can instead maximize the
Wolfe dual

LD =
X
i

�iK(xi;xi)�
X
i;j

�i�jK(xi;xj) (89)

(where we have again replaced �(xi) ��(xj) by K(xi;xj)) subject to:

X
i

�i = 1 (90)

�i � 0 (91)
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with solution given by

C =
X
i

�i�(xi): (92)

Thus the problem is very similar to that of support vector training, and in fact the code
for the latter is easily modi�ed to solve the above problem. Note that we were in a sense
\lucky", because the above analysis shows us that there exists an expansion (92) for the
center; there is no a priori reason why we should expect that the center of the sphere in H
should be expressible in terms of the mapped training data in this way. The same can be
said of the solution for the support vector problem, Eq. (46). (Had we chosen some other
geometrical construction, we might not have been so fortunate. Consider the smallest area
equilateral triangle containing two given points in R2. If the points' position vectors are
linearly dependent, the center of the triangle cannot be expressed in terms of them.)

7.4. A Bound from Leave-One-Out

(Vapnik, 1995) gives an alternative bound on the actual risk of support vector machines:

E[P (error)] � E[Number of support vectors]

Number of training samples
; (93)

where P (error) is the actual risk for a machine trained on l � 1 examples, E[P (error)]
is the expectation of the actual risk over all choices of training set of size l � 1, and
E[Number of support vectors] is the expectation of the number of support vectors over all
choices of training sets of size l. It's easy to see how this bound arises: consider the typical
situation after training on a given training set, shown in Figure 13.

Figure 13. Support vectors (circles) can become errors (cross) after removal and re-training (the dotted line

denotes the new decision surface).

We can get an estimate of the test error by removing one of the training points, re-training,
and then testing on the removed point; and then repeating this, for all training points. From
the support vector solution we know that removing any training points that are not support
vectors (the latter include the errors) will have no e�ect on the hyperplane found. Thus
the worst that can happen is that every support vector will become an error. Taking the
expectation over all such training sets therefore gives an upper bound on the actual risk,
for training sets of size l � 1.
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Although elegant, I have yet to �nd a use for this bound. There seem to be many situations
where the actual error increases even though the number of support vectors decreases, so
the intuitive conclusion (systems that give fewer support vectors give better performance)
often seems to fail. Furthermore, although the bound can be tighter than that found using
the estimate of the VC dimension combined with Eq. (3), it can at the same time be less
predictive, as we shall see in the next Section.

7.5. VC, SV Bounds and the Actual Risk

Let us put these observations to some use. As mentioned above, training an SVM RBF
classi�er will automatically give values for the RBF weights, number of centers, center
positions, and threshold. For Gaussian RBFs, there is only one parameter left: the RBF
width (� in Eq. (80)) (we assume here only one RBF width for the problem). Can we
�nd the optimal value for that too, by choosing that � which minimizes D2=M2? Figure 14
shows a series of experiments done on 28x28 NIST digit data, with 10,000 training points and
60,000 test points. The top curve in the left hand panel shows the VC bound (i.e. the bound
resulting from approximating the VC dimension in Eq. (3)23 by Eq. (85)), the middle curve
shows the bound from leave-one-out (Eq. (93)), and the bottom curve shows the measured
test error. Clearly, in this case, the bounds are very loose. The right hand panel shows just
the VC bound (the top curve, for �2 > 200), together with the test error, with the latter
scaled up by a factor of 100 (note that the two curves cross). It is striking that the two
curves have minima in the same place: thus in this case, the VC bound, although loose,
seems to be nevertheless predictive. Experiments on digits 2 through 9 showed that the VC
bound gave a minimum for which �2 was within a factor of two of that which minimized the
test error (digit 1 was inconclusive). Interestingly, in those cases the VC bound consistently
gave a lower prediction for �2 than that which minimized the test error. On the other hand,
the leave-one-out bound, although tighter, does not seem to be predictive, since it had no
minimum for the values of �2 tested.
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Figure 14. The VC bound can be predictive even when loose.
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8. Limitations

Perhaps the biggest limitation of the support vector approach lies in choice of the kernel.
Once the kernel is �xed, SVM classi�ers have only one user-chosen parameter (the error
penalty), but the kernel is a very big rug under which to sweep parameters. Some work has
been done on limiting kernels using prior knowledge (Sch�olkopf et al., 1998a; Burges, 1998),
but the best choice of kernel for a given problem is still a research issue.

A second limitation is speed and size, both in training and testing. While the speed
problem in test phase is largely solved in (Burges, 1996), this still requires two training
passes. Training for very large datasets (millions of support vectors) is an unsolved problem.

Discrete data presents another problem, although with suitable rescaling excellent results
have nevertheless been obtained (Joachims, 1997). Finally, although some work has been
done on training a multiclass SVM in one step24, the optimal design for multiclass SVM
classi�ers is a further area for research.

9. Extensions

We very briey describe two of the simplest, and most e�ective, methods for improving the
performance of SVMs.

The virtual support vector method (Sch�olkopf, Burges and Vapnik, 1996; Burges and
Sch�olkopf, 1997), attempts to incorporate known invariances of the problem (for example,
translation invariance for the image recognition problem) by �rst training a system, and
then creating new data by distorting the resulting support vectors (translating them, in the
case mentioned), and �nally training a new system on the distorted (and the undistorted)
data. The idea is easy to implement and seems to work better than other methods for
incorporating invariances proposed so far.

The reduced set method (Burges, 1996; Burges and Sch�olkopf, 1997) was introduced to
address the speed of support vector machines in test phase, and also starts with a trained
SVM. The idea is to replace the sum in Eq. (46) by a similar sum, where instead of support
vectors, computed vectors (which are not elements of the training set) are used, and instead
of the �i, a di�erent set of weights are computed. The number of parameters is chosen
beforehand to give the speedup desired. The resulting vector is still a vector in H, and
the parameters are found by minimizing the Euclidean norm of the di�erence between the
original vector w and the approximation to it. The same technique could be used for SVM
regression to �nd much more eÆcient function representations (which could be used, for
example, in data compression).

Combining these two methods gave a factor of 50 speedup (while the error rate increased
from 1.0% to 1.1%) on the NIST digits (Burges and Sch�olkopf, 1997).

10. Conclusions

SVMs provide a new approach to the problem of pattern recognition (together with re-
gression estimation and linear operator inversion) with clear connections to the underlying
statistical learning theory. They di�er radically from comparable approaches such as neural
networks: SVM training always �nds a global minimum, and their simple geometric inter-
pretation provides fertile ground for further investigation. An SVM is largely characterized
by the choice of its kernel, and SVMs thus link the problems they are designed for with a
large body of existing work on kernel based methods. I hope that this tutorial will encourage
some to explore SVMs for themselves.
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Appendix

A.1. Proofs of Theorems

We collect here the theorems stated in the text, together with their proofs. The Lemma has
a shorter proof using a \Theorem of the Alternative," (Mangasarian, 1969) but we wished
to keep the proofs as self-contained as possible.

Lemma 1 Two sets of points in Rn may be separated by a hyperplane if and only if the

intersection of their convex hulls is empty.

Proof: We allow the notions of points in Rn, and position vectors of those points, to be
used interchangeably in this proof. Let CA, CB be the convex hulls of two sets of points
A, B in Rn. Let A � B denote the set of points whose position vectors are given by
a� b; a 2 A; b 2 B (note that A�B does not contain the origin), and let CA � CB have
the corresponding meaning for the convex hulls. Then showing that A and B are linearly
separable (separable by a hyperplane) is equivalent to showing that the set A�B is linearly
separable from the origin O. For suppose the latter: then 9 w 2 Rn; b 2 R; b < 0 such
that x � w + b > 0 8x 2 A � B. Now pick some y 2 B, and denote the set of all points
a�b+y; a 2 A; b 2 B by A�B+y. Then x �w+ b > y �w 8x 2 A�B+y, and clearly
y �w+ b < y �w, so the sets A�B+y and y are linearly separable. Repeating this process
shows that A � B is linearly separable from the origin if and only if A and B are linearly
separable.

We now show that, if CA
T
CB = ;, then CA � CB is linearly separable from the origin.

Clearly CA � CB does not contain the origin. Furthermore CA � CB is convex, since
8x1 = a1�b1; x2 = a2�b2; � 2 [0; 1]; a1; a2 2 CA; b1;b2 2 CB , we have (1��)x1+�x2 =
((1 � �)a1 + �a2) � ((1� �)b1 + �b2) 2 CA � CB . Hence it is suÆcient to show that any
convex set S, which does not contain O, is linearly separable from O. Let xmin 2 S be
that point whose Euclidean distance from O, kxmink, is minimal. (Note there can be only
one such point, since if there were two, the chord joining them, which also lies in S, would
contain points closer to O.) We will show that 8x 2 S, x � xmin > 0. Suppose 9 x 2 S

such that x � xmin � 0. Let L be the line segment joining xmin and x. Then convexity
implies that L � S. Thus O =2 L, since by assumption O =2 S. Hence the three points O, x
and xmin form an obtuse (or right) triangle, with obtuse (or right) angle occurring at the
point O. De�ne n̂ � (x � xmin)=kx � xmink. Then the distance from the closest point in
L to O is kxmink2 � (xmin � n̂)2, which is less than kxmink2. Hence x � xmin > 0 and S is
linearly separable from O. Thus CA�CB is linearly separable from O, and a fortiori A�B

is linearly separable from O, and thus A is linearly separable from B.

It remains to show that, if the two sets of points A, B are linearly separable, the intersec-
tion of their convex hulls if empty. By assumption there exists a pair w 2 Rn; b 2 R, such
that 8ai 2 A; w �ai+b > 0 and 8bi 2 B; w �bi+b < 0. Consider a general point x 2 CA. It
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may be written x =
P

i �iai;
P

�i = 1; 0 � �i � 1. Then w �x+ b =
P

i �ifw �ai+ bg > 0.
Similarly, for points y 2 CB , w � y + b < 0. Hence CA

T
CB = ;, since otherwise we

would be able to �nd a point x = y which simultaneously satis�es both inequalities.

Theorem 1: Consider some set of m points in Rn. Choose any one of the points as
origin. Then the m points can be shattered by oriented hyperplanes if and only if the
position vectors of the remaining points are linearly independent.

Proof: Label the origin O, and assume that the m� 1 position vectors of the remaining
points are linearly independent. Consider any partition of the m points into two subsets,
S1 and S2, of order m1 and m2 respectively, so that m1 +m2 = m. Let S1 be the subset
containing O. Then the convex hull C1 of S1 is that set of points whose position vectors x
satisfy

x =

m1X
i=1

�is1i;

m1X
i=1

�i = 1; �i � 0 (A.1)

where the s1i are the position vectors of the m1 points in S1 (including the null position
vector of the origin). Similarly, the convex hull C2 of S2 is that set of points whose position
vectors x satisfy

x =

m2X
i=1

�is2i;

m2X
i=1

�i = 1; �i � 0 (A.2)

where the s2i are the position vectors of the m2 points in S2. Now suppose that C1 and
C2 intersect. Then there exists an x 2 Rn which simultaneously satis�es Eq. (A.1) and Eq.
(A.2). Subtracting these equations gives a linear combination of the m�1 non-null position
vectors which vanishes, which contradicts the assumption of linear independence. By the
lemma, since C1 and C2 do not intersect, there exists a hyperplane separating S1 and S2.
Since this is true for any choice of partition, the m points can be shattered.

It remains to show that if the m�1 non-null position vectors are not linearly independent,
then the m points cannot be shattered by oriented hyperplanes. If the m�1 position vectors
are not linearly independent, then there exist m� 1 numbers, i, such that

m�1X
i=1

isi = 0 (A.3)

If all the i are of the same sign, then we can scale them so that i 2 [0; 1] and
P

i i = 1.
Eq. (A.3) then states that the origin lies in the convex hull of the remaining points; hence,
by the lemma, the origin cannot be separated from the remaining points by a hyperplane,
and the points cannot be shattered.

If the i are not all of the same sign, place all the terms with negative i on the right:X
j2I1

jj jsj =
X
k2I2

jkjsk (A.4)

where I1, I2 are the indices of the corresponding partition of SnO (i.e. of the set S with the
origin removed). Now scale this equation so that either

P
j2I1 jj j = 1 and

P
k2I2 jkj � 1,

or
P

j2I1 jj j � 1 and
P

k2I2 jkj = 1. Suppose without loss of generality that the latter
holds. Then the left hand side of Eq. (A.4) is the position vector of a point lying in the
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convex hull of the points fSj2I1 sjg
S
O (or, if the equality holds, of the points fSj2I1 sjg),

and the right hand side is the position vector of a point lying in the convex hull of the pointsS
k2I2 sk, so the convex hulls overlap, and by the lemma, the two sets of points cannot be

separated by a hyperplane. Thus the m points cannot be shattered.

Theorem 4: If the data is d-dimensional (i.e. L = Rd), the dimension of the mini-
mal embedding space, for homogeneous polynomial kernels of degree p (K(x1;x2) = (x1 �
x2)

p; x1; x2 2 Rd), is
�
d+p�1

p

�
.

Proof: First we show that the the number of components of �(x) is
�
p+d�1

p

�
. Label the

components of � as in Eq. (79). Then a component is uniquely identi�ed by the choice

of the d integers ri � 0,
Pd

i=1 ri = p. Now consider p objects distributed amongst d � 1
partitions (numbered 1 through d � 1), such that objects are allowed to be to the left of
all partitions, or to the right of all partitions. Suppose m objects fall between partitions
q and q + 1. Let this correspond to a term xmq+1 in the product in Eq. (79). Similarly, m
objects falling to the left of all partitions corresponds to a term xm1 , and m objects falling
to the right of all partitions corresponds to a term xmd . Thus the number of distinct terms

of the form xr11 x
r2
2 � � �xrdd ;

Pd
i=1 ri = p; ri � 0 is the number of way of distributing

the objects and partitions amongst themselves, modulo permutations of the partitions and
permutations of the objects, which is

�
p+d�1

p

�
.

Next we must show that the set of vectors with components �r1r2���rd(x) span the spaceH.
This follows from the fact that the components of �(x) are linearly independent functions.
For suppose instead that the image of � acting on x 2 L is a subspace of H. Then there
exists a �xed nonzero vector V 2 H such that

dim(H)X
i=1

Vi�i(x) = 0 8x 2 L: (A.5)

Using the labeling introduced above, consider a particular component of �:

�r1r2���rd(x);

dX
i=1

ri = p: (A.6)

Since Eq. (A.5) holds for all x, and since the mapping � in Eq. (79) certainly has all
derivatives de�ned, we can apply the operator

(
@

@x1
)r1 � � � ( @

@xd
)rd (A.7)

to Eq. (A.5), which will pick that one term with corresponding powers of the xi in Eq.
(79), giving

Vr1r2���rd = 0: (A.8)

Since this is true for all choices of r1; � � � ; rd such that
Pd

i=1 ri = p, every component of
V must vanish. Hence the image of � acting on x 2 L spans H.

A.2. Gap Tolerant Classi�ers and VC Bounds

The following point is central to the argument. One normally thinks of a collection of points
as being \shattered" by a set of functions, if for any choice of labels for the points, a function
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from the set can be found which assigns those labels to the points. The VC dimension of that
set of functions is then de�ned as the maximum number of points that can be so shattered.
However, consider a slightly di�erent de�nition. Let a set of points be shattered by a set
of functions if for any choice of labels for the points, a function from the set can be found
which assigns the incorrect labels to all the points. Again let the VC dimension of that set
of functions be de�ned as the maximum number of points that can be so shattered.

It is in fact this second de�nition (which we adopt from here on) that enters the VC
bound proofs (Vapnik, 1979; Devroye, Gy�or� and Lugosi, 1996). Of course for functions
whose range is f�1g (i.e. all data will be assigned either positive or negative class), the two
de�nitions are the same. However, if all points falling in some region are simply deemed to
be \errors", or \correct", the two de�nitions are di�erent. As a concrete example, suppose
we de�ne \gap intolerant classi�ers", which are like gap tolerant classi�ers, but which label
all points lying in the margin or outside the sphere as errors. Consider again the situation in
Figure 12, but assign positive class to all three points. Then a gap intolerant classi�er with
margin width greater than the ball diameter cannot shatter the points if we use the �rst
de�nition of \shatter", but can shatter the points if we use the second (correct) de�nition.

With this caveat in mind, we now outline how the VC bounds can apply to functions with
range f�1; 0g, where the label 0 means that the point is labeled \correct." (The bounds
will also apply to functions where 0 is de�ned to mean \error", but the corresponding VC
dimension will be higher, weakening the bound, and in our case, making it useless). We will
follow the notation of (Devroye, Gy�or� and Lugosi, 1996).

Consider points x 2 Rd, and let p(x) denote a density on Rd. Let � be a function on Rd

with range f�1; 0g, and let � be a set of such functions. Let each x have an associated
label yx 2 f�1g. Let fx1; � � � ;xng be any �nite number of points in Rd: then we require �
to have the property that there exists at least one � 2 � such that �(xi) 2 f�1g 8 xi. For
given �, de�ne the set of points A by

A = fx : yx = 1; �(x) = �1g [ fx : yx = �1; �(x) = 1g (A.9)

We require that the � be such that all sets A are measurable. Let A denote the set of all
A.

De�nition: Let xi; i = 1; � � � ; n be n points. We de�ne the empirical risk for the set
fxi; �g to be

�n(fxi; �g) = (1=n)

nX
i=1

Ixi2A: (A.10)

where I is the indicator function. Note that the empirical risk is zero if �(xi) = 0 8 xi.
De�nition: We de�ne the actual risk for the function � to be

�(�) = P (x 2 A): (A.11)

Note also that those points x for which �(x) = 0 do not contribute to the actual risk.

De�nition: For �xed (x1; � � � ;xn) 2 Rd, let NA be the number of di�erent sets in

ffx1; � � � ;xng \ A : A 2 Ag (A.12)
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where the sets A are de�ned above. The n-th shatter coeÆcient of A is de�ned

s(A; n) = max
x1;���;xn2fRdgn

NA(x1; � � � ;xn): (A.13)

We also de�ne the VC dimension for the class A to be the maximum integer k � 1 for
which s(A; k) = 2k.

Theorem 8 (adapted from Devroye, Gy�or� and Lugosi, 1996, Theorem 12.6):Given �n(fxi; �g),
�(�) and s(A; n) de�ned above, and given n points (x1; :::;xn) 2 Rd, let �0 denote that sub-
set of � such that all � 2 �0 satisfy �(xi) 2 f�1g 8 xi. (This restriction may be viewed as

part of the training algorithm). Then for any such �,

P (j�n(fxi; �g)� �(�)j > �) � 8s(A; n) exp�n�2=32 (A.14)

The proof is exactly that of (Devroye, Gy�or� and Lugosi, 1996), Sections 12.3, 12.4 and
12.5, Theorems 12.5 and 12.6. We have dropped the \sup" to emphasize that this holds
for any of the functions �. In particular, it holds for those � which minimize the empirical
error and for which all training data take the values f�1g. Note however that the proof
only holds for the second de�nition of shattering given above. Finally, note that the usual
form of the VC bounds is easily derived from Eq. (A.14) by using s(A; n) � (en=h)h (where

h is the VC dimension) (Vapnik, 1995), setting � = 8s(A; n) exp�n�2=32, and solving for �.

Clearly these results apply to our gap tolerant classi�ers of Section 7.1. For them, a
particular classi�er � 2 � is speci�ed by a set of parameters fB; H; Mg, where B is a
ball in Rd, D 2 R is the diameter of B, H is a d � 1 dimensional oriented hyperplane in
Rd, and M 2 R is a scalar which we have called the margin. H itself is speci�ed by its
normal (whose direction speci�es which points H+ (H�) are labeled positive (negative) by
the function), and by the minimal distance from H to the origin. For a given � 2 �, the
margin set SM is de�ned as the set consisting of those points whose minimal distance to H
is less than M=2. De�ne Z � �SM

T
B, Z+ � Z

T
H+, and Z� � Z

T
H�. The function �

is then de�ned as follows:

�(x) = 1 8x 2 Z+; �(x) = �1 8x 2 Z�; �(x) = 0 otherwise (A.15)

and the corresponding sets A as in Eq. (A.9).

Notes

1. K. M�uller, Private Communication

2. The reader in whom this elicits a sinking feeling is urged to study (Strang, 1986; Fletcher,

1987; Bishop, 1995). There is a simple geometrical interpretation of Lagrange multipliers: at

a boundary corresponding to a single constraint, the gradient of the function being extremized

must be parallel to the gradient of the function whose contours specify the boundary. At a

boundary corresponding to the intersection of constraints, the gradient must be parallel to a

linear combination (non-negative in the case of inequality constraints) of the gradients of the
functions whose contours specify the boundary.

3. In this paper, the phrase \learning machine" will be used for any function estimation algo-

rithm, \training" for the parameter estimation procedure, \testing" for the computation of the

function value, and \performance" for the generalization accuracy (i.e. error rate as test set
size tends to in�nity), unless otherwise stated.



41

4. Given the name \test set," perhaps we should also use \train set;" but the hobbyists got there

�rst.

5. We use the term \oriented hyperplane" to emphasize that the mathematical object considered

is the pair fH;ng, where H is the set of points which lie in the hyperplane and n is a particular

choice for the unit normal. Thus fH;ng and fH;�ng are di�erent oriented hyperplanes.

6. Such a set of m points (which span an m� 1 dimensional subspace of a linear space) are said

to be \in general position" (Kolmogorov, 1970). The convex hull of a set of m points in general

position de�nes an m� 1 dimensional simplex, the vertices of which are the points themselves.

7. The derivation of the bound assumes that the empirical risk converges uniformly to the actual

risk as the number of training observations increases (Vapnik, 1979). A necessary and suÆcient

condition for this is that liml!1H(l)=l = 0, where l is the number of training samples and

H(l) is the VC entropy of the set of decision functions (Vapnik, 1979; Vapnik, 1995). For any

set of functions with in�nite VC dimension, the VC entropy is l log 2: hence for these classi�ers,
the required uniform convergence does not hold, and so neither does the bound.

8. There is a nice geometric interpretation for the dual problem: it is basically �nding the two

closest points of convex hulls of the two sets. See (Bennett and Bredensteiner, 1998).

9. One can de�ne the torque to be

��1:::�n�2 = ��i:::�nx�n�1F�n (A.16)

where repeated indices are summed over on the right hand side, and where � is the totally

antisymmetric tensor with �1:::n = 1. (Recall that Greek indices are used to denote tensor
components). The sum of torques on the decision sheet is then:X

i

��1:::�nsi�n�1Fi�n =
X
i

��1:::�nsi�n�1�iyiŵ�n = ��1:::�nw�n�1 ŵ�n = 0 (A.17)

10. In the original formulation (Vapnik, 1979) they were called \extreme vectors."

11.By \decision function" we mean a function f(x) whose sign represents the class assigned to

data point x.

12.By \intrinsic dimension" we mean the number of parameters required to specify a point on the

manifold.

13.Alternatively one can argue that, given the form of the solution, the possible w must lie in a
subspace of dimension l.

14.Work in preparation.

15.Thanks to A. Smola for pointing this out.

16.Many thanks to one of the reviewers for pointing this out.

17.The core quadratic optimizer is about 700 lines of C++. The higher level code (to handle

caching of dot products, chunking, IO, etc) is quite complex and considerably larger.

18.Thanks to L. Kaufman for providing me with these results.

19.Recall that the \ceiling" sign de means \smallest integer greater than or equal to." Also, there

is a typo in the actual formula given in (Vapnik, 1995), which I have corrected here.

20.Note, for example, that the distance between every pair of vertices of the symmetric simplex

is the same: see Eq. (26). However, a rigorous proof is needed, and as far as I know is lacking.

21.Thanks to J. Shawe-Taylor for pointing this out.

22.V. Vapnik, Private Communication.

23.There is an alternative bound one might use, namely that corresponding to the set of totally

bounded non-negative functions (Equation (3.28) in (Vapnik, 1995)). However, for loss func-

tions taking the value zero or one, and if the empirical risk is zero, this bound is looser than

that in Eq. (3) whenever
h(log(2l=h)+1)�log(�=4)

l
> 1=16, which is the case here.

24.V. Blanz, Private Communication
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