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ABSTRACT
Motivation: The use of gene microchips has enabled a rapid

accumulation of gene-expression data. One of the major chal-
lenges of analyzing this data is the diversity, in both size and
signal strength, of the various modules in the gene regulatory
networks of organisms.

Results: Based on the Iterative Signature Algorithm [Berg-
mann, S., Ihmels, J. and Barkai, N. (2002) Phys. Rev. E67,
031902], we present an algorithm—the Progressive Iterative
Signature Algorithm (PISA)—that, by sequentially eliminating
modules, allows unsupervised identification of both large and
small regulatory modules. We applied PISA to a large set of
yeast gene-expression data, and, using the Gene Ontology
database as a reference, found that the algorithm is much bet-
ter able to identify regulatory modules than methods based on
high-throughput transcription-factor binding experiments or on
comparative genomics.

Contact: tang@nec-labs.com
Supporting material: Sections S.1–S.5, figures S1–S10 and

table SI are available at ??

1 INTRODUCTION
The introduction of DNA microarray technology has made it
possible to aquire vast amounts of gene-expression data, rai-
sing the issue of how best to extract information from this
data. While basic clustering algorithms have been successful
at finding genes that are coregulated for a small, specific
set of experimental conditions (Alonet al., 1999; Eisenet
al., 1998; Tamayoet al., 1999), these algorithms are less
effective when applied to large data sets due to two well-
recognized limitations. First, standard clustering algorithms
assign each gene to a single cluster, while many genes in
fact belong to multiple transcriptional regulons (Bittneret
al., 1999; Cheng and Church, 2000; Gasch and Eisen, 2002;
Ihmels et al., 2002). Second, each transcriptional regulon
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may only be active in a few experiments, and the remai-
ning experiments will only contribute to the noise (Getzet
al., 2000; Cheng and Church, 2000; Ihmels it et al., 2002).

A number of approaches have been proposed to overcome
one or both of these problems (Getzet al., 2000; Califano
et al., 2000; Cheng and Church, 2000; Owenet al., 2003;
Gasch and Eisen, 2002; Lazzeroni and Owen, 2002). A par-
ticularly promising approach, the Signature Algorithm (SA)
was introduced in Ihmelset al.(2002). Based on input sets of
related genes, SA identifies “transcription modules” (TMs),
i.e. sets of coregulated genes along with the sets of condi-
tions for which the genes are strongly coregulated. SA is
well grounded in the biology of gene regulation. Typically,
a single transcription factor regulates multiple genes; a TM
naturally corresponds to a set of such genes and the conditi-
ons under which the transcription factor is active. The authors
tested the algorithm on a large data set for the yeastSaccha-
romyces cerevisiae. By applying SA to various sets of genes
that were known or believed to be related, they identified a
large number of TMs.

Soon after, Bergmannet al. (2003) introduced the Itera-
tive Signature Algorithm (ISA), which uses the output of SA
as the input for additional runs of SA until a fixed point is
reached. By applying ISA to random input sets and varying
the threshold coefficienttG (see below), the authors found
almost all the TMs that had been identified using SA, as well
as a number of new modules. Many of these modules proved
to be in excellent agreement with existing knowledge of yeast
gene regulation.

While ISA can identify many transcriptional regulons from
gene-expression data, the algorithm has significant limitati-
ons. The modules found depend strongly on the value of a
threshold coefficienttG used in the algorithm. To find all the
relevant modules, a large range of threshold values must be
considered, and for each threshold the algorithm may find
thousands of fixed points, many of which are spurious. While
the largest, strongest modules are easily identified, among
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the smaller, weaker modules it is a major challenge to iden-
tify the real transcriptional regulons. Weak modules can even
be completely “absorbed” by stronger modules.

One clear conceptual limitation of ISA is that it only con-
siders one transcription module at a time; the algorithm does
not use knowledge of already identified modules to help it
find new modules. ISA may find a strong module hundreds of
times before it finds a given weak module, or it may be unable
to find a weak module at all. A simple way to ensure that the
same module is not found repeatedly is to directly subtract
the module from the expression data (this approach is used
in Lazzeroni and Owen, 2002). A more robust approach is to
require the condition vector,i.e. the weighted condition set,
of each new transcription module to be orthogonal to the con-
dition vectors of all previously found modules. In essence,
this procedure corresponds to successively removing trans-
cription modules to reveal smaller and weaker modules. The
successive removal of condition vectors is the central new
feature in our approach. We call the modified algorithm the
Progressive Iterative Signature Algorithm (PISA).

2 METHODS AND ALGORITHMS
2.1 Motivation
To a first approximation, the expression level of a gene is
given by the activity of the various transcription factors in
the cell1. If we assume that the effects of different transcrip-
tion factors act multiplicatively on the expression level, then
the relative expression levels of all the genes in an organism
under a set of experiments (“conditions”) are given by

E =
∑

t

gtcT
t + η, (1)

whereEgc is the logarithmic expression ratio of geneg under
conditionc, the “gene vector”gt specifies to what extent each
gene is regulated by transcription factort, and the “condition
vector”ct specifies the activity of that transcription factor in
each condition (relative to its reference).η indicates noise.
Together, we call corresponding gene and condition vectors a
“transcription module” (TM), which may or may not actually
correspond to a specific transcription factor.

The assumption of multiplicativity may be approximately
true for lower organisms2, but certainly does not capture the
highly combinatorial regulation present in higher organisms.
Nevertheless, Eq. (1) may be useful: each transcriptional
module may then correspond to a relevant combination of

1 Post-transcriptional regulation by specific degradation of mRNA may also
be considered to be a “transcription factor” effect in this context.
2 Even for lower organisms, the ascription of one transcription module to
each transcription factor is clearly not fully accurate. For instance, a trans-
cription factor may repress some genes on the basis of its concentration only,
while it may activate others depending on its phosphorylation level.

transcription factors. There are also many other correcti-
ons, but Eq. (1) should still capture a large part of the
gene-expression patterns of the organism.

Ideally, we would like to extract the full set of gene vectors
and condition vectors based only on gene-expression data.
The gene vectors describe the sets of genes that are core-
gulated at the most basic level in the organism, while the
condition vectors describe how the organism responds to the
different experimental conditions. Unfortunately, the decom-
position of the matrixE given by Eq. (1) is not unique, even
if there was no noise.

There are ways to find unique decompositions [as given by
Eq. (1)] that have additional properties. One such approach
is singular value decomposition (SVD; seee.g. Alter et al.,
2000), which leads to gene vectors (eigenarrays) that are
all orthogonal to each other, as are the condition vectors
(eigengenes). However, these properties do not match our
biological expectations—different transcription factors may
control substantially overlapping genes, and may also be
active under many of the same experimental conditions. Also,
as shown by Bergmannet al. (2003), SVD is sensitive to
noise.

In order to find a biologically relevant decomposition, one
should use the properties we expect the “real” solution to
have. In particular, each transcription factor typically con-
trols only a small subset of the genes in an organism, thus
we expect the gene vectors to be sparse. A reasonable goal
would thus be to find the simplest (i.e., few TMs) decompo-
sition for which the gene vectors are sufficiently sparse. A
natural way to enforce sparse gene vectors is to introduce a
threshold, such that no entry can be close to—but different
from—zero.

While it is possible to search directly for a full decomposi-
tion with the desired properties, such an approach would be
very computationally challenging. A more practical approach
is to search for transcription modules one at a time, alt-
hough correlations between different TMs makes also this a
challenging problem. Ideally, in order to find the genes asso-
ciated with a given transcription factort in Eq. (1), we would
want to look for a signal along a condition vector that has
a large component alongct, but is orthogonal to the condi-
tion vectors of all other transcription modules, thus avoiding
interfering signals. In practice, we can only ask that condition
vectors are orthogonal to TMs we already know about.

2.2 The Algorithms SA/ISA
We briefly review the algorithms SA and ISA. A transcription
moduleM can be specified by a condition vector (“experi-
ment signature”)mC and a gene vector (“gene signature”)
mG, where nonzero entries in the vectors indicate conditi-
ons/genes that belong to the transcription module (TM).
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Given an appropriately normalized3 matrix E of log-ratio
gene-expression data and an input setGI of genes, SA scores
all the conditions in the data set according to how much each
condition upregulates the genes in the input set (downregu-
lation gives a negative score). The result is a condition-score
vectorsC:

sC ≡ ETmG
in∣∣mG

in

∣∣ , (2)

whereET is the transpose ofE and

(mG
in)g =

{
1 g ∈ GI

0 g /∈ GI
(3)

is the gene vector corresponding to the input set. The entries
of sC that are above/below a threshold±tC constitute the
condition vectormC:

(mC)c ≡ (sC)c ·Θ(
∣∣(sC)c

∣∣− tC), (4)

whereΘ(x) = 1 for x ≥ 0 andΘ(x) = 0 for x < 0.
Similarly, the gene-score vectorsG measures how much

each gene is upregulated by the conditions inmC, using the
entries ofmC as weights:

sG ≡ E mC

|mC|
. (5)

The entries of the gene-score vectorsG that are more than
tG standard deviationsσ

sG
above the mean gene score in the

vectorsG constitute the gene vectormG:

(mG)g ≡ (sG)g ·Θ((sG)g − 〈(sG)g′〉g′ − tGσ
sG

) (6)

The Iterative Signature Algoritm (ISA) starts from a ran-
dom set of genes and repeatedly applies SA, usingmG as the
inputmG

in for the next iteration, until a fixed point is reached.
For the actual fixed point, the outputmG would be exactly
the same as the inputmG

in for an iteration of SA; in prac-
tice ISA stops when the same set of genes is selected in two
consecutive iterations.

Both SA and ISA apply thresholds to both gene scores and
condition scores. According to our discussion in section 2.1,
this corresponds to an assumption that both gene vectors and
condition vectors are sparse. However, the two thresholds
are very different: The gene threshold is specified in terms
of standard deviations of the observed gene-score distribu-
tions, and thus sets an absolute (tG-dependent) limit on the
fraction of genes that can be included in a module. The con-
dition threshold, on the other hand, compares each score to
theexpecteddistribution (if the data was uncorrelated noise),
thus there is no limit on the number of conditions that can
be included. Indeed, few transcription modules found by ISA

3 SA actually uses two matrices with different normalizations (Ihmelset al.,
2002).
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Fig. 1. A toy model with only two transcription modules (synthetic
data). (a) Module 1 is upregulated under condition A, while module
2—a larger, stronger module—is upregulated under conditions A
and B. The remaining (background) genes only show Gaussian
noise. (b) Normalized histograms of the gene scores given by the
Signature Algorithm (SA) for the background (solid fill), module 1
(solid line) and module 2 (dotted fill), when using the true condition
vector for either module 1 (condition A) or module 2 (conditions
A+B). Even starting with the true condition vectors, SA does not
resolve the two modules. Nor can the Iterated Signature Algorithm
(ISA) resolve module 1, even if it receives the module itself as input
gene set, as the genes from module 2 have higher scores also for
condition A (there is only one fixed point of ISA). Due to the noisy
data, it is also impossible to separate the modules by varying the
ISA gene threshold coefficienttG.

contain less than 10% of the conditions, and some contain
more than 80%.

As mentioned in section 2.1, different TMs are often corre-
lated. This can contribute to a hierarchical clustering by ISA:
For a low gene threshold coefficienttG, correlated modu-
les may appear to be a single, large module, while at higher
thresholds, the individual modules are resolved (Bergmannet
al., 2003; Ihmelset al., 2004). However, as shown in Fig. 1, it
may be impossible for SA/ISA to resolve correlated modules
regardless of which value is used fortG.

2.3 The Algorithm PISA
2.3.1 Orthogonalization. Within PISA, each condition-
score vectorsC is required to be orthogonal to the condition-
score vectors of all previously found transcription modules
(TMs), as illustrated schematically in Fig. 2. Therefore, whe-
never PISA finds a TM and its associated condition-score
vector sC, the component alongsC of each gene is remo-
ved from the gene expression matrix (seeImplementation of
PISAbelow). Returning to the example in Figs. 1 and 2, one
finds that PISA can easily identify both TMs: it first finds
the strong module, removes its condition vector, and then the
only signal left is that of the weak module.

Progressively eliminating transcription modulesà la PISA
can also improve the prospects for finding unrelated modules.
The gene regulation from one module will contribute to the
background noise for all unrelated modules. Therefore, eli-
minating large, strong modules can significantly improve the
signal to noise ratio of the remaining modules. This is in con-
trast to the situation for SVD: The initial modules found with
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Fig. 2. Once the Progressive Itererative Signature Algorithm
(PISA) has eliminated the combined module 1+2 from Fig. 1 (das-
hed line), the remaining signal makes it easy to separate the genes
of module 1 from the genes of module 2. (a) Remaining signal for
each module. (b) Actual gene scores for the new fixed point found
by PISA. Genes of module 1 (solid line) have been separated from
genes of module 2 (dotted fill) and the background (solid fill).

SVD will typically be a mixture of many real transcription
modules, and removing them will not significantly improve
the signal for weak modules. In PISA, the gene-score thres-
hold ensures that only a few, typically highly correlated, TMs
will be combined.

The requirement of orthogonality in PISA conflicts with
the condition-score threshold as used in ISA. If we make
the condition-score vector orthogonal first and then apply the
threshold, the vector will no longer be orthogonal, whereas if
we apply the threshold first, orthogonalization will give non-
zero weight to all conditions, eliminating the noise-filtering
benefit of thresholding. We have chosen to eliminate the
condition-score threshold completely. In any event, conditi-
ons that in ISA would fall below the threshold will have low
weight and will give only a small contribution to the noise.

This orthogonalization procedure gives good estimates for
the gene vectors in Eq. (1), but the resulting condition vectors
are of course all orthogonal. A condition vector calculated
from the initial value of the gene-expression-data matrix, as
given in section 2.3.6 below, gives a much better description
of the “real” transcription module.

2.3.2 The gene-score threshold.In ISA, the gene-score
threshold istGσSG , where the standard deviationσSG is com-
puted using the full distribution of gene scores and includes
contributions both from the background and from the module
of interest (Fig. 3). For large, strong modules, the module
contribution may be larger than the background contribution.
As a result,σSG is module dependent, andtG must be adju-
sted to prevent false-positives from the background: at low
thresholds, a small module would be lost among false positi-
ves; while at high thresholds, it is mathematically impossible
to find a large module. This is not a significant issue in ISA,
since one (independent of this) needs to run the algorithm
with many different threshold coefficientstG in order to find
all modules. Within PISA, however, we wish to find all the
modules using a single threshold—otherwise, without prior
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Ideal: < x >bg +/- 4.0 σbg

PISA: < x >70%+/- 7.0σ70%

ISA: < x > +/- 2.5σ

Non-module genes: Noise
Module genes (x10)

Shortest 70% interval

Fig. 3. Gene-score thresholds as used in ISA and in PISA algo-
rithms (see text); for a synthetic gene-score distribution for 6206
genes, 300 of which belong to a module; calculated using all the
genes (top, solid bars) or only the non-module genes (bottom, das-
hed bars). In ISA, the valuetG ≈ 2.5 that gives the desired
(for PISA) threshold±4.0 in the presence of the module gives a
much too low threshold if there is no strong module, while the
threshold used in PISA is only weakly module-dependent. The non-
module (background) genes’ scores follow a normal distribution;
〈x〉bg = 0, σbg = 1.

knowledge of the module one is searching for, it is diffi-
cult to know whattG to use—which requires modifying the
threshold definition.

We eliminate this problem in PISA by specifying the thres-
hold relative to the background, which we estimate using the
mean,〈x〉70%, and the standard deviation,σ70%, of the gene
scores within the shortest interval that contains at least 70%
of all the gene scores. By excluding extreme gene scores in
this way, we minimize the influence of the module on the
means and standard deviations of gene scores (Fig. 3). As a
test, we usedσ70% in place ofσ in ISA and found both very
large and very small modules with a single value oftG

4.
We need to be conservative when selecting the gene-score

threshold because, if PISA misidentifies a module, elimi-
nation of its condition vector can lead to errors in other
modules. Therefore, the number of genes included in modu-
les due to noise should be very low. We have used a threshold
of 7.0σ70%, which for a Gaussian distribution corresponds to
about3.9σ. The chance of including a gene due to noise is
about10−4 per gene,e.g. with the 6206 genes in the yeast
data set, the average number of genes included by mistake
in each module would be about 0.62. Using a high thres-
hold means that we may miss genes that should belong to
a module, however this is less risky than including genes
by mistake. As PISA proceeds by eliminating condition-
score vectors, it does not matter whether we identify all the
genes in a module, as long as the condition-score vector

4 It would still be necessary to use a large range of thresholds to find all the
ISA modules; this is not just an artifact of the threshold definition.
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is accurate. Potentially, once PISA has finished, one could
easily see which genes would be included when using various
gene-score thresholds for the same condition-score vector.

ISA only considers sets of genes that havehighgene scores,
i.e. positive signs. As discussed in Ihmelset al. (2002), this
can lead to two modules that are regulated by the same con-
ditions but with opposite sign. In contrast, PISA includes all
genes with sufficiently extreme scores in a single module, and
the relative signs of gene scores specify whether the genes are
coregulated or counter-regulated.

2.3.3 Implementation of PISA.To begin, PISA requires a
matrixE of log-ratio gene expression data, with zero average
for each condition. Two matrices are obtained fromE: The
first EG is normalized for each gene

〈(EG)gc〉c = 0, 〈(EG)2gc〉c = 1 ∀g ∈ G.

Normalization ofEG is essential so that the gene-score thres-
hold can be applied to all genes on an equal footing. The
second matrixEC is obtained fromEG by normalizing for
each condition,〈(EC,0)2gc〉g = 1, whereEC,0 denotes the
initial EC. (Note that this is essentially the opposite of the
notation used in Bergmannet al. (2003).) PISA consists of
a large number of steps (typically 10,000). In each step, we
apply a modified version of ISA (PISAstep, see below), and if
it finds a module, we remove fromEC the components along
the module’s condition-score vectorsC:

Enew
C ≡ EC −EC

sC(sC)T

|sC|2
. (7)

As PISA progresses, new modules are found less and less
frequently. For example, one run of 10,000 steps found 779
preliminary (see below) modules, and 442 of them were
found in the first 1,000 steps. As the later modules are also
generally smaller and less reliable, the exact number of steps
is not very important.

2.3.4 PISAstep. As input, a step of PISA requires the two
matricesEC andEG. We start each application of PISAstep
by generating a random set of genesG0 and a corresponding
gene vectormG

0 :

(mG
0 )g =

{
1 g ∈ G0

0 g /∈ G0.

Each iterationi within PISAstep consists of multiplying the
transpose ofEC by the gene vectormG

i to produce the
condition-score vectorsC

i :

sC
i ≡ ET

CmG
i ,

and then multiplyingEG by the normalized condition-score
vector to produce the gene-score vectorsG

i :

sG
i ≡ EGsC

i∣∣sC
i

∣∣ .

From sG
i , one calculates the gene vectormG

i+1 for the next
iteration:

(mG
i+1)g ≡ (sG

i )g θ(|(sG
i )g − 〈(sG

i )g′〉70%g′ | − tGσ70%
sGi

).

We iterate until: (a)(mG
i )g and (mG

i+1)g have the same
sign (0, + or -) for allg, (b) the iteration number isi = 20,
or (c) fewer than two genes have nonzero weight. Criterion
(a) indicates convergence to a fixed point5, (b) handles limit
cycles (see section S.2), and (c) indicates failure to find a
module. If fewer than five genes have nonzero weight, the
result is discarded, otherwise we have found a module with
condition-score vectorsC = sC

i , gene-score vectorsG = sG
i ,

and gene vectormG = mG
i+1. The module is then stored, and

EC is updated according to Eq. (7).
We chose a threshold coefficienttG = 7.0 so that the

expected number of genes included in each module due to
background noise would be less than one. However, with
this high threshold, starting from a random set of genes there
was only a very low chance that two or more genes would
score above the threshold in the first iteration6. To increase
the chance of finding a module, we used a different formula
for mG

1 . Instead of selecting only genes with scores above
the threshold, we kept a random number2 ≤ n ≤ 51 of
the genes with the most extreme scores7. This procedure was
generally adequate to produce a correlated set of genes for
the next iteration.

PISAstep is very similar to one step of SVD; the key
difference is the gene threshold in PISA.

2.3.5 Consistent modules.ISA typically finds many dif-
ferent fixed points corresponding to the same module, each
differing by a few genes. PISA only finds each module once
during a run, but the precise genes in the module depend
on the random input set of genes and also on which modu-
les were already found and eliminated. Furthermore, PISA
sometimes finds a module by itself, while other times it may
find the module joined with another module, or PISA may
find only part of a module, or not find the module at all. To
get a reliable set of modules, it was necessary to perform a
number of runs of PISA and identify the modules that were
consistent from run to run.

To identify consistent modules, we first tabulated preli-
minary modules—transcription modules found by individual
runs of PISA. A preliminary moduleP contributes to a con-
sistent moduleC if P contains more than half the genes in
C, regardless of gene-score sign, and these genes constitute
at least 20% of the genes inP. (“|P ∩C| > 0.5 |C| ∧

5 If the gene set did not change, the distance to the fixed point is very small;
further iteration generally only gives minimal changes.
6 This is not an issue in ISA, where the condition threshold helps to pick out
the signal—which is possibly very small—from the noise.
7 2 is the smallest number of genes that is interesting; the upper limit 51 is
arbitrary as long as “large” sets are possible.
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|P ∩C| > 0.2 |P|”) A gene is included in the consistent
module if the gene occurs in more than 50% of the contribu-
ting preliminary modules, always with the same gene-score
sign8. We found the consistent modules by iteratively apply-
ing these criteria until we reached a fixed point, starting from
all pairs of preliminary modules9.

2.3.6 Correlations between condition-score vectors.Once
we identified a consistent module,mG, we calculated the
raw condition-score vectorr = ET

C,0m
G, using the initial

value of the gene-expression-data matrixEC. From ther’s
we evaluated the condition correlationsr · r′/(|r| |r′|) bet-
ween different modules.

Additional details are discussed in the supporting material.

2.4 p-Values
Given a set containingm genes out of the total ofNG, the
p-value for having at leastn genes in common with a Gene
Ontology (GO) category containingc of theNG genes is

p =
min{c,m}∑

i=n

(
c
i

)(
NG−c
m−i

)(
NG
m

) , (8)

We ignore any genes that are not present in our expression
data when countingc.

3 RESULTS
We applied PISA to the yeast data set used in Bergmannet al.
(2003), which consists of log-ratio gene-expression data for
NG = 6206 genes andNC = 987 experimental conditions
(see sections S.4; S.5 for details). Normalization gives the
matricesEG andEC (see Methods; section S.1 for details).

As a preliminary test, we repeatedly applied PISA to one
fully scrambled version of the matrixEG (and the correspon-
ding EC). From run to run, the algorithm identified many
large modules derived almost entirely from a single condi-
tion, as expected in light of the broad distribution of the raw
gene-expression data (Fig. S1). PISA also found many small
modules, but these differed from one run to the next. We
were able to eliminate both of these classes of false positi-
ves using filters for consistency, recurrence, and number of
contributing conditions (Fig. S2; see section S.3 for details).

We performed 30 runs of PISA on the yeast data set and
identified the modules that appeared consistently, using the
filters derived above. At the start of each run, only a few
modules could be found with our single choice of gene
thresholdtG. Nevertheless, PISA did consistently find new
modules after eliminating others, demonstrating that remo-
ving the condition vectors of found modules improves the

8 The values 50%, 20%, 50% used are subjective criteria for how consistent
the modules should be. The results are not very sensitive to these values.
9 While this approach may not be fully exhaustive, any consistent module
missed by this approach is almost certainly not of interest.

signal to noise for the remaining ones. 166 consistent modu-
les passed the filters. Out of the 6206 genes included in
the expression data, 2512 genes appeared in at least one
module, and more than 500 genes appeared in more than
one module10. No genes appeared in more than 4 different
modules.

For most of the modules we found, the genes were coregu-
lated,i.e. all the gene scores had the same sign. (In contrast,
the modules that were eliminated by the filters often had
about equal numbers of genes of either sign.) There were,
however, a significant number of modules with a few gene
scores differing in sign from the rest,e.g. the arginine bio-
synthesis module described below. Furthermore, many of
the modules found by PISA agreed closely with modules
identified by ISA at various thresholds, while other PISA
modules were subsets of ISA modules. Some PISA modu-
les, for example the de novo purine synthesis module (Fig. 4),
were significantly more complete than the ones found by ISA
(at any threshold).

PISA found several small modules that agree very well
with known gene regulation in yeast. For example, the
arginine-biosynthesis module consists of ARG1, ARG3,
ARG5,6, ARG8, CPA1, YOR302W, MEP3, CAR1 and
CAR2; out of these CAR1 and CAR2 have negative gene
scores,i.e. they are counter-regulated relative to the others.
The first five genes are precisely the arginine-synthesis genes
known to be repressed by arginine, while CAR1 and CAR2
are catabolic genes known to be induced by arginine (Mes-
senguy and Dubois, 2000).

PISA also found a zinc (ZAP1 regulated) module even
though the set of 987 conditions did not include zinc star-
vation. The set of genes in the module (ZRT1, ZRT2, ZRT3,
ZAP1, YOL154, INO1, ADH4, and YNL254C) agree well
with the highest-scoring genes in a separate microarray expe-
riment comparing expression, under zinc starvation, of a
ZAP1 mutant versus wild type (Lyonset al., 2000). For this
module, the highest-scoring of the 987 conditions came from
the Rosetta compendium (Hugheset al., 2000) of deletion
mutants (see Fig. S9). Our identification of the unknown gene
YNL254C as part of the zinc module, as well as the starvation
experiments in Lyonset al. (2000) and direct transcription-
factor-binding experiments (see below), all indicate that
YNL254C is regulated by zap1, and probably functions in
zinc starvation/uptake.

In order to evaluate the overall performance of PISA,
we compared our modules to the categories in the Gene
Ontology (GO) curated database (The Gene Ontology Con-
sortium, 2001)11. For the set of genes in each of our modules

10 We have adjusted for the fact that for some modules there are several
versions that are very similar.
11 It is not clear to what extent the GO category definitions (molecular
functions, cellular components and biological processes) correspond to the
transcriptional modules we are searching for, which are characterized by
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Fig. 4. The purine synthesis module found with PISA (genes shown
in bold) contains all the key genes involved in de novo purine bio-
synthesis and associated one-carbon metabolism in yeast, as well
as some of the genes involved in the closely connected histidine
biosynthesis pathway. Purine synthesis is known to be regulated
by the BAS1 transcription factor (Daignan-Fornier and Fink, 1992;
Deniset al., 1998); genes that are underlined havep-values below
0.001 for BAS1 binding in database A. Only key metabolites are
shown. The inclusion of related processes,e.g.serine synthesis, in
the module may be due to the “Borges effect” (Mateoset al., 2002).

we calculated thep-value for the overlap with the set of genes
in every GO category (see Methods). Thep-value is the pro-
bability that an observed overlap occurred by chance. The
lowestp-value we found was5.7·10−191, for the GO category
“cytosolic ribosome”, and we foundp-values below10−20

for more than 130 other GO categories. (The modules that
were removed by our filters mostly did not have significantp-
values.) Figure 5 shows a comparison between suchp-values

coregulation. Thus, failure to find a good overlap with a GO category does
not necessarily indicate that a module is not biologically relevant, but a very
significant overlap does show biological relevance. Using GOp-values as
a score should be a resonable way to compare different approaches as long
as the module definitions used by the different approaches are about equally
(dis)similar to the GO categories.
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Fig. 5. Bestp-values onto every Gene Ontology (GO) category with
500 or fewer genes. In each panel, we include only GO categories
for which at least onep-value is below10−10. (a) 166 modules
found by PISA vs. 778 modules found by ISA. ISA here does a
slightly better job overall, but produces far more modules. (b) 166
PISA modules vs. the 215 most recurrect ISA modules from (a).
PISA now does significantly better than ISA, with fewer modules.
Furthermore, whenever ISA had a significantly lowerp-value than
PISA in (a), this is still the case in (b); thus the modules for which
ISA does better are the highly recurrent large, strong modules, while
PISA does a much better job at finding biologically relevant small,
weak modules.

for PISA and for ISA12. While ISA does a somewhat better
job at identifying large, strong modules, PISA does signifi-
cantly better at finding small, weak modules. PISA also does
better at producing accurate modules (we calculatep-values
only when at least 50% of the module genes belong to the
GO category; data not shown). As shown in Fig. S3, both
algorithms perform much better than SVD.

We also used the p-values between our PISA modules
and the GO categories to compare PISA to other means of
identifying transcription modules. Specifically, we compared
PISA to two different databases of genes predicted to be regu-
lated by single transcription factors. Database “A” contains
genes that were enriched through immunoprecipitation with
tagged transcriptional regulators (Leeet al., 2002), while
Database “B” has genes sharing regulatory sequences deri-
ved by comparative genomics (Kelliset al., 2003). Figure 6
shows thep-values between GO and PISA compared to the
p-values between GO and each of these two databases.13 The
lower p-values for PISA indicate a consistently better agree-
ment between GO and PISA than between GO and the other
databases. While PISA may have a slight advantage in that it
looks for overall coregulated genes as opposed to genes that
share a single transcription factor, and this may be somewhat

12 We here use the ISA modules included in the Matlab implementation
available at http://barkai-serv.weizmann.ac.il/GroupPage/software.htm. This
includes modules for threshold coefficients from 1.8 to 4.0.
13 We used an internalp-value threshold of 0.001 for Database A, as
suggested in (Leeet al., 2002).
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Fig. 6. Bestp-values onto every Gene Ontology (GO) category with
500 or fewer genes. In each panel, we include only GO categories
for which at least onep-value is below10−10. (a) PISA vs. Database
A. (b) PISA vs. Database B. (a) inset: Database A vs. database B—
there are very few GO categories onto which both A and B have low
p-values.

closer to the definitions of GO categories (biological proces-
ses etc.), it is remarkable that there are no GO categories for
which database A or B significantly outperforms PISA.

Compared to microarray data, Database A and Database
B share one clear disadvantage: their binding sites are assi-
gned to intergenic regions, and if the two genes bordering an
intergenic region are divergently transcribed, then the databa-
ses do not identify which of the genes is regulated. In many
cases, we found that by comparing sets of genes in database A
to PISA modules, we could decide which of divergently tran-
scribed genes were actually regulated. For example, Database
A lists 6 intergenic regions as binding site for zap1 at an inter-
nal p-value threshold of10−5, and 4 of these lie between
divergently transcribed genes. However, 5 of the 6 interge-
nic regions border the genes ZRT1, ZRT2, ZRT3, ZAP1, and
YNL254C which PISA identifies as part of the zinc module.

Database A appears to have an additional source of false
positives. Intergenic regions that are close to intergenic regi-
ons with very lowp-values often have lowp-values themsel-
ves, even when there is no apparent connection between the
genes and no evidence of a binding site in the DNA sequence.
For example, for the de novo purine-biosynthesis module,
which is primarily regulated by the bas1 transcription fac-
tor, the intergenic region controlling GCV2 has the lowest
p-value within Database A,1.1·10−16, and all the four closest
intergenic regions havep-values below10−5. Comparison to
PISA modules can help eliminate these potential false posi-
tives: out of the 29 genes assigned ap-value below10−4

for bas1 binding in database A, 13 belong to a single PISA
module, 4 others are divergently transcribed adjacent genes,
and 6 others are genes transcribed from nearby intergenic
regions.

4 DISCUSSION
The Progressive Iterative Signature Algorithm (PISA) embo-
dies a new approach to analysis of large gene-expression data
sets. The central new feature in PISA is the robust elimina-
tion of transcription modules as they are found, by removing
their condition-score vectors. Also new to PISA, compared to
its precursors SA (Ihmelset al., 2002) and ISA (Bergmannet
al., 2003), is the inclusion of both coregulated and counter-
regulated genes in a single module, and the use of a single
gene-score threshold.

Altogether, these new features result in an algorithm that
can reliably identify both large and small regulatory modules,
without supervision. We confirmed the performance of PISA
by comparison to the Gene Ontology (GO) database—PISA
performed considerably better against GO than either high-
throughput binding experiments or comparative genomics.
PISA therefore provides a practical means to identify new
regulatory modules and to add new genes to known modules.

Can PISA shed any light on the organization of gene
expression beyond the level of individual transcription modu-
les? In Bergmannet al. (2003), the authors argued that they
could trace the relationship between modules from the effects
of changing the thresholdtG, as done in greater detail in
Ihmelset al. (2004). For instance, a large module might split
into two smaller ones astG was increased. With PISA, we
were able to use a more direct approach. Once we identified
the modules, we computed the “raw” (i.e. pre-eliminations)
condition-score vectorr for each module, and from these
raw condition-score vectors, we evaluated the condition cor-
relations between modules (see Methods). Figure 7 shows
the condition correlations between 40 of the modules that
we can put a name to. A large, positive correlation bet-
ween two modules can either indicate that the modules have
many genes in common,e.g. the genes of the arginine-
biosynthesis module are essentially a subset of the genes of
the amino-acid-biosynthesis module, or, as in the toy model
in Figs. 1 and 2, the modules have few/no genes in common,
but the two sets of genes are similarly regulated under many
conditions. In the toy model, the raw condition-score vectors
r1 andr2 correspond to the vectors in Fig. 1(a) and their cor-
relation,r1 · r2/(|r1| |r2|), is simply the cosine of the angle
between them. A real example of this second type of correla-
tion is provided by the ribosomal-protein module (107 genes)
and the rRNA-processing module (80 genes). They have no
genes in common, but the correlation between them is very
high, 0.71.

To filter out false modules, we found it necessary to ignore
all modules that depended only on a few conditions. As a
result, true modules that were strongly regulated only in a
few experiments could be missed. This suggests that experi-
ments that affect many modules at once, in different patterns,
are more useful than experiments that probe the effects of
relatively simple perturbations. While the latter are easier to
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Fig. 7. Correlations between modules identified by PISA (see text).
The modules are ordered to form clusters; the full list is shown in
table SI (same for both axes). This plot recaptures many of the rela-
tionships shown in Ihmelset al. (2004), Fig. 4: The three large,
highly correlated areas shown above correspond to the three diffe-
rent trees of hierarchical clustering in that figure (lower left corner
is amino-acid synthesis, upper right corner is protein synthesis, and
mid-lower left is stress).

analyze one by one, there is more actual information in the
former, and algorithms such as PISA can efficiently combine
the results from many “complex” experiments to reveal the
individual modules.
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SUPPORTING MATERIAL
S.1 Normalization
Here we review in detail the normalization procedure
employed in PISA. The most obvious requirement for the
normalization is that scores for different genes must be com-
parable. The procedure itself is as follows: Given a matrixE
of log-ratio gene-expression data, we first set the average to
zero for each condition,

(E′)gc = (E)gc − 〈(E)g′c〉g′ , (S1)

and then normalize to zero mean and unit variance for each
gene, givingEG, which is used in PISA to calculate gene
scores:

(E′′)gc = (E′)gc − 〈(E′)gc′〉c′ (S2)

(EG)gc = (E′′)gc/
√
〈(E′′)2gc′〉c′ . (S3)

For this normalization to be consistent through the iterations
in PISAstep, the different condition scores must also be com-
parable. To get the initial valueEC,0 of the matrix used to
calculate condition scores, we divideEG by the rms value
for each condition:

(EC,0)gc = (EG)gc/
√
〈(EG)2g′c〉g′ . (S4)

Note that a simple approach would be to normalize for
both genes and conditions simultaneously and thus use only
a single set of data14—this could be easily accomplished
by alternately normalizing over conditions and genes a few
times; the data converge quickly. There is, however, a risk
of losing significant features of the data through excessive
normalization. For some conditions, the typical change in
expression levels may be very large, while for others it may
be negligible, and it would be misleading to always norma-
lize these to the same level; at the very least, this would give a
lower signal to noise ratio. Therefore, we have chosen to nor-
malizeEG over genes but not conditions, allowing conditions
with large changes in expression level to make a proportiona-
tely larger contribution to gene scores. For genes, however,
it is reasonable to always normalize to the same level. If two
genes are in the same module, then there is little reason to
consider the gene with the larger dynamical range to be more
reliable than the other. That is why we useEG to calculate
EC,0.

Also note the difference between genes and conditions:
The variance for a gene often depends on a small number of
outlying values, and normalizing over genes prevents these
from dominating. In contrast, the variance for a condition
typically depends on many genes, and as such is a far more
reliable quantity.

14 If EG = EC,0 initially, then it is equivalent to keepEG constant or use
EG = EC, which is updated every time PISA finds a module.

S.2 Avoiding Positive Feedback
The basic principle of SA, or an iteration of ISA/PISAstep, is
to find the set of genes whose expression profiles most resem-
ble those of the genes in the input set, either for all conditions
(PISAstep) or for a selected subset of conditions (SA/ISA).
Of course, the gene whose expression profile most resembles
that of a given gene is the gene itself, thus there is a poten-
tial for significant positive feedback. Adding one gene to the
input set would typically increase the score of that gene far
more than the score of any other gene. As a consequence
of positive feedback, adding one gene to the gene vector of
a fixed point would have a considerable chance of yielding
another fixed point, and a small set of genes could be a fixed
point even if the genes were completely uncorrelated.

In PISA, we only find each module (or combination) once
for each run, and it is important to be as certain as possible
that we have the correct genes. We avoid positive feedback
by using leave-one-out scoring for genes that had nonzero
weight at the start of the iteration,i.e. we remove the contri-
bution from geneg from the condition scoressC

i before we
use these scores to calculate the new score for geneg:

(sG
i )g ≡

(EG)g [sC
i − (ET

C) g(mG
i )g]∣∣sC

i − (ET
C) g(mG

i )g

∣∣ ,

where(A)j is row j of matrix A, and(A) j is columnj
of matrixA. With a Gaussian distribution of the background
noise, this approach is very close to neutral,i.e.adding a gene
will neither affect that gene’s score, nor will it significantly
changeσ70% of the gene-score distribution.

Without positive feedback, fixed points may be marginally
stable or even unstable,i.e. a limit cycle, thus we do not
require a true fixed point; we accept any gene vector reached
after 20 iterations in PISAstep, as long as it contains at least
5 genes—empirically, if PISAstep has not converged in 20
iterations, then it has entered a limit cycle. An alternate crite-
rion would be to check each iteration whether PISAstep has
entered a limit cycle. An advantage of the fixed-iteration cri-
terion is that this does not favor the state at which PISAstep
would usually enter the limit cycle (which we see no reason
to): whenever there is no clear reason to choose one result
over another, we wish to sample all possibilities, which gives
the post-processing algorithm better data to judge whether or
not a module is reliable.

In SA/ISA, the authors do not eliminate positive feedback.
Indeed it would be difficult to do so, as adding/removing a
gene can change which conditions have scores exceeding the
condition threshold. Apart from this complication, the feed-
back in SA/ISA is proportional to the number of conditions
that make the threshold. For small modules, typically only a
small fraction of the conditions have scores above the thres-
hold, thus the feedback is lower than it would have been for
PISA, which includes all conditions. For large modules, the
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Fig. S1. Distributions of the yeast microarray data used (6206
genes/ORFs, 987 conditions). Roughly 10% of the data was inva-
lid/missing (not included in the distributions). The distribution is
sharply cusped and has long tails, both before and after normaliza-
tion (Eqs. S1–S3).

feedback is only a minor effect in the first place. Neverthe-
less, the total number of fixed points for ISA is huge due to
positive feedback—at a gene threshold coefficienttG = 4.0,
there are, at a minimum, more than a million fixed points.

S.3 Filters
We chose the gene-score threshold as7.0σ70% so that, on
average, less than one gene would be included in a module
purely due to background noise. This estimate assumed that
the background noise had a Gaussian distribution. For most
modules, the gene scores are the sums of contributions from
many different conditions, and if these contributions are
independent, as they should be for background noise, then
the total background noise will have approximately a Gaus-
sian distribution, regardless of the distribution for a single
condition (central limit theorem). For modules that derive
almost entirely from one or very few conditions, however,
the distribution of gene scores may not be Gaussian.

While we do not know the true distribution of the back-
ground noise, it is reasonable to use the full distribution
of the data as a worst case scenario. As shown in Fig. S1,
this distribution is far from Gaussian: it has a fairly sharp
cusp at zero and long tails, even after normalization. For
this distribution, more than 3% of the values are outside the
threshold±7.0σ70% (this is partially because the long tails
contain many genes, and partially becauseσ70% is small due
to the sharp cusp),i.e. with a gene-expression matrix ran-
domly drawn from this distribution, for any single condition
one would expect to find a module with about 200 genes!

We applied PISA to a matrixEG that had been fully scram-
bled after normalization15. As shown in Fig. S2, PISA found
many large modules that were based almost entirely on a sin-
gle condition (however, as the modules were not based on

15 Scrambling the matrixafter normalization ensured that the distribution
remained the same. The data were no longer exactly normalized for each
gene, but the deviations were insignificant. Scrambling the data before
normalization gave similar results.
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Fig. S2. The number of genesnG
M in a moduleM and the number

of contributing conditionsnC
M (see text) were two of the properties

we used in our filters to eliminate false modules. PISA applied to a
scrambled expression matrix (black) only yielded modules close to
the axes (smallnG

M or smallnC
M), while PISA run on the real data

(green) yielded modules with both largenG
M and largenC

M.

only one condition, they were not as large as our estimate
of 200, above), whereas modules based on many conditi-
ons were much smaller. We also applied PISA to a random
matrix generated from a Gaussian distribution, and in that
case PISA did not find any large modules (in 30 runs, PISA
found 8 modules with 20 or more genes; the largest contained
26 genes). In both cases, the small modules found by PISA
varied from run to run.

In order to eliminate these false modules we introduced
a set of filters. For each preliminary moduleM we cal-
culate the “number of contributing conditions”, given as
nC
M =

∑
c(s

C)2c/(max{(sC)c})2. We ignored any module
for which the median of the numbers of contributing con-
ditions for its preliminary modules was below 4, 5 or 7.5,
depending on the size of the module16 (these thresholds wor-
ked well; they are somewhat above the threshold required
to remove the false positives for the scrambled matrix). A
second filter was based on the “consistency”, defined as the
fraction of the genes in a preliminary modules that are in
the full module times the fraction of the genes in the full
module that are in the preliminary module. We ignored any
module with average consistency below 0.3, as well as modu-
les with average consistency below 0.5 that had less than 20

16 As shown in Fig. S2,nC
M tends to be smaller for larger modules (with

fewer genes, it is more difficult to “specify” a single condition), thus we
ignored modules with 40 or more genes ifnC

M < 5 and modules with 10-39
genes ifnC

M < 7.5. For modules with less than 10 genes,nC
M is no longer

a very good indicator of whether or not the module is reliable, so we only
ignored these modules ifnC

M < 4; for these small modules, the consistency
requirements are much more important.
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contributing preliminary modules. We also ignored all modu-
les that had fewer than 5 genes or fewer than 5 contributing
preliminary modules. These filters removed all but 14 of the
643 modules found by PISA when applied to the scrambled
matrix.

The values used above in the filters are partially based on
the distributions for randomized data (as shown in Fig. S2 for
two descriptors), but have been manually adjusted to better
separate interesting modules from apparent false positives in
the real data. Increasing the threshold values will initially eli-
minate only a few interesting modules, while lowering them
will admit a large number of apparent false positives. (Modu-
les that have no obvious biological relevance and that have
about equal numbers of genes with either sign are here assu-
med to be false positives, while “interesting” modules are
ones for which the genes appear to be functionally related.)
While the current set of filters do a good job of separating
interesting modules from false positives, they are probably
far from optimal.

S.4 Missing values
About 10% of the 6206x987 data values are missing,
and these are not all randomly distributed among the
genes/conditions. In order to avoid biases for or against inclu-
ding a gene in a module based on how many missing values
that gene has, we exclude the conditions for which a given
gene has missing values when calculating that gene’s score

sG
i ≡ EGsC

i∣∣sC
i

∣∣ ,

both when multiplying withEG and when calculating
∣∣sC

i

∣∣.
In EC,0, we set missing values equal to zero. (For the ortho-
gonalization process to work properly, all values must be
defined.)

S.5 Data set
The yeast data set we use is based on the data set used
in Bergmannet al. (2003), which contained 6206 genes
and 1011 experimental entries (essentially all available yeast
microarray data at the time). However, 20 of these entries did
not contain original experimental data, and an additional 4
entries contained data in a format that could not reliably be
converted to log2 ratios. Another 14 entries contained data in
a wrong format, but we were able to convert this data to log2

ratios, giving a total of 987 valid conditions.
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(b) ISA vs. SVD

Fig. S3. Best p-values onto every Gene Ontology (GO) category
with 500 or fewer genes. In each panel, we include only GO catego-
ries for which at least onep-value is below10−10. SVD modules are
found by taking the 5, 10, 15, ..., 200 genes with the highest (lowest)
entries in the eigenarrays, for a total of987 · 80 = 78, 960 modu-
les. (a) 166 modules found by PISA vs. SVD. (b) 778 ISA modules
vs. SVD. PISA and ISA are both clearly superior to SVD; for ISA
there are hardly any GO categories for which SVD does better, even
though SVD here has a hundred times as many modules as ISA. The
eigenarrays used here are the eigenvectors ofEGET

C,0—SVD then
corresponds to PISA without a gene threshold.
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Large-scale analysis of gene-expression data

Module: Galactose utilization

Number of genes: 16
Average number of contributing conditions: 20.8
Consistency: 0.54
Best ISA overlap: 0.81 at threshold 4.0,
frequency 915

GAL7GAL10 GAL1 GAL3

YDR010C HXT3

PCL10

HSL1

GAL2

YLR201C

GAL80 MLF3GCY1YOR121C

YPL066W

OPT2

0 Unknown

1 Galactose induced genes

2 Hexose transporters (downregulated)

3 Other, downregulated

4 Other

0 200 400 600 800 1000
-40000
-30000
-20000
-10000

0
10000
20000
30000 glu. vs. gal.

    gal
mutants

+gal

other media

Raw condition scores

Fig. S4. The galactose induced module found with PISA. This
module turns on GAL genes and also, as a weaker effect, represses
a number of hexose transporters.

Module: Hexose transporters

Number of genes: 12
Average number of contributing conditions: 31.9
Consistency: 0.65
Best ISA overlap: 0.53 at threshold 3.2,
frequency 16

MTH1HXT7

HXT6HXT3

MIG2 HXK2

HXT4 HXT1

HXT8

YKR075C

GAL2

HXT2

1 Glucose transporter

2 Galactose/glucose transporter

3 Glucose suppression regulator

4 Similar to glucose suppression regulator

0 500 1000
-6000
-4000
-2000

0
2000
4000
6000
8000

∆med2

      gal
mutants∆kim4

diaux.
 shift

∆sir4

Raw condition scores

Fig. S5. The hexose transporter module found with PISA. In this
module (which is consistently found after the galactose induced
module), the hexose transporter genes are co-regulated with GAL2,
the galactose permease, whereas they were counter-regulated in the
galactose induced module.
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Kloster, Tang and Wingreen

Module: De novo purine biosynthesis

Number of genes: 27
Average number of contributing conditions: 17.4
Consistency: 0.63
Best ISA overlap: 0.67 at threshold 5.0,
frequency 12
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0 Unknown
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4 Other

0 200 400 600 800 1000
-30000

-20000

-10000

0

10000

20000

30000

40000 ∆hpt1

∆ade2
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Fig. S6. The de novo purine synthesis module found with PISA.

Module: Peroxide shock

Number of genes: 62
Average number of contributing conditions: 25.7
Consistency: 0.78
Best ISA overlap: 0.35 at threshold 3.4,
frequency 621
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Fig. S7. The oxidative stress response module found with PISA.

14



Large-scale analysis of gene-expression data

Module: Meiosis

Number of genes: 41
Average number of contributing conditions: 11.2
Consistency: 0.70
Best ISA overlap: 0.44 at threshold 3.5,
frequency 1130
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Fig. S8. The meiosis module found with PISA. This module is
significantly more complete than the modules of comparable size
found by ISA.

Module: Zinc starvation

Number of genes: 8
Average number of contributing conditions: 31.7
Consistency: 0.59
Best ISA overlap: 0.88 at threshold 4.6,
frequency 3

ZRT1
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0 Unknown

1 Zinc transport/storage

2 Zinc-responsive transcription factor

3 Zinc metalloproteinase
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Fig. S9. The zinc module found with PISA. This module has a high
overlap with the group of genes bound by ZAP1 in database A (atp-
value 0.001): The ZRT1, ZRT2, ZRT3, ZAP1 and YNL254C genes
make up 5 of the 6 lowestp-values (counting each pair of diver-
gently transcribed genes only once), and the remaining hits from
database A (most withp-values above10−4) are likely to be mostly
false positives. Based on this, it seems very likely than YNL254C, if
functional, is regulated by and related to zinc. (ADH4 has also been
shown to be zinc-regulated elsewhere.)
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Module: Arginine biosynthesis

Number of genes: 9
Average number of contributing conditions: 4.06
Consistency: 0.73
Best ISA overlap: 0.56 at threshold 6.0,
frequency 62
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ARG1ARG8 YOR302WCPA1

CAR1MEP3

0 Unknown, neighbor of CPA1

1 Arginine biosynthesis
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Fig. S10. The arginine regulated module found with PISA. The
module agrees very well with what is known about regulation of
arginine metabolism [F. Mesenguy and E. Dubois (2000)Food tech.
bio. 38, 277-285]: ARG1, ARG3, ARG5,6 and ARG8 are repressed
by arginine through the Arg80/Arg81/Mcm1 complex, while CAR1
and CAR2 are activated by the same complex. We also find CPA1,
which is claimed to be regulated by arginine at the translational
level—the mRNA is destabilized by a small peptide in the presence
of arginine. However, database A indicates that ARG1, ARG3,
ARG5,6, ARG8 and CPA1 are all bound by the Arg80/Arg81/Mcm1
complex.
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Large-scale analysis of gene-expression data

# # Overlap Best
Function genes cond. Cons. w/ISA tG Freq.

Amino acid biosynthesis 108 32.2 0.94 0.85 3.4 20212
Arginine biosynthesis 9 4.0 0.73 0.56 6.0 62

Biotin synthesis & transport 6 6.8 0.79 0.67 5.5 7
Lysine biosynthesis 11 9.3 0.71 0.82 4.6 10

Branched amino acid biosynthesis 29 10.7 0.74 0.47 3.2 70
De novo purine biosynthesis 27 16.6 0.63 0.67 5.0 12
Sulfur/nitrogen metabolism 47 15.8 0.59 0.62 2.6 1205

Citric acid cycle 12 14.4 0.54 0.67 3.0 20
Gluconeogenesis, fatty acid beta-oxidation 38 17.7 0.73 0.61 2.9 264

Oxidative phosphorylation 46 39.4 0.78 0.93 3.4 1666
Trehalose & hexose metabolism/conversion23 51.5 0.60 0.61 3.1 524

Oxidative stress response 62 25.7 0.78 0.35 3.4 621
Proteolysis 23 85.1 0.69 0.88 3.9 352
Heat shock 54 48.3 0.68 0.44 3.2 12
COS genes 11 12.4 0.58 1.00 3.3 756

Calcium-calmodulin related 37 32.3 0.63 0.81 3.5 610
Mitochondrial ribosomal genes 78 42.4 0.64 0.83 3.0 3941

Transcription (RNA polymerase etc.)++ 34 68.7 0.52 0.59 3.2 1
Iron/copper uptake 31 12.0 0.66 0.90 4.2 351

Phosphoglycerides biosynthesis 30 37.8 0.65 0.60 2.9 22
Zinc starvation 8 37.8 0.59 0.88 4.6 3

Hexose transporters 12 34.5 0.65 0.53 3.2 16
Galactose utilization 16 20.6 0.54 0.81 4.0 915

Mid sporulation 101 10.8 0.79 0.70 2.6 4158
Meiosis 41 11.6 0.70 0.44 3.5 1464

Mating type a signaling genes 18 18.4 0.44 0.44 8.0 17
Mating 111 38.0 0.72 0.79 2.7 22673

Mating typeα signaling genes 18 19.4 0.56 0.89 3.8 1
Phosphate utilization 29 24.2 0.75 0.76 3.2 6528

Glycolysis 20 27.5 0.52 0.90 3.7 84
Ergosterol biosynthesis 30 27.5 0.79 0.77 3.1 283

Histones 25 36.2 0.54 0.48 3.2 1286
Cell cycle G1/S 82 43.8 0.65 0.90 3.6 1717

Cell wall (bud emergence) 17 45.8 0.60 0.89 4.0 67
Cell cycle M/G1 29 29.1 0.60 0.97 3.9 1747
Cell cycle G2/M 30 27.0 0.67 0.90 3.6 2787

Uracil synthesis/permeases 8 10.9 0.64 0.88 3.5 19
Fatty acid synthesis++ 23 51.3 0.81 0.48 3.1 4

Ribosomal proteins 107 56.1 0.74 0.88 3.3 20633
rRNA processing 80 51.6 0.61 0.40 2.7 45515

Table SI. 40 of the modules found by PISA that we could assign a name to. For each module we list the number of genes in the module, the number of
conditions that had a significant contribution to the module, how consistent the module was from each run to the next, the maximal overlap with a module
found by ISA (using 200,000 seeds at each threshold from 1.8 to 15.0), the threshold valuetG at which that overlap was found, and how many times such an
ISA module was found.
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