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ABSTRACT

Motivation: The use of gene microchips has enabled a rapid
accumulation of gene-expression data. One of the major chal-
lenges of analyzing this data is the diversity, in both size and
signal strength, of the various modules in the gene regulatory
networks of organisms.

Results: Based on the Iterative Signature Algorithm [Berg-
mann, S., lhmels, J. and Barkai, N. (2002) Phys. Rev. B67,
031902], we present an algorithm—the Progressive lterative
Signature Algorithm (PISA)—that, by sequentially eliminating
modules, allows unsupervised identification of both large and
small regulatory modules. We applied PISA to a large set of
yeast gene-expression data, and, using the Gene Ontology
database as a reference, found that the algorithm is much bet-
ter able to identify regulatory modules than methods based on
high-throughput transcription-factor binding experiments or on
comparative genomics.

Contact: tang@nec-labs.com

Supporting material: Sections S.1-S.5, figures S1-S10 and
table S| are available at ??

may only be active in a few experiments, and the remai-
ning experiments will only contribute to the noise (Getz
al., 2000; Cheng and Church, 2000; lhmels it et al., 2002).

A number of approaches have been proposed to overcome
one or both of these problems (Gedzal., 2000; Califano
et al, 2000; Cheng and Church, 2000; Owenal., 2003;
Gasch and Eisen, 2002; Lazzeroni and Owen, 2002). A par-
ticularly promising approach, the Signature Algorithm (SA)
was introduced in Thmelst al. (2002). Based on input sets of
related genes, SA identifies “transcription modules” (TMs),
i.e. sets of coregulated genes along with the sets of condi-
tions for which the genes are strongly coregulated. SA is
well grounded in the biology of gene regulation. Typically,
a single transcription factor regulates multiple genes; a TM
naturally corresponds to a set of such genes and the conditi-
ons under which the transcription factor is active. The authors
tested the algorithm on a large data set for the yBastha-
romyces cerevisiady applying SA to various sets of genes
that were known or believed to be related, they identified a
large number of TMs.

Soon after, Bergmanat al. (2003) introduced the Itera-
tive Signature Algorithm (ISA), which uses the output of SA

1 INTRODUCTION as the input for additional runs of SA until a fixed point is
The introduction of DNA microarray technology has made itreached. By applying ISA to random input sets and varying
possible to aquire vast amounts of gene-expression data, rdhe threshold coefficient; (see below), the authors found
sing the issue of how best to extract information from thisalmost all the TMs that had been identified using SA, as well
data. While basic clustering algorithms have been successfals a number of new modules. Many of these modules proved
at finding genes that are coregulated for a small, specifito be in excellent agreement with existing knowledge of yeast
set of experimental conditions (Alogt al, 1999; Eiseret  gene regulation.
al., 1998; Tamaycet al, 1999), these algorithms are less While ISA can identify many transcriptional regulons from
effective when applied to large data sets due to two wellgene-expression data, the algorithm has significant limitati-
recognized limitations. First, standard clustering algorithmsons. The modules found depend strongly on the value of a
assign each gene to a single cluster, while many genes ifireshold coefficientg used in the algorithm. To find all the
fact belong to multiple transcriptional regulons (Bittretr  relevant modules, a large range of threshold values must be
al., 1999; Cheng and Church, 2000; Gasch and Eisen, 2002onsidered, and for each threshold the algorithm may find
Ihmels et al, 2002). Second, each transcriptional regulonthousands of fixed points, many of which are spurious. While
the largest, strongest modules are easily identified, among
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the smaller, weaker modules it is a major challenge to identranscription factors. There are also many other correcti-
tify the real transcriptional regulons. Weak modules can evemns, but Eq. (1) should still capture a large part of the
be completely “absorbed” by stronger modules. gene-expression patterns of the organism.

One clear conceptual limitation of ISA is that it only con-  Ideally, we would like to extract the full set of gene vectors
siders one transcription module at a time; the algorithm doeand condition vectors based only on gene-expression data.
not use knowledge of already identified modules to help itThe gene vectors describe the sets of genes that are core-
find new modules. ISA may find a strong module hundreds ofjulated at the most basic level in the organism, while the
times before it finds a given weak module, or it may be unablecondition vectors describe how the organism responds to the
to find a weak module at all. A simple way to ensure that thedifferent experimental conditions. Unfortunately, the decom-
same module is not found repeatedly is to directly subtracposition of the matriX& given by Eq. (1) is not unique, even
the module from the expression data (this approach is useifithere was no noise.
in Lazzeroni and Owen, 2002). A more robust approach is to There are ways to find unique decompositions [as given by
require the condition vector.e. the weighted condition set, Eq. (1)] that have additional properties. One such approach
of each new transcription module to be orthogonal to the conis singular value decomposition (SVD; seg. Alter et al,
dition vectors of all previously found modules. In essence2000), which leads to gene vectors (eigenarrays) that are
this procedure corresponds to successively removing trangdl orthogonal to each other, as are the condition vectors
cription modules to reveal smaller and weaker modules. Théeigengenes). However, these properties do not match our
successive removal of condition vectors is the central nevbiological expectations—different transcription factors may
feature in our approach. We call the modified algorithm thecontrol substantially overlapping genes, and may also be

Progressive Iterative Signature Algorithm (PISA). active under many of the same experimental conditions. Also,
as shown by Bergmanet al. (2003), SVD is sensitive to
2 METHODS AND ALGORITHMS noise.

L In order to find a biologically relevant decomposition, one
2.1 Motivation should use the properties we expect the “real” solution to
To a first approximation, the expression level of a gene isave. In particular, each transcription factor typically con-
given by the activity of the various transcription factors in trols only a small subset of the genes in an organism, thus
the cell. If we assume that the effects of different transcrip-we expect the gene vectors to be sparse. A reasonable goal
tion factors act multiplicatively on the expression level, thenwould thus be to find the simplestd., few TMs) decompo-

the relative expression levels of all the genes in an organisrsition for which the gene vectors are sufficiently sparse. A

under a set of experiments (“conditions”) are given by natural way to enforce sparse gene vectors is to introduce a
threshold, such that no entry can be close to—but different
E= Z gict + 1, (1) from—zero.
P While it is possible to search directly for a full decomposi-

tion with the desired properties, such an approach would be

whereE,. is the logarithmic expression ratio of gepender  very computationally challenging. A more practical approach
conditionc, the “gene vectorg, specifies to what extent each is to search for transcription modules one at a time, alt-
gene is regulated by transcription factpand the “condition  hough correlations between different TMs makes also this a
vector” ¢, specifies the activity of that transcription factor in challenging problem. Ideally, in order to find the genes asso-
each condition (relative to its reference).indicates noise. ciated with a given transcription factein Eq. (1), we would
Together, we call corresponding gene and condition vectors want to look for a signal along a condition vector that has
“transcription module” (TM), which may or may not actually a large component along, but is orthogonal to the condi-
correspond to a specific transcription factor. tion vectors of all other transcription modules, thus avoiding

The assumption of multiplicativity may be approximately interfering signals. In practice, we can only ask that condition
true for lower organisnfs but certainly does not capture the vectors are orthogonal to TMs we already know about.
highly combinatorial regulation present in higher organisms.
Nevertheless, Eq. (1) may be useful: each transcriptional
module may then correspond to a relevant combination of

2.2 The Algorithms SA/ISA

1 Post-transcriptional regulation by specific degradation of mMRNA may alsoWe briefly review the algorithms SA and ISA. A transcription

be considered to be a “transcription factor” effect in this context. e L. : “ .

5 , o o moduleM can be specified by a condition vector (“experi-
Even for lower organisms, the ascription of one transcription module to tsi ture”mC d t « . ture”

each transcription factor is clearly not fully accurate. For instance, a transmen signature”)m™ and a gene vector (“gene signature”)

G o S e
cription factor may repress some genes on the basis of its concentration onif2~, Where nonzero entries in the Ye(?tors indicate conditi-
while it may activate others depending on its phosphorylation level. ons/genes that belong to the transcription module (TM).
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Given an appropriately normalizéthatrix E of log-ratio ol @ | " o] ® & Condition A
gene-expression data and an inputegbf genes, SA scores o| 2 |
all the conditions in the data set according to how much eac;% | |
condition upregulates the genes in the input set (downregLs >
lation gives a negative score). The result is a condition-scorS| 1 )
VeCtorSC: T .G — e ] 10 0 10 20 30
sC = B rgi“7 (2) Condition A Gene scores »
|min
whereET is the transpose d& and Fig. 1. A toy model with only two transcription modules (synthetic
data). (a) Module 1 is upregulated under condition A, while module
a 1 g€ Gy 2—a larger, stronger module—is upregulated under conditions A
(my)g = { 0 g¢ G ®) and B. The remaining (background) genes only show Gaussian

noise. (b) Normalized histograms of the gene scores given by the
is the gene vector corresponding to the input set. The entrieSignature Algorithm (SA) for the background (solid fill), module 1
of sC that are above/below a threshaletc constitute the (solid line) and module 2 (dotted fill), when using the true condition

condition vectormC: vector for either module 1 (condition A) or module 2 (conditions
A+B). Even starting with the true condition vectors, SA does not
(mc)c = (SC)C . 9(‘(SC)C| —te), 4) resolve the two modules. Nor_ can the_ Iterated Signatyre Algo_rithm
(ISA) resolve module 1, even if it receives the module itself as input
where®(z) = 1 for z > 0 and®(z) = 0 for z < 0. gene set, as the genes from module 2 have higher scores also for

condition A (there is only one fixed point of ISA). Due to the noisy
data, it is also impossible to separate the modules by varying the
ISA gene threshold coefficient.

Similarly, the gene-score vecteFF measures how much
each gene is upregulated by the conditionsiifi, using the
entries ofm® as weights:

E mC
sC =

(5) contain less than 10% of the conditions, and some contain
more than 80%.

As mentioned in section 2.1, different TMs are often corre-
lated. This can contribute to a hierarchical clustering by ISA:
For a low gene threshold coefficiety, correlated modu-
les may appear to be a single, large module, while at higher
— (<G . Gy _ ((sCY ), — thresholds, the individual modules are resolved (Bergneann
=(57)g- 07y = (57)g1)g tGUSG) © al., 2003; Ihmelst al, 2004). However, as shown in Fig. 1, it

The lterative Signature Algoritm (ISA) starts from a ran- may be impossible for SA/ISA to resolve correlated modules
dom set of genes and repeatedly applies SA, usifigas the  regardless of which value is used fey.
inputm$ for the next iteration, until a fixed point is reached. 2.3 The Algorithm PISA

For the actual fixed point, the outpui® would be exactly
the same as the inpuhC for an iteration of SA; in prac- 2.3.1 Orthogonalization. Within PISA, each condition-

mn

tice ISA stops when the same set of genes is selected in tweFore vectos® is required to be orthogonal to the condition-
consecutive iterations. score vectors of all previously found transcription modules

Both SA and ISA apply thresholds to both gene scores anfTMs), as illustrated schematically in Fig. 2. Therefore, whe-
condition scores. According to our discussion in section 2.1never PISA finds a TM and its associated condition-score
this corresponds to an assumption that both gene vectors aNgctors©, the component along® of each gene is remo-
condition vectors are sparse. However, the two threshold4ed from the gene expression matrix (segplementation of
are very different: The gene threshold is specified in term$ISAbelow). Returning to the example in Figs. 1 and 2, one
of standard deviations of the observed gene-score distribfinds that PISA can easily identify both TMs: it first finds
tions, and thus sets an absolute-ependent) limit on the the strong module, removes its condition vector, and then the
fraction of genes that can be included in a module. The cononly signal left is that of the weak module.
dition threshold, on the other hand, compares each score toProgressively eliminating transcription moduéeta PISA
the expectediistribution (if the data was uncorrelated noise), ¢an also improve the prospects for finding unrelated modules.
thus there is no limit on the number of conditions that canhe gene regulation from one module will contribute to the

be included. Indeed, few transcription modules found by |sabackground noise for all unrelated modules. Therefore, eli-
minating large, strong modules can significantly improve the

3 SA actually uses two matrices with different normalizations (lhreeks., signal to n0i§e rgtio of the remaining_ mOdUk':‘S- Thisisin con-
2002). trast to the situation for SVD: The initial modules found with

Im®| -

The entries of the gene-score vectdt that are more than

t standard deviations . above the mean gene score in the

vectors® constitute the gene vectan®:

G
)

(m™)y
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Fig. 2. Once the Progressive ltererative Signature Algorithm 10—
(PISA) has eliminated the combined module 1+2 from Fig. 1 (das-
hed line), the remaining signal makes it easy to separate the gen 0-—L—=L1 : ! . . m
of module 1 from the genes of module 2. (a) Remaining signal for

each module. (b) Actual gene scores for the new fixed point foun
by PISA. Genes of module 1 (solid line) have been separated fro
genes of module 2 (dotted fill) and the background (solid fill).

jﬂ:ig. 3. Gene-score thresholds as used in ISA and in PISA algo-
rithms (see text); for a synthetic gene-score distribution for 6206
genes, 300 of which belong to a module; calculated using all the
genes (top, solid bars) or only the non-module genes (bottom, das-
hed bars). In ISA, the valuec ~ 2.5 that gives the desired
SVD will typically be a mixture of many real transcription (for PISA) threshold+4.0 in the presence of the module gives a
modules, and removing them will not significantly improve much too low threshold if there is no strong module, while the
the signal for weak modules. In PISA, the gene-score threghreshold used in PISA is only weakly module-dependent. The non-
hold ensures that only a few, typically highly correlated, TMSmogule (bacl;ground) genes’ scores follow a normal distribution;
will be combined. (@) =0, o7 =1.

The requirement of orthogonality in PISA conflicts with
the condition-score threshold as used in ISA. If we makek . . G e

o . nowledge of the module one is searching for, it is diffi-

the condition-score vector orthogonal first and then apply the It to k hatfe. t hich : difving th
threshold, the vector will no longer be orthogonal, whereas cu!t 1o Know whatig 1o Use—which requires mo ifying the

we apply the threshold first, orthogonalization will give non- thresho_ld _definitio_n. . .
) o L P We eliminate this problem in PISA by specifying the thres-
zero weight to all conditions, eliminating the noise-filtering h

benefit of thresholding. We have chosen to eliminate the old relative to the background, which we estimate using the

" . mean,(x)7°”%, and the standard deviation’”, of the gene
condition-score threshold completely. In any event, Condltl'scores within the shortest interval that contains at least 70%
ons that in ISA would fall below the threshold will have low 0

weight and will give only a small contribution to the noise. of all the gene scores. By excluding extreme gene scores in

This orthogonalization procedure gives good estimates fotrhIS way, we minimize the influence of the module on the

the gene vectors in Eqg. (1), but the resulting condition vectorg €ans and standard deviations of gene scores (Fig. 3). As a

. Test, we used ™% in place ofc in ISA and found both very
are of course all orthogonal. A condition vector calculated . :
large and very small modules with a single value f.

from the initial value of the gene-expression-data matrix, as We need 10 be conservative when selecting the aene-score
given in section 2.3.6 below, gives a much better description . . o 9 9 s
| o threshold because, if PISA misidentifies a module, elimi-

of the “real” transcription module. . . . )
nation of its condition vector can lead to errors in other
2.3.2 The gene-score thresholdn ISA, the gene-score Modules. Therefore, the number of genes included in modu-

threshold ig gogc, where the standard deviatiege is com- €S due to noise should be very low. We have used a threshold

puted using the full distribution of gene scores and include®f 7.007°%, which for a Gaussian distribution corresponds to
contributions both from the background and from the moduleé@Pout3.9c. The chance of including a gene due to noise is
of interest (Fig. 3). For large, strong modules, the modulg2Pout10~* per genee.g. with the 6206 genes in the yeast
contribution may be larger than the background contributiondata set, the average number of genes included by mistake
As a resultoge is module dependent, ag must be adju- I each module would be a.bout 0.62. Using a high thres-
sted to prevent false-positives from the background: at low0ld means that we may miss genes that should belong to
thresholds, a small module would be lost among false positid@ module, however this is less risky than including genes
ves; while at high thresholds, it is mathematically impossiblePy mistake. As PISA proceeds by eliminating condition-
to find a large module. This is not a significant issue in ISA,SCOre vectors, it does not matter whether we identify all the
since one (independent of this) needs to run the algorithn§e€Nes in @ module, as long as the condition-score vector
with many different threshold coefficients in order to find

all modules. Within PISA, however, we wish to find all the 4t would still be necessary to use a large range of thresholds to find all the
modules using a single threshold—otherwise, without prionsSA modules; this is not just an artifact of the threshold definition.
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is accurate. Potentially, once PISA has finished, one coulfroms{*, one calculates the gene vectai’ , for the next
easily see which genes would be included when using variougeration:
gene-score thresholds for the same condition-score vector.

ISA only considers sets of genes that hhighgene scores,  (mf ;) = (s5), 0((s5)g — ((s)g) 0| — taold®).
i.e. positive signs. As discussed in Ihmeisal. (2002), this '
can lead to two modules that are regulated by the same con-We iterate until: (a)m§*), and (m$ ), have the same
ditions but with opposite sign. In contrast, PISA includes allsign (0, + or -) for allg, (b) the iteration number is = 20,
genes with sufficiently extreme scores in a single module, andr (c) fewer than two genes have nonzero weight. Criterion
the relative signs of gene scores specify whether the genes af@) indicates convergence to a fixed p8jr(b) handles limit
coregulated or counter-regulated. cycles (see section S.2), and (c) indicates failure to find a
module. If fewer than five genes have nonzero weight, the

2'3'3. Implemen'Fatlon of PISA'T(.) begin, PI.SA requires a esult is discarded, otherwise we have found a module with
matrix E of log-ratio gene expression data, with zero average

iti - = C - = G
for each condition. Two matrices are obtained fr&mThe condition-score "SC“I‘CG Si» gene-score vects® = s7,
. . : and gene vectan™ = m;’ ;. The module is then stored, and
first Eg is normalized for each gene

E¢ is updated according to Eq. (7).
(Eg)ge)e =0, <(EG)§C>C =1 Vgeq. We chose a threshold co_efficietfg = 7.0s0 that the
o . ) expected number of genes included in each module due to
Normalization ofE¢ is essential so that the gene-score thresbackground noise would be less than one. However. with
hold can be applied to all genes on an equal footing. Theyiq high threshold, starting from a random set of genes there
second matrixEc is ob;calned fromEq by normalizing for a5 only a very low chance that two or more genes would
each condition((Ec,0)g.)g = 1, whereEc o denotes the = g.,re anove the threshold in the first iterafiofio increase

initial Ec. (Note that this is essentially the opposite of the e chance of finding a module, we used a different formula
notation used in Bergmaret al. (2003).) PISA consists of ¢, 1,6 " |nstead of selecting only genes with scores above

a large number of steps (typically 10,000). In each step, wey, o threshold, we kept a random numier n < 51 of

apply a modified version of ISA (PISAstep, see below), and ify,q genes with the most extreme scéréis procedure was

itfinds a module, we remove froflc the components along  yenerally adequate to produce a correlated set of genes for

the module’s condition-score vectsir: the next iteration.

s(s9)T . PISAstep is very similar to one step of SVD; the key
IsC)F (") difference is the gene threshold in PISA.

As PISA progresses, new modules are found less and legs3.5 Consistent modulesISA typically finds many dif-
frequently. For example, one run of 10,000 steps found 77derent fixed points corresponding to the same module, each
preliminary (see below) modules, and 442 of them werediffering by a few genes. PISA only finds each module once
found in the first 1,000 steps. As the later modules are alsguring a run, but the precise genes in the module depend

generally smaller and less reliable, the exact number of step¥ the random input set of genes and also on which modu-
is not very important. les were already found and eliminated. Furthermore, PISA

sometimes finds a module by itself, while other times it may
] ) find the module joined with another module, or PISA may
2.3.4  PISAstep. As input, a step of PISA requires the two finq only part of a module, or not find the module at all. To
matricesEc andEq. We start each application of PISAStep get a reliable set of modules, it was necessary to perform a
by generatlngGa random set of geri@sand a corresponding  nymber of runs of PISA and identify the modules that were
gene vectomy’: consistent from run to run.
To identify consistent modules, we first tabulated preli-
{ L 9 € Go minary modules—transcription modules found by individual
0 g ¢ Go. L. .
runs of PISA. A preliminary modul® contributes to a con-
Each iteratiori within PISAstep consists of multiplying the  sjstent moduleC if P contains more than half the genes in
transpose ofEc by the gene vectom{’ to produce the C, regardless of gene-score sign, and these genes constitute
condition-score vectas;: at least 20% of the genes B. (“PNC| > 0.5|C| A

C _— pT,.,,G
Si :Ecmi 5

Eréew = EC — EC

(mg;)g =

5 If the gene set did not change, the distance to the fixed point is very smalll;
and then multiplyingE by the normalized condition-score further iteration generally only gives minimal changes.

vector to produce the gene-score veel;%r 6 This is not an issue in ISA, where the condition threshold helps to pick out
. the signal—which is possibly very small—from the noise.
G = EGSi 7 2 is the smallest number of genes that is interesting; the upper limit 51 is
v ’sZC| ’ arbitrary as long as “large” sets are possible.
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[PNC|] > 0.2|P|") A gene is included in the consistent signal to noise for the remaining ones. 166 consistent modu-
module if the gene occurs in more than 50% of the contribules passed the filters. Out of the 6206 genes included in
ting preliminary modules, always with the same gene-scor¢he expression data, 2512 genes appeared in at least one
sigrf. We found the consistent modules by iteratively apply-module, and more than 500 genes appeared in more than
ing these criteria until we reached a fixed point, starting fromone modulé®. No genes appeared in more than 4 different
all pairs of preliminary modulés modules.

For most of the modules we found, the genes were coregu-
lated,i.e. all the gene scores had the same sign. (In contrast,
the modules that were eliminated by the filters often had
about equal numbers of genes of either sign.) There were,
however, a significant number of modules with a few gene
scores differing in sign from the rest,g. the arginine bio-
synthesis module described below. Furthermore, many of
the modules found by PISA agreed closely with modules
identified by ISA at various thresholds, while other PISA
2.4 p-Values modules were subsets of ISA modules. Some PISA modu-

Given a set containing: genes out of the total aNg, the €S, for example the de novo purine synthesis module (Fig. 4),
p-value for having at least genes in common with a Gene Were significantly more complete than the ones found by ISA

2.3.6 Correlations between condition-score vector®nce
we identified a consistent modulep®, we calculated the
raw condition-score vectar = ET ;m®, using the initial
value of the gene-expression-data maffix. From ther’s
we evaluated the condition correlations r’/(|r| |r’|) bet-
ween different modules.

Additional details are discussed in the supporting material.

Ontology (GO) category containingof the N¢ genes is (at any threshold).
PISA found several small modules that agree very well
min{e,m} (j) (1\;?_—2,0) with known gene regulation in yeast. For example, the
p= Y W» (8)  arginine-biosynthesis module consists of ARG1, ARGS3,
i=n m ARG5,6, ARG8, CPA1, YOR302W, MEP3, CAR1 and
We ignore any genes that are not present in our expressidaAR2; out of these CAR1 and CAR2 have negative gene
data when counting. scores,i.e. they are counter-regulated relative to the others.
The first five genes are precisely the arginine-synthesis genes
3 RESULTS known to be repressed by arginine, while CAR1 and CAR2

We applied PISA to the yeast data set used in Bergreaah are catabolic genes known to be induced by arginine (Mes-

(2003), which consists of log-ratio gene-expression data fopeNguy and Dubois, 20(.)0)‘
Ne = 6206 genes andV — 987 experimental conditions PISA also found a zinc (ZAP1 regulated) module even

(see sections S.4; S.5 for details). Normalization gives thého.ugh_lt_ue set Off 987 co_nd;}nons g|d| nc%tF;q_ciluggTzzlnCZFset_?g
matricesEg andE¢ (see Methods; section S.1 for details). vation. The set of genes in the module ( ' ' '

As a preliminary test, we repeatedly applied PISA to oneZApl’ YOL154, INO1, ADH4, and YNL254C) agree well

fully scrambled version of the matrik (and the correspon- With the highes’_[-scoring genes ina separate microa_rray expe-
ding Ec). From run to run, the algorithm identified many riment comparing expression, under zinc starvatmn,_of a
large modules derived almost entirely from a single Condi_ZAI;’llmu:]anrt]_virsus W"d. typef (fl;yogrém al, 2(;).90)' For th'?
tion, as expected in light of the broad distribution of the rawModule, the highest-scoring of the 987 conditions came from

gene-expression data (Fig. S1). PISA also found many sma“1e Rosetta co.mpendium (Hughgsgl., 2000) of deletion
modules, but these differed from one run to the next. wednutants (see Fig. S9). Our identification of the unknown gene

were able to eliminate both of these classes of false positi\-”\“‘z_'s’d'C as part ofthe zinc module, as yveII asthe s_tar_vat|0n
xperiments in Lyongt al. (2000) and direct transcription-

ves using filters for consistency, recurrence, and numbero? bindi ) bel I indi h
contributing conditions (Fig. S2; see section S.3 for details). al(\:ltlijerAinC Ing expl)enrcr;ints (S(lee ?jOW),b abl |rf1 |ca_te t gt
We performed 30 runs of PISA on the yeast data set and. Is regulated by zap1, and probably functions in

identified the modules that appeared consistently, using théinC starvation/uptake.

filters derived above. At the start of each run, only a few In order to evaluate the overall perform_anc_e of PISA,
we compared our modules to the categories in the Gene

modules could be found with our single choice of geneo | GO d datab The G Ontol c
thresholdts. Nevertheless, PISA did consistently find new ntp ogy ( )lcurate atabase ( 1€ bene ntology Con-
sortium, 20013%. For the set of genes in each of our modules

modules after eliminating others, demonstrating that remo
ving the condition vectors of found modules improves the

10 We have adjusted for the fact that for some modules there are several
8 The values 50%, 20%, 50% used are subjective criteria for how consistentersions that are very similar.

the modules should be. The results are not very sensitive to these values. 11 |t js not clear to what extent the GO category definitions (molecular
9 While this approach may not be fully exhaustive, any consistent modulgfunctions, cellular components and biological processes) correspond to the
missed by this approach is almost certainly not of interest. transcriptional modules we are searching for, which are characterized by
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Fig. 5. Bestp-values onto every Gene Ontology (GO) category with
500 or fewer genes. In each panel, we include only GO categories
for which at least one-value is below1071°. (a) 166 modules
found by PISA vs. 778 modules found by ISA. ISA here does a
HIS3 slightly better job overall, but produces far more modules. (b) 166
HIS7 PISA modules vs. the 215 most recurrect ISA modules from (a).
PISA now does significantly better than ISA, with fewer modules.
HIS6|  Furthermore, whenever ISA had a significantly lowevalue than
PISA in (a), this is still the case in (b); thus the modules for which
ISA does better are the highly recurrent large, strong modules, while
PISA does a much better job at finding biologically relevant small,
weak modules.

HIS2

N°,N'"°M—THF

Purine transport:

B HERER

HIS1
Other/unknown:
| CEM1 || METS6 || AIP2 | AMP — _ATP™ PRPP for PISA and for ISA2. While ISA does a somewhat better
iYDRoagwiipromci job at identifying large, strong modules, PISA does signifi-

cantly better at finding small, weak modules. PISA also does
_ _ ) _ better at producing accurate modules (we calcylatalues
Fig. 4. The purine synthesis module found with PISA (genes shownoniy when at least 50% of the module genes belong to the

in bold) contains all the key genes involved in de novo purine bio- O category; data not shown). As shown in Fig. S3, both
synthesis and associated one-carbon metabolism in yeast, as well gory; ) 9: ’

as some of the genes involved in the closely connected histidin& gorithms perform much better than SVD.
biosynthesis pathway. Purine synthesis is known to be regulated We also used the p-values between our PISA modules

by the BAS1 transcription factor (Daignan-Fornier and Fink, 1992;2nd the GO categories to compare PISA to other means of
Deniset al, 1998); genes that are underlined havealues below identifying transcription modules. Specifically, we compared
0.001 for BAS1 binding in database A. Only key metabolites arePISA to two different databases of genes predicted to be regu-
shown. The inclusion of related processes,. serine synthesis, in  lated by single transcription factors. Database “A’ contains
the module may be due to the “Borges effect” (Matebal, 2002).  genes that were enriched through immunoprecipitation with
tagged transcriptional regulators (Le¢ al, 2002), while
Database “B” has genes sharing regulatory sequences deri-
we calculated thﬁ-Value for the 0ve|’|ap with the set of genes yed by Comparative genomics (Keihg ai_, 2003) Figure 6
in every GO category (see Methods). Thealue is the pro-  shows thep-values between GO and PISA compared to the
bability that an observed overlap occurred by chance. Thg.yalues between GO and each of these two datalddJee
lowestp-value we found was.7-10~ ", for the GO category  |ower p-values for PISA indicate a consistently better agree-
“cytosolic ribosome”, and we foung-values belowl0=*°  ment between GO and PISA than between GO and the other
for more than 130 other GO categories. (The modules thaatabases. While PISA may have a slight advantage in that it
were removed by our filters mostly did not have signifigant  |ooks for overall coregulated genes as opposed to genes that
values.) Figure 5 shows a comparison between guailues  share a single transcription factor, and this may be somewhat

coregulation. Thus, failure to find a good overlap with a GO category does
not necessarily indicate that a module is not biologically relevant, but a very> We here use the ISA modules included in the Matlab implementation
significant overiap does show bioiogicai relevance. Using @lues as available at http://barkai-SerV.Weizmann.aC.il/GroupPage/SOftware.htm. This
a score should be a resonable way to compare different approaches as loff§gludes modules for threshold coefficients from 1.8 to 4.0.

as the module definitions used by the different approaches are about equallj We used an internap-value threshold of 0.001 for Database A, as
(dis)similar to the GO categories. suggested in (Leet al., 2002).
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(a) PISA vs. database A
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4 DISCUSSION

The Progressive lterative Signature Algorithm (PISA) embo-
dies a new approach to analysis of large gene-expression data
sets. The central new feature in PISA is the robust elimina-
tion of transcription modules as they are found, by removing
their condition-score vectors. Also new to PISA, compared to

log, (p value for A)

-100
log, (p value for B)

-100

its precursors SA (Ihmelst al,, 2002) and ISA (Bergmanet

al., 2003), is the inclusion of both coregulated and counter-
regulated genes in a single module, and the use of a single
gene-score threshold.

Altogether, these new features result in an algorithm that
Fig. 6. Bestp-values onto every Gene Ontology (GO) category with an reliably identify both large and small regulatory modules,
500 or fewer genes. In each panel, we include only GO categorie®ithout supervision. We confirmed the performance of PISA
for which at least ong-value is belowt0~'°. (a) PISA vs. Database by comparison to the Gene Ontology (GO) database—PISA
A. (b) PISA vs. Database B. (a) inset: Database A vs. database B-performed considerably better against GO than either high-
there are very few GO categories onto which both A and B have lovthroughput binding experiments or comparative genomics.
p-values. PISA therefore provides a practical means to identify new

regulatory modules and to add new genes to known modules.
Can PISA shed any light on the organization of gene
expression beyond the level of individual transcription modu-
les? In Bergmaniet al. (2003), the authors argued that they
could trace the relationship between modules from the effects
closer to the definitions of GO categories (biological procesy changing the thresholdg, as done in greater detail in
ses efc.), it is remarkable that there are no GO categories fomelset al. (2004). For instance, a large module might split
which database A or B significantly outperforms PISA. into two smaller ones a&; was increased. With PISA, we

Compared to microarray data, Database A and Databasgere able to use a more direct approach. Once we identified
B share one clear disadvantage: their binding sites are asshe modules, we computed the “raw’e( pre-eliminations)
gned to intergenic regions, and if the two genes bordering agondition-score vector for each module, and from these
intergenic region are divergently transcribed, then the databazyy condition-score vectors, we evaluated the condition cor-
ses do not identify which of the genes is regulated. In manye|ations between modules (see Methods). Figure 7 shows
cases, we found that by comparing sets of genes in databasefe condition correlations between 40 of the modules that
to PISA modules, we could decide which of divergently tran-yye can put a name to. A large, positive correlation bet-
scribed genes were actually regulated. For example, Databaggen two modules can either indicate that the modules have
A lists 6 intergenic regions as binding site for zap1 at aninter-many genes in commore.g. the genes of the arginine-
nal p-value threshold ofil0~, and 4 of these lie between pjgsynthesis module are essentially a subset of the genes of
divergently transcribed genes. However, 5 of the 6 intergeghe amino-acid-biosynthesis module, or, as in the toy model
nic regions border the genes ZRT1, ZRT2, ZRT3, ZAP1, andy, Figs. 1 and 2, the modules have few/no genes in common,
YNL254C which PISA identifies as part of the zinc module. pt the two sets of genes are similarly regulated under many

Database A appears to have an additional source of falsgngitions. In the toy model, the raw condition-score vectors
positives. Intergenic regions that are close to intergenic regil-n1 andr, correspond to the vectors in Fig. 1(a) and their cor-
ons with very Iovvp—valu_es often have Iow—valut_as themsel- relation,ry - r2/(|r1||r2|), is simply the cosine of the angle
ves, even when there is no apparent connection between th@twyeen them. A real example of this second type of correla-
genes and no evidence of a binding site in the DNA sequencggn, is provided by the ribosomal-protein module (107 genes)
For example, for the de novo purine-biosynthesis modulegpq the rRNA-processing module (80 genes). They have no
which is primarily regulated by the basl transcription fac'genes in common, but the correlation between them is very
tor, the intergenic region controlling GCV2 has the lowesthjgh 0.71.
p-value within Database A,1-10~', and all the four closest 7o filter out false modules, we found it necessary to ignore
intergenic regions have-values belowt0~>. Comparisonto  g)| modules that depended only on a few conditions. As a
PISA modules can help eliminate these potential false posiresult, true modules that were strongly regulated only in a
tives: out of the 29 genes assignegraalue belowl0™ few experiments could be missed. This suggests that experi-
for basl binding in database A, 13 belong to a single PISAnents that affect many modules at once, in different patterns,
module, 4 others are divergently transcribed adjacent genegre more useful than experiments that probe the effects of

and 6 others are genes transcribed from nearby intergenigatively simple perturbations. While the latter are easier to
regions.
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SUPPORTING MATERIAL S.2 Avoiding Positive Feedback

S.1 Normalization The basic principle of SA, or an iteration of ISA/PISAstep, is
Here we review in detail the normalization procedureto find the set of genes whose expression profiles most resem-

employed in PISA. The most obvious requirement for theble those of the genes in the input set, either for all conditions
normalization is that scores for different genes must be com(P!SAstep) or for a selected subset of conditions (SA/ISA).
parable. The procedure itself is as follows: Given a marix Of course, the gene whose expression profile most resembles

of log-ratio gene-expression data, we first set the average {92t Of @ given gene is the gene itself, thus there is a poten-
zero for each condition tial for significant positive feedback. Adding one gene to the

input set would typically increase the score of that gene far
(ENge = (E)ge — (E)gre) g, (S1) more 'Fh_an the score of any other gene. As a consequence
_ . _ of positive feedback, adding one gene to the gene vector of
and then normalize to zero mean and unit variance for each fixed point would have a considerable chance of yielding
gene, givingE¢, which is used in PISA to calculate gene another fixed point, and a small set of genes could be a fixed
scores: point even if the genes were completely uncorrelated.
In PISA, we only find each module (or combination) once
1! _ !/ _ ! , , . i . ;
(E%ge = (E)ge = (E)ger)e (S2) for each run, and it is important to be as certain as possible

Eo)ee = (E"),. [((EM? . sS3 that we have the correct genes. We avoid positive feedback
(Ee)g B ge/ VAl )gc> (53) by using leave-one-out scoring for genes that had nonzero

For this normalization to be consistent through the iterationdveight at the start of the iterationg. we remove the contri-
in PISAstep, the different condition scores must also be combution from geney from the condition scores;” before we
parable. To get the initial valuE , of the matrix used to use these scores to calculate the new score for gene
calculate condition scores, we dividg; by the rms value

for each condition: o (Ea)y [sC — (EL) ,(m&),]

(si)g = T
(Boo)ge = (Ba)ge/\/(Ba)2)y.  (S4) s — (B&).y (m),

Note that a simple approach would be to normalize forwvhere(A);_is row j of matrix A, and(A)_; is columnj
both genes and conditions Simu|taneous|y and thus use OnRI matrix A.. With a Gaussian distribution of the baCkgrOUnd
a single set of dat4d—this could be easily accomplished Noise, this approach is very close to neutral,adding a gene
by alternately normalizing over conditions and genes a fewVill neither affect that gene’s score, nor will it significantly
times: the data converge quickly. There is, however, a risiEhanges” of the gene-score distribution.
of losing significant features of the data through excessive Without positive feedback, fixed points may be marginally
normalization. For some conditions, the typical change inStable or even unstablee. a limit cycle, thus we do not
expression levels may be very large, while for others it mayequire a true fixed point; we accept any gene vector reached
be negligible, and it would be misleading to always norma-after 20 iterations in PISAstep, as long as it contains at least
lize these to the same level: at the very least, this would give & 9enes—empirically, if PISAstep has not converged in 20
lower signal to noise ratio. Therefore, we have chosen to noriterations, then it has entered a limit cycle. An alternate crite-
malizeE; over genes but not conditions, allowing conditions fion would be to check each iteration whether PISAstep has
with |arge Changes in expression level to make a proportionﬁnterEd a limit CyCle. An advantage of the fixed-iteration cri-
tely larger contribution to gene scores. For genes, howeveterion is that this does not favor the state at which PISAstep
it is reasonable to always normalize to the same level. If twgvould usually enter the limit cycle (which we see no reason
genes are in the same module, then there is little reason #§): Whenever there is no clear reason to choose one result
consider the gene with the larger dynamical range to be mor@ver another, we wish to sample all possibilities, which gives

reliable than the other. That is why we UEe; to calculate the post-processing algorithm better data to judge whether or
Ecpo. not a module is reliable.

Also note the difference between genes and conditions: In SA/ISA, the authors do not eliminate positive feedback.

The variance for a gene often depends on a small number dfdeed it would be difficult to do so, as adding/removing a
outlying values, and normalizing over genes prevents thesgene can change which condmons' have Scores exceeding the
from dominating. In contrast, the variance for a conditioncondition threshold. Apart from this complication, the feed-

typically depends on many genes, and as such is a far moRack in SA/ISA is proportional to the number of conditions
reliable quantity. that make the threshold. For small modules, typically only a

small fraction of the conditions have scores above the thres-
14 1f Eq = Ec, initially, then it is equivalent to keeEq constant or use hold, thu§ th? feedback is |0W?_r than it would have been for
Ec = E¢, which is updated every time PISA finds a module. PISA, which includes all conditions. For large modules, the
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Fig. S1. Distributions of the yeast microarray data used (6206 8 |
genes/ORFs, 987 conditions). Roughly 10% of the data was inva§
lid/missing (not included in the distributions). The distribution is Z
! { t

200 300 400
Module size

sharply cusped and has long tails, both before and after normaliz: 0
tion (Egs. S1-S3). 0

feedback is only a minor effect in the first place. Neverthe-T9: S2: The number of genesyy in a moduleM and the number
of contributing conditionsiy; (see text) were two of the properties

less, the total number of fixed points for ISA is huge due to . ) M. .
itive feedback—at threshold fficient 4.0 we used in our filters to eliminate false modules. PISA applied to a

posilive tee aC___a agene thresho _C,Oe ',Cb@‘n ) scrambled expression matrix (black) only yielded modules close to

there are, at a minimum, more than a million fixed points. 0 axes (smath$; or smallng;), while PISA run on the real data

S.3  Filters (green) yielded modules with both larg&; and largen$;.

We chose the gene-score threshold7as % so that, on

average, less than one gene would be included in a modulghly one condition, they were not as large as our estimate
purely due to background noise. This estimate assumed thgt 200, above), whereas modules based on many conditi-
the background noise had a Gaussian distribution. For mogjns were much smaller. We also applied PISA to a random
modules, the gene scores are the sums of contributions frofatrix generated from a Gaussian distribution, and in that
many different conditions, and if these contributions arecase PISA did not find any large modules (in 30 runs, PISA
independent, as they should be for background noise, theund 8 modules with 20 or more genes; the largest contained
the total background noise will have approximately a Gausog genes). In both cases, the small modules found by PISA
sian distribution, regardless of the distribution for a singleyaried from run to run.

condition (central limit theorem). For modules that derive |n order to eliminate these false modules we introduced
almost entirely from one or very few conditions, however, 3 set of filters. For each preliminary moduld we cal-

the distribution of gene scores may not be Gaussian. culate the “number of contributing conditions”, given as
While we do not know the true distribution of the back- ,C = S~ (5)2/(max{(s®).})2. We ignored any module

C

ground noise, it is reasonable to use the full distributionfol\r/lwhich the median of the numbers of contributing con-
of the data as a worst case scenario. As shown in Fig. Shjtions for its preliminary modules was below 4, 5 or 7.5,
this distribution is far from Gaussian: it has a fairly Sharpdepending on the size of the modtfi¢these thresholds wor-
cusp at zero and long tails, even after normalization. Fokeq well; they are somewhat above the threshold required
this distribution, more than 3% of the values are outside theg remove the false positives for the scrambled matrix). A
threshold£7.00™% (this is partially because the long tails second filter was based on the “consistency”, defined as the
contain many genes, and partially becan$€” is small due  fraction of the genes in a preliminary modules that are in
to the sharp cusp),e. with a gene-expression matrix ran- the full module times the fraction of the genes in the full
domly drawn from this distribution, for any single condition module that are in the preliminary module. We ignored any
one would expect to find a module with about 200 genes!  module with average consistency below 0.3, as well as modu-

We applied PISA to a matriE¢ that had been fully scram-  |es with average consistency below 0.5 that had less than 20
bled after normalizatiol?. As shown in Fig. S2, PISA found

many large modules that were based almost entirely on a sin-

gle condition (however, as the modules were not based ofy As shown in Fig. S2ng; tends to be smaller for larger modules (with
fewer genes, it is more difficult to “specify” a single condition), thus we

ignored modules with 40 or more genesz@l < 5 and modules with 10-39

15 sScrambling the matriafter normalization ensured that the distribution genes ifn%,I < 7.5. For modules with less than 10 gene%[ is no longer
remained the same. The data were no longer exactly normalized for eachvery good indicator of whether or not the module is reliable, so we only
gene, but the deviations were insignificant. Scrambling the data beforégnored these modulesqizf& < 4; for these small modules, the consistency
normalization gave similar results. requirements are much more important.
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contributing preliminary modules. We also ignored all modu-S.5 Data set

les that had fewer than 5 genes or fewer than 5 contributingpe yeast data set we use is based on the data set used
preliminary modules. These filters removed all but 14 of they, Bergmannet al. (2003), which contained 6206 genes
643 modules found by PISA when applied to the scramblegyng 1011 experimental entries (essentially all available yeast
matrix. _ _ . microarray data at the time). However, 20 of these entries did
The values used above in the filters are partially based oRot contain original experimental data, and an additional 4
the distributions for randomized data (as shown in Fig. S2 fogntries contained data in a format that could not reliably be
two descriptors), but have been manually adjusted to bett&onyerted to log ratios. Another 14 entries contained data in

separate interesting modules from apparent false positives i\yrong format, but we were able to convert this data tg log
the real data. Increasing the threshold values will initially eli-ratios, giving a total of 987 valid conditions.

minate only a few interesting modules, while lowering them (a) PISA vs. SVD (b) ISA vs. SVD
will admit a large number of apparent false positives. (Modu-~ LA A o LR AR
les that have no obvious biological relevance and that hav>
about equal numbers of genes with either sign are here ass 5
med to be false positives, while “interesting” modules areE
ones for which the genes appear to be functionally related.’s
While the current set of filters do a good job of separatinge;
interesting modules from false positives, they are probabl}%s
far from optimal. -
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About 10% of the 6206x987 data values are missing,

and these are not all randomly distributed among thd-ig. S3. Bestp-values onto every Gene Ontology (GO) category
genes/conditions. In order to avoid biases for or against incluith 500 or fewer genes. In each panel, we include only GO catego-
ding a gene in a module based on how many missing valugies for which atleast ong-value is belowt 0~ . SVD modules are
that gene has, we exclude the conditions for which a giverfuound by taking the 5, 10, 15, ..., 200 genes with the highest (lowest)

S . , entries in the eigenarrays, for a total37 - 80 = 78,960 modu-
gene has missing values when calculating that gene’s SCOM€gs, (a) 166 modules found by PISA vs. SVD. (b) 778 ISA modules

o _ Eng vs. SVD. PISA and ISA are both clearly superior to SVD; for ISA
Si = |sc’ ) there are hardly any GO categories for which SVD does better, even
' though SVD here has a hundred times as many modules as ISA. The
both when multiplying withE¢; and when calculatingsS|.  eigenarrays used here are the eigenvectoB@E¢, ,—SVD then

In Ec o, we set missing values equal to zero. (For the ortho<orresponds to PISA without a gene threshold.
gonalization process to work properly, all values must be
defined.)

12



Large-scale analysis of gene-expression data

Module: Galactose utilization

Number of genes: 16

Average number of contributing conditions: 20.8
Consistency: 0.54

Best ISA overlap: 0.81 at threshold 4.0,

Module: Hexose transporters

Number of genes: 12

Average number of contributing conditions: 31.9
Consistency: 0.65

Best ISA overlap: 0.53 at threshold 3.2,

-Hexose transporters (downregulated)

3 Other, downregulated

frequency 915 frequency 16
GAL10 GAL7 | GAL1 GAL3 | GAL2 YPLO66W HXT3 HXT4 HXT2 HXT6 HXT1 YKRO75C
YOR121C GAL80 PCL10 OPT2 GCY1 MLF3 HXT7 HXT8 - MIG2 | MTH1 HXK2
YLR201C YDRO10C | HSL1
1 Glucose transporter
0 Unknown
-Galactose/glucose transporter
1 Galactose induced genes
3 Glucose suppression regulator

4 Similar to glucose suppression regulator

Raw condition scores

8000 f 1
diaux. . sa
shift Akim4

o
S
S
S

T

4 Other
Raw condition scores
30000 - ! I ! f ! f ! f ! B
20000 £ glu. Vs, gal. +gal E
10000 - . i . . ]
O S bt en s ST ol
-10000 |- - . s A
-20000 other media ]
-30000 gal -]
-40000 — m‘utant&
0 200 400 600 800 1000

Fig. S4. The galactose induced module found with PISA. This

module turns on GAL genes and also, as a weaker effect, repress

a number of hexose transporters.

Fig. S5. The hexose transporter module found with PISA. In this
module (which is consistently found after the galactose induced
module), the hexose transporter genes are co-regulated with GAL2,
the galactose permease, whereas they were counter-regulated in the
gglactose induced module.
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Kloster, Tang and Wingreen

Module: De novo purine biosynthesis

Number of genes: 27

Average number of contributing conditions: 17.4
Consistency: 0.63

Best ISA overlap: 0.67 at threshold 5.0,

Module: Peroxide shock

Number of genes: 62

Average number of contributing conditions: 25.7
Consistency: 0.78

Best ISA overlap: 0.35 at threshold 3.4,

frequency 12 frequency 621
ADE17 ADE2 ADE13 ADE1 GPX2
ADES5,7 ADE4 ADE12 YDR132C
YGL186C YDRO89W

ADES ADE6

YLR108C

YML131W YLR460C

TRR1 YDR453C

YOL150C

YOR225W

YNL134C

0 Unknown

1 Purine synthesis/transport

-Tetrahydrofolate activation

Histidine biosynthesis

Raw condition scores

T T T T
* Ahpt T T LT
P aa/nitr. starv. —

40000 . :
30000
20000
10000

-10000
-20000
-30000 0

TR T

4a€1e2 ]
. .
200 400 600 800 1000

Fig. S6. The de novo purine synthesis module found with PISA.

CCP1 YNRO74C

YKRO71C YNL260C
FRE1

TRX2

YKLO70W

TAH18

YGRO11W

YGR223C

NFU1

YOL029C

CDC123

0 Unknown
1 Peroxidase, superoxide dismutase, reductage
-Dehydrogenase
-Other stress related genes
Raw condition scores
40000 —
[ +H,0, ]
O ]

FMMS ¢
“

Fig. S7. The oxidative stress response module found with PISA.
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Large-scale analysis of gene-expression data

Module: Meiosis

Number of genes: 41

Average number of contributing conditions: 11.2
Consistency: 0.70

Best ISA overlap: 0.44 at threshold 3.5,

Module: Zinc starvation

Number of genes: 8

Average number of contributing conditions: 31.7
Consistency: 0.59

Best ISA overlap: 0.88 at threshold 4.6,

frequency 1130 frequency 3
RED1 ULP2 ZIP2 SPO13 HOP1 MEI4 ZRT1 ZRT3 ZRT2 YOL154W YNL254C
RNP1 SPO11 ECM11 DMC1 MSH4 IME2 INO1 ADH4
ZIP1 RTS2 MEK1 REC104 KIN2 | YLLO47W
NDJ1 | YIL132C HFM1 REC102 | SPO16 MEI5 0 Unknown

PCH2 | ATP10 SAS2 YDL193W CST9 SCc2

YLR446W PUT3 YGL183C YDRO015C SAE3 SLZ1
DOC1 YGLO81W HOP2 SP0O22 FKS3
0 Unknown

1 Meiotic gene

2 Other
Raw condition scores

30000 : ‘ : ‘ . T .

+ sporulation B
20000~ & Aume6 7

L : meiosis - b
10000 — - i -

.
200 400 600 800 1000

1 Zinc transport/storage

-Zinc-responsive transcription factor

3 Zinc metalloproteinase

4 Other

Raw condition scores

T I
Rosetta compendium
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i "‘3;4‘;%,,3 i S gty

g-_i\www‘

-2000
-4000
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"
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Fig. S9. The zinc module found with PISA. This module has a high
overlap with the group of genes bound by ZAP1 in database #-(at

Fig. S8. The meiosis module found with PISA. This module is value 0.001): The ZRT1, ZRT2, ZRT3, ZAP1 and YNL254C genes

significantly more complete than the modules of comparable sizénake up 5 of the 6 lowesi-values (counting each pair of diver-

found by ISA. gently transcribed genes only once), and the remaining hits from
database A (most with-values abova0~*) are likely to be mostly
false positives. Based on this, it seems very likely than YNL254C, if
functional, is regulated by and related to zinc. (ADH4 has also been
shown to be zinc-regulated elsewhere.)
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Kloster, Tang and Wingreen

Module: Arginine biosynthesis

Number of genes: 9
Average number of contributing conditions: 4.06
Consistency: 0.73

Best ISA overlap: 0.56 at threshold 6.0,
frequency 62

ARGS5,6 ARG1 YOR302W

0 Unknown, neighbor of CPA1

1 Arginine biosynthesis

-Arginine degradation, downregulated

3 Ammonia permease

Raw condition scores

-aa,  aastarv./
+rapamycin N depl.

y i ke eg e vl
A A N N

S A A Y

} Apef)lZ AV]JSS‘
0 500

=N
S
3

Fig. S10. The arginine regulated module found with PISA. The
module agrees very well with what is known about regulation of
arginine metabolism [F. Mesenguy and E. Dubois (20&@)d tech.

bio. 38, 277-285]: ARG1, ARG3, ARG5,6 and ARGS are repressed
by arginine through the Arg80/Arg81/Mcm1 complex, while CAR1
and CAR2 are activated by the same complex. We also find CPAL,
which is claimed to be regulated by arginine at the translational
level—the mRNA is destabilized by a small peptide in the presence
of arginine. However, database A indicates that ARG1, ARGS3,
ARGS5,6, ARG8 and CPA1 are all bound by the Arg80/Arg81/Mcm1
complex.
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Large-scale analysis of gene-expression data

# # Overlap | Best
Function genes| cond.| Cons.| W/ISA | tg Freq.
Amino acid biosynthesis 108 | 32.2 | 0.94 0.85 3.4 | 20212
Arginine biosynthesis 9 40 | 0.73 0.56 6.0 62
Biotin synthesis & transport 6 6.8 | 0.79 0.67 55 7
Lysine biosynthesis 11 9.3 0.71 0.82 4.6 10
Branched amino acid biosynthesis 29 10.7 | 0.74 0.47 3.2 70
De novo purine biosynthesis 27 16.6 | 0.63 0.67 5.0 12
Sulfur/nitrogen metabolism 47 15.8 | 0.59 0.62 2.6 | 1205
Citric acid cycle 12 14.4 | 0.54 0.67 3.0 20
Gluconeogenesis, fatty acid beta-oxidatipn 38 17.7 | 0.73 0.61 29 | 264
Oxidative phosphorylation 46 39.4 | 0.78 0.93 3.4 | 1666
Trehalose & hexose metabolism/conversion23 51.5| 0.60 0.61 3.1 | 524
Oxidative stress response 62 25.7 | 0.78 0.35 34 | 621
Proteolysis 23 85.1 | 0.69 0.88 39 | 352
Heat shock 54 48.3 | 0.68 0.44 3.2 12
COS genes 11 12.4 | 0.58 1.00 3.3 | 756
Calcium-calmodulin related 37 32.3 | 0.63 0.81 35| 610
Mitochondrial ribosomal genes 78 424 | 0.64 0.83 3.0 | 3941
Transcription (RNA polymerase etc.)++| 34 68.7 | 0.52 0.59 3.2 1
Iron/copper uptake 31 12.0 | 0.66 0.90 42 | 351
Phosphoglycerides biosynthesis 30 37.8 | 0.65 0.60 2.9 22
Zinc starvation 8 37.8 | 0.59 0.88 4.6 3
Hexose transporters 12 345 | 0.65 0.53 3.2 16
Galactose utilization 16 206 | 0.54 0.81 4.0 | 915
Mid sporulation 101 | 10.8 | 0.79 0.70 2.6 | 4158
Meiosis 41 11.6 | 0.70 0.44 3.5 | 1464
Mating type a signaling genes 18 18.4 | 0.44 0.44 8.0 17
Mating 111 | 38.0 | 0.72 0.79 2.7 | 22673
Mating typea signaling genes 18 19.4 | 0.56 0.89 3.8 1
Phosphate utilization 29 242 | 0.75 0.76 3.2 | 6528
Glycolysis 20 275 | 052 0.90 3.7 84
Ergosterol biosynthesis 30 275 | 0.79 0.77 3.1 283
Histones 25 36.2 | 0.54 0.48 3.2 | 1286
Cell cycle G1/S 82 43.8 | 0.65 0.90 3.6 | 1717
Cell wall (bud emergence) 17 458 | 0.60 0.89 4.0 67
Cell cycle M/G1 29 29.1 | 0.60 0.97 3.9 | 1747
Cell cycle G2/M 30 27.0 | 0.67 0.90 3.6 | 2787
Uracil synthesis/permeases 8 10.9 | 0.64 0.88 35 19
Fatty acid synthesis++ 23 51.3 | 0.81 0.48 3.1 4
Ribosomal proteins 107 | 56.1 | 0.74 0.88 3.3 | 20633
rRNA processing 80 516 | 0.61 0.40 2.7 | 45515
Table SI. 40 of the modules found by PISA that we could assign a name to. For each module we list the number of genes in the module, the number of

conditions that had a significant contribution to the module, how consistent the module was from each run to the next, the maximal overlap with a module
found by ISA (using 200,000 seeds at each threshold from 1.8 to 15.0), the thresholdvaluehich that overlap was found, and how many times such an
ISA module was found.
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