LEARNING FROM
OBSERVATIONS

I8.1

In which we describe agents that can improve their behavior through diligent
study of their own experiences.

The idea behind learning is that percepts should be used not only for acting. but also for
improving the agent’s ability to act in the future. Learning takes place as the agent observes its
interactions with the world and its own decision-making processes. Learning can range from
trivial memorization of experience. as exhibited by the wumpus-world agent in Chapter 10.
to the creation of entire scientific theories. as exhibited by Albert Einstein. This chapter
describes inductive learning from observations. In particular, we describe how to learn
simple theories in propositional logic. We also give a theoretical analysis that explains why
inductive learning works.

FORMS OF LEARNING

In Chapter 2. we saw that a learning agent can be thought of as containing a performance ele-
ment that decides what actions to take and a learning element that modifies the performance
element so that it makes better decisions. (See Figure 2.15.) Machine learning researchers
have come up with a large variety of learning elements. To understand them. it will help to
see how their design is affected by the context in which they will operate. The design of a
learning element is affected by three major issues:

e Which components of the performance element are to be learned.

¢ What feedback is available to learn these components.

e What representation is used for the components.
We now analyze each of these issues in turn. We have seen that there are many ways 1o
build the performance element of an agent. Chapter 2 described several agent designs (Fig-
ures 2.9, 2.11, 2.13, and 2.14). The components of these agents include the following:

I. A direct mapping from conditions on the current state to actions.

2. A means to infer relevant properties of the world from the percept sequence.

649

SUPERVISED
LEARNING

UNSUPERVISED
LEARNING

REINFORCEMENT
LEARNING

REINFORCEMENT

Chapter 18. Leaming from Observations

[nformation about the way the world evolves and about the results of possible actions

ol

the agent cai take.
4. Utility information indicating the desirability of world states.
5. Action-vajue information indicating the desirability of actions.
6. Goals that describe classes of states whose achievement maximizes the agent’s utility.

Each of these components can be learned from appropriate feedback. Consider, for example.
an agent training to become a taxi driver. Every time the instructor shouts “Brake! the agent
can learn a condition—action rule for when to brake (component 1). By seeing many camera
images that it is told contain buses. it can learn to recognize them (2). By trying actions and
observing the results—for example. braking hard on awet road—it can learn the effects of its
actions (3). Then, when it receives no tip from passengers who have been thoroughly shaken
up during the trip. it can learn a useful component of its overall utility function (4).

The tvpe of feedback available for learning is usually the most important factor in deter-

mining the nature of the learning problem that the agent faces. The field of machine learning

usually distinguishes three cases: supervised. unsupervised. and reinforcement learning.
The problem of supervised learning involves learning a function from examples of its

inputs and outputs. Cases (1), (2), and (3) are all instances of supervised learning problems.

In (1), the agent learns condition—action rule for braking——this is & function from states to a

Boolean output (to brake or not to brake), In (2), the agent learns a function from images to a
Boolean output (whether the image contains a bus). In (3). the theory of braking is a function
from states and braking actions to. say stopping distance 1n feet. Notice that in cases (1)
and (2). a teacher provided the correct output value of the examples; in the third. the output
value was available directly from the agent’s percepts. For fully observable environments. it
will always be the case that an agent can observe the effects of its actions and hence can use
supervised learning methods to learn to predict them. For partially observable environments,
the problem is more difficult. because the immediate effects might be invisible.

The problem of unsupervised learning involves learning patterns in the input when
no specific output values are supplied. For example. a taxi agent might gradually develop
a concept of “good traffic days™ and “bad traffic days”™ without ever being given labelled
examples of each. A purely unsupervised learning agent cannot learn what to do. because it
has no information as to what constitutes a correct action or a desirable state. We will study
unsupervised learning primarily in the context of probabilistic reasoning systems (Chapter 20.

The problem of reinforcement learning, which we cover in Chapter 21, is the most
seneral of the three categories. Rather than being told what to do by a teacher, a reinforcement
For example. the lack of a tip at ihe end of

learning agent must learn from reinforcement.’
the journey (or a hefty hill for rear-ending the car in front) give the agent some indication

that its behavior is undesirable. Reinforcement learning typically includes the subproblem al

learning how the environment works

The representation of the learned information also plays a very important role 10 de-
termining how the learning algorithm must work. Any ol the components of an agent can
be represented using any ol the representation schemes in this book. We have seen Se¥*

The term reward as used in Chapter 17151

synotym 10 reinforcement

é
1
i
i
]
i
Q.
H
i
!

Section 18.2. Inductive Learning

eral examples: linear weighted polynomials for utility functions in game-playing programs:
propositional and first-order logical sentences for all of the components 1n a logical agent:
and probabilistic descriptions such as Bavesian networks for the inferential components of
a decision-theoretic agent. Effective learning algorithms have been devised for all of these.
This chapter will cover methods for propositional logic, Chapter 19 describes methods for
first-order logic. and Chapter 20 covers methods for Bayesian networks and for neural net-
works (which include linear polynomials as a special case).

The lust major factor in the design of learning systems is the availabiliry of prior knowl-
edge. The majority of learning research in Al computer science. and psychology has studied
the case in which the agent begins with no knowledge at all about what it is trying to learn.
It has access only to the examples presented by its experience. Although this is an important
special case, it is by no means the general case. Most human learning takes place in the con-
text of a good deal of background knowledge. Some psychologists and linguists claim that
even newborn babies exhibit knowledge of the world. Whatever the truth of this claim. there
is no doubt that prior knowledge can help enormously in learning. A physicist examining a
stack of bubble-chamber photographs might be able to induce a theory positing the existence
of a new particle of a certain mass and charge: but an art critic examining the same stack
might learn nothing more than that the “artist”™ must be some sort of abstract EXPressionist,
Chapter 19 shows several ways in which learning is helped by the use of existing knowl|-
edge: it also shows how knowledge can be compiled in order to speed up decision making.
Chapter 20 shows how prior knowledge helps in the learning of probabilistic theories,

8.2 INDUCTIVE LEARNING

ANMPLE

PRE INDUCTIVE
SRENCE

POTHESIS

{ERALIZATION

JBLEM OF
LCTION

CTHESIS SPACE

SISTENT

An algorithm for deterministic supervised learning is given as input the correct value of the
unknown function for particular inputs and must try to recover the unknown function or some-

thing close to it. More formally. we say that an example is a pair (2. f(a)). where + is the

input and [} is the output of the function applied to . The task of pure inductive infer-
ence (or induction) is this:

Given a collection of examples of f, return a function /i that approximates f.

The function /1 is called a hypothesis. The reason that learning is difficult. from a conceptual
point of view. is that it is not easy 10 tell whether any particular /i is a good approximation of
/.. A good hypothesis will generalize well—that is, will predict unseen examples correctly.
This is the fundamental problem of induction. The problem has been studied for centuries:
Section 18.5 provides a partial solution.

Figure 18.1 shows a familiar example: fitting a function of a single variable to some
data points. The examples are (2. f{a}) pairs. where both 2 and Sta) are real numbers. We
choose the hypothesis space H—the set of hypotheses we will consider—to be the set of
polynomials of degree at most &, such as 32° + 2, #17 — 423 and so on. Figure 18.1(a)
shows some data with an exact fit by a straight line (a polynomial of degree 1). The line is
called a consistent hypothesis because it agrees with all the data. Figure 18.1(b) shows a

b
H

ey

QCKAAM'S RAZOR

REALIZABLE

UNREALIZABLE

‘ (@ ' (b) ' : (d) |
- e —
| Figure 18.1 (a) Example (ir. (1)) pairs and a consistent. linear hypothesis. (b) A consis- |
| Y p : p yp

tent. degree-7 polynomial hypothesis for the same data set. (¢) A different data set that admits |
i an exact degree-6 polynomial fit or an approximate linear fit. () A simple. exact sinusoidal |
fit to the same data set.

high-degree polynomial that is also consistent with the same data. This illustrates the first
issue in inductive learning: how do we choose from among multiple consistent hypotheses ?
One answer 1s Ockham’s’ razor: prefer the simplest hypothesis consistent with the data.
Intuitively. this makes sense. because hypotheses that are no simpler than the data themselves
are tailing to extract any pattern from the data. Defining simplicity is not easy. but it seems
reasonable to say that a degree-1 polynomial is simpler than a degree-12 polynomial.

Figure 18.1(c) shows a second data set. There is no consistent straight line for this data
set: in fact, it requires a degree-0 polynomial (with 7 parameters) for an exact fit. There are
just 7 data points. 80 the polynomial has as many parameters as there are data points: thus,
it does not seem to be finding any pattern in the data and we do not expect it to generalize
well. 1t might be better to fit a simple straight line that 1s not exactly consistent but might
make reasonable predictions. This amounts 10 accepting the possibility that the true function
is not deterministic (or. roughly equivalently, that the true inputs are not fully observed).
For nondeterministic functions, there is an inevitable tradeoff between the complexity of the
hvpothesis and the degree of fit to the data. Chapter 20 explains how 1o make this tradeoff
using probability theory.

One should keep in mind that the possibility or impossibility of finding a simple, con-
sistent hypothesis depends strongly on the hypothesis space chosen. Figure 18.1(d) shows
that the data in (¢) can be fit exactly by @ simple function of the form ar + b+ esin. This
example shows the importance of the choice of hypothesis space. A hypothesis space con”
sisting of polynomials of finite degree cannot represent sinusoidal functions accurately. 50 2
learnér using that hypothesis space will not be able to learn from sinusoidal data. We say that
a learning problem is realizable if the hypothesis space contains the true function: otherwise,
it is unrealizable. Unfortunately, we cannot always tell whether a given Jearning problem is
realizable. because the true function is not known. One way to get around this parrier 15 10
use prior knowledge to derive a hypothesis space in which we know the true function must
lie. This topic is covered in Chapter 19.

2 Named after the 1dth-century English philosopher. William of Ockhum. The name is often misspelled 25

»Qccam.” perhaps from the French rendering, “Guillaume d Occam.”

Scction 18.3.

Learning Decision Trees 653

=y

Another approach is to use the largest possible hypothesis space. For example. why
not let H be the class of all Turing machines? After all. every computable function can be
represented by some Turing machine. and that is the best we can do. The problem with this
idca s that it does not take into account the computational complexity of learnine. There
is da tradeoff between the expressiveness of a hypothesis space and the complexity of finding
simple. consistent iypotheses within that space. For example. fitting straight lnes o data is
very easy: fitting high-degree polynomials is harder: and fitting Turing machines is very hard
indeed because determining whether a given Turing machine is consistent with the data is
not even decidable in general. A second reason to prefer simple hypothesis spuces is that the
resulting hypotheses may be simpler to use—that is, it is faster to compute /i1 when /1 is a
linear function than when it is an arbitrary Turing machine program.

For these reasons. most work on learning has focused on relatively simple representa-
tions. In this chapter. we concentrate on propositional logic and related lunguages. Chapter 19
looks at learning theories in first-order logic. We will see that the expressiveness—complexity
tradeoft is not as simple as it first seems: it is often the case. as we saw in Chapter 8. that an
expressive language makes it possible for a simple theory 1o fit the data. whereas restricting
the expressiveness of the language means that any consistent theory must be very complex.
For example. the rules of chess can be written in a page or two of first-order logic. but require
thousands of pages when written in propositional logic. In such cases. it should be possible
to learn much faster by using the more expressive language.

ARNING DECISION TREES

DLCISION TREE

AITRIBUTES

CLASSIFICATION

REGRESSION
POSITIVE

NEGATIVE

Decision tree induction is one of the simplest. and yet most successful forms of learning
algorithm. It serves as a good introduction to the area of inductive learning. and is casy to
implement. We first describe the performance element. and then show how 1o learn it. Along
the way. we will introduce tdeas that appear in all areas of inductive lcarning.

Decision trees as performance elements

A decision tree takes as input an object or situation described by a set of attributes and
returns a “decision”—the predicted output value for the input. The input attributes can be
discrete or continuous. For now. we assume discrete inputs. The output value can also be
discrete or continuous: learning a discrete-valued function is called classification learning:
learning a continuous function is called regression. We will concentrate on Boolean classifi-
cation. wherein each example is classified as true (positive) or false (negative).

A decision tree reaches its decision by performing a sequence of tests. Each internal
node in the tree corresponds to a test of the value of one of the properties. and the branches
from the node are labeled with the possible values of the test. Each leaf node in the tree
specifies the value to be returned if that leaf is reached. The decision tree representation
seems to be very natural for humans: indeed. many “How To™ manuals (e.g.. for car repair)
are written entirely as a single decision tree stretching over hundreds of pages.

654

GOAL PREDICATE

Chapter 18. Learning from Observations

A somewhat simpler example is provided by the problem of whether to wait for a table
at a restaurant. The aim here is to learn a definition for the goal predicate WillWait. In
setting this up as a learning problem. we first have to state what attributes are available to
describe examples in the domain. In Chapter 19. we will see how to automate this task: for
now. let’s suppose we decide on the following list of attributes:

| Alternate: whether there is a suitable alternative restaurant nearby.

[R]

 Bar- whether the restaurant has a comfortable bar area to wait in.
. Fri/Sar: true on Fridays and Saturdays.

. Hungrv: whether we are hungry.

[T SN

. Patrons: how many people are in the restaurant (values are None. Some. and Full).
_ Price: the restaurant’s price range (S, SS. $$9).
. Raining: whether it is raining outside.

 Reservation: whether we made a reservation.

NolEe RN BN e

. Tvpe: the kind of restaurant (French. Ttalian, Thai. or burger).

10. WaitEstimate: the wait estimated by the host (0-10 minutes. 10-30. 30-60. >60).

—~—

The decision tree usually used by one of us (SR) for this domain is shown in Figure 18.2.
Notice that the tree does not use the Price and Type attributes. in effect considering them
to be irrelevant. Examples are processed by the tree starting at the root and following the
appropriate branch until a leaf is reached. For instance. an example with Patrons = Full and
Wait Estimate = 0—10 will be classified as positive (1.e.. yes. we will wait for a table).

[|
r B

Patrons?

Some Full \

Yes r WaitEstimate? J 4

! >60

Alternate?
No

| ﬁeservationur Fri/Sat?J
No

Yes No Yes

|] [veel|

N Yes

Figure 18.2 A decision tree for deciding whether 1o wait for a table.

Section 18.3 Learning Decision Trees

Expressiveness of decision trees

Logically speaking. any particular decision tree hypothesis for the WillWait goal predicate
can be seen as an assertion of the form

T WillWait(s) & (P{s)V Pyls)v eV Ps)).

where each condition 7 (s) is a conjunction of tlests corresponding to a path from the root
of the tree to a leaf with a positive outcome. Although this looks like a first-order sentence.
it 1s. in a sense. propositional, because it contains just one variable and all the predicates
are unary. The decision tree is really describing a relationship between W/ «/t and some
togical combination of attribute values. We cannot use decision trees to represent lests that
refer to two or more different objects—for example,

Ty Nearby(ro.ry A Price(r.p) A Price(iro. po) A Cheaper(po.)

(ts there a cheaper restaurant nearby?). Obviously. we could add another Boolean attribute
with the name CheaperRestawran!Nearby, but it is intractable (o add «// such atiributes.
Chapter 19 will delve further into the problem of learning in first-order fogic proper.
Decision trees are fully expressive within the class of propositional fanguages: that is.
any Boolean function can be written as a decision tree. This can be done trivially by having
each row in the truth table for the function correspond to a path in the tree. This would vield
an exponentially large decision tree representation becausc the truth table has exponentially
many rows. Clearly. decision trees can represent many functions with much smaller trees.
For some kinds of functions, however, this 1s a real problem. For example. il the func-
PARITY FUNCTION tion i the parity function. which returns 1 if and only if an even number of inputs are |.
then an exponentially large decision tree will be needed. It is also difticult to use a decision
MAORITYFUNCTION — Tree to represent a majority function. which returns 1 it more than half of its inputs are 1.
In other words. decision trees are good for some kinds of functions and bad for others.
Is there uny kind of representation that is efficient for ¢!/ kinds of tunctions? Unfortunately.
the answer is no. We can show this in a very general way. Consider the set ot all Boolean
functions on n attributes. How many ditferent functions are in this set”? This is just the number
of different truth tables that we can write down, because the function is defined by its truth
table. The truth table has 2" rows, because each input case is described by # attributes. We
can consider the “answer” column of the table as a 2”-bit number that defines the function.
No matter what representation we use for functions. some of the functions (almost all of them.
in fact) are going to require at least that many bits to represent.
If it takes 2" bits to define the function, then there are 22" different functions on 1
attributes. This is a scary number. For example. with just six Boolean attributes. there are
92" = 18, 146. T44.073.709. 551. 616 different functions to choose from. We will need some
ingenious algorithms to find consistent hypotheses in such a large space.

Inducing decision trees from examples

An example for a Boolean decision tree consists of a vector of input attributes. X'. and a single
Boolean output vaiue y. A set of examples (X1.y1)....(Xq2.y12) is shown in Figure 18.3.

656

TRAINING SET

Chapter 18. Learning from Observations

T
r/,T_' . PR
! Ex ‘\\ Attributes H! Goal \
| Example || l . - — |
{ | Alt \ Bar | Fri l\ Hun| Pat “Pm’(:el‘_ Rawn | Res L Type o Est MillWaiz “
T D ves| No| Nol Yes| S »*%SNN‘YIWF»v/‘()-Bw e |
| X | Yes Noj 0 | es | zfme | S35 o | Yes| rench | | es |
X e | No| No| Yes| Ful S | No | No Thai | 30-600 Noo
‘\ AW W No ‘[Yes \ No | No “ Some ‘\ s \ No | No \ Burger L0110 \‘\ Yes \
Lox, | Yes No | Yes | Yes | Full | S | Yes | No | Thai 10-30 | Yes
w N; “\ Yes | No | Yes| No \ Full | 3 “‘ No | Yes ‘\ French | =60 ‘\“\ No |
| X U No | Yes | No l‘ Yes \ Some ‘\ $$ “ Yes ‘w Yes \ Ttalian L 0-10 w“\‘ Yes |
‘\‘ X+ \\ No “ Yes ‘\ No \ No | None LS \\ Yes ‘\\ No “ Burger “ 0-10 1 No |
i A¢S H No ‘\ No | No | Yes!| Some ‘\ $% | Yes \‘ Yes “ Thai | 0-10 H Yes ‘l
‘\‘ X, ‘\ No \ Yes & Yes | No \ Full ‘\‘ $ \ Yes \‘ No | Burger ‘ >00 H No |
| X | Yes | Yes \ Yes | Yes | Full \‘ $$$ \ No | Yes | Italian | 10-30 \‘\ No |
\ X “\ No \ No | No | No | None “ $ | No | No “ Thai | 0-10 “ No ‘\
X \‘ Yes L Full 1S No \ No | Burger L 30-60 | Yes |

oL
| Figure 18.3 Examples for the restaurant domain. \
Lﬁ////ﬂ,_._g

The positive examples are the ones in which the goal WillWait is true (X1 Xa, .- _): the neg-
ative examples are the ones in which it is false (X2. Xs5. .. .). The complete set of examples
is called the training set.

The problem of finding a decision tree that agrees with the training set might seem
difficult. but in fact there 1s a trivial solution. We could simply construct a decision tree
that has one path to a leaf for cach example. where the path tests each attribute in turn and
follows the value for the example and the leaf has the classification of the example. When

3

given the same example again.
Untortunately, it will not have much to say about any other cases!

The problem with this trivial tree is that it just memorizes the observations. It does
not extract any pattern from the examples, so we cannot expect it to be able to extrapolate
to examples it has not seen. Applying Ockham's razor. we should find instead the smallest
decision tree that is consistent with the examples. Unfortunately, for cny reasonable defi-

the decision tree will come up with the right classification.

nition of “smallest.” finding the smallest tree is an intractable problem. With some simple
heuristics, however, we can do a good job of finding a “smallish” one. The basic idea behind
the DECISION-TREE-LEARNING algorithm 1s to test the most important attribute first. By
“most important.” we mean the one that makes the most difference to ths classification of an
example. That way, we hope to get to the correct classification with a small number of tests,
meaning that all paths in the tree will be short and the tree as & whole w'll be small.

Figure 18.4 shows how the algorithm gets started. We are given 12 {raining examples:
which we classify into positive and negative sets. We then decide whizh atiribute 10 use as
the first test in the tree. Figure 18.4(a) shows that Type is & poor attribute. because 1t leaves
us with four possible outcomes. each of which has the same number of positive and negative
examples. On the other hand, in Figure 18.4(b) we see that Patrons is a fairly important

e will

5 The same example or an example with the same description—this distinction is very important. and w
return to it in Chapter 19.

Section 18.3.

Learning Decision Trees 657

NOist

French !

(a) (b) |

e

| Figure 18.4 Splitting the examples by testing on attributes. (a) Splitting on Type bringsus |
| no nearer to distinguishing between positive and negative examples. (b) Splitting on Patrons i
’ does a good job of separating positive and negative examples. After splitting on Parrons. \
‘ Hungry is a fairly good second test. 1

attribute. because if the value is None or Some. then we are left with example sets for which
we can answer definitively (No and Yes. respectively). If the value is Full. we are left with
A mixed set of examples. In general. after the first attribute test splits up the examples. cach
outcome is a new decision tree learning problem in itself, with fewer examples and one fewer
attribute. There are four cases to consider for these recursive problems:

1. If there are some positive and some negative examples. then choose the best attribure to
split them. Figure 18.4(b) shows Hungry being used to split the remaining examples.

to

If all the remaining examples are positive (or all negative). then we are done: we can
answer Yes or No. Figure 18.4(b) shows examples of this in the None and Some cases.

3
a3

. If there are no examples left. it means that no such example has been observed. and we
return a default value calculated from the majority classification at the node’s parent.
4 1If there are no attributes left, but both positive and negative examples. we have a prob-
lem. It means that these examples have exactly the same description. but different
classifications. This happens when some of the data are incorrect: we say there is noise
in the data. 1t also happens either when the attributes do not give enough information to
describe the situation fully. or when the domain is truly nondeterministic. One simple

way out of the problem is to use 4 majority vote.

The DECISION-TREE-LEARNING algorithm is shown in Figure 18.5. The details of the
method for CHOOSE-ATTRIBUTE are given in the next subsection.

The final tree produced by the algorithm applied to the]2-example data set is shown in
Figure 18.6. The tree is clearly different from the original tree shown in Figure 18.2. despite
the fact that the data were actually generated from an agent using the original tree. One right
conclude that the learning algorithm is not doing a very good job of learning the correct

Chapter 8. Learning from Observationg

[1
1 function DECISION-TREE-LEARNING(examples, attribs. defaull) returns a decision tree
| inputs: examples, set of examples

: attribs. set of attributes

‘ default. default value for the goal predicate

if cxamples is empty then return defevlt
else if all cramples have the same classification then return the classification
else if attribs is empty then return MAJORITY-VALUE(cramples)
else
‘ best — CHOOSE-ATTRIBUTE(attribs, cxamples)
free — a new decision tree with root test best
| m «— MAJORITY-VALUE(czamples)
for each value v; of hest do
cramples; — {elements of cxamples with hest = v; '
subtiee — DECISION-TREE-LEARNING(exxamnples, ., attrihs — bestoir)
add a branch to free with label v; and subtree subtree
return frec

| Figure 18.5 The decision tree learning algorithm.

—
Patrons? T

Full ‘
r Hungry?
No Yes

ltalian Burger

Yes]

French

Fri/Sat?

No Yes
l Yes
| Figure 18.6 The decision tree induced from the 12-example training set. ’/J

function. This would be the wrong conclusion to draw. however. The learning algorithm
looks at the examples, not at the correct function. and in fact. its hypothesis (see Figure 18.6)
not only agrees with all the examples, but is considerably simpler than the original tree. The
learning algorithm has no reason to include tests for Raining and Resersation. because it
can classify all the examples without them. It has also detected an interesting and previously
unsuspected pattern: the first author will wait for Thai food on weekends.

Of course. if we were to gather more examples. we might induce a tree more similar
to the original. The tree in Figure 18.6 is bound to make a mistake: for example. it has
never seen a case where the wait is 0~10 minutes but the restaurant is full. For a case where

Section 18.3.

Learning Decision Trees 659

INFORMATION

Hungry is false. the tree says not to wait. but I (SR) would certainly wait. This raises an
obvious question: if the algorithm induces a consistent. but incorrect. tree from the examples.
how incorrect will the tree be? We will show how to analyze this question experimentally.
after we explain the details of the attribute selection step.

Choosing attribute tests

The scheme used in decision tree learning for selecting attributes is designed to minimize the
depth of the final tree. The idea is to pick the attribute that goes as far as possible toward
providing an exact classification of the examples. A perfect attribute divides the examples
into sets that are all positive or all negative. The Pafrons attribute is not perfect. but it is
fairly good. A really useless attribute, such as Type, leaves the example sets with roughly the
same proportion of positive and negative examples as the original set.

All we need. then, is a formal measure of “fairly good™ and “realiy uscless™ and we
can implement the CHOOSE-ATTRIBUTE function of Figure 18.5. The meusure should have
its maximum value when the attribute is perfect and its minimum value when the aturibute
is of no use at all. One suitable measure is the expected amount of” information provided
by the attribute. where we use the term in the mathematical sense first defined in Shannon
and Weaver (1949). To understand the notion of information. think about it ay providing
the answer to a question—for example. whether a coin will come up heads. The amount of
information contained in the answer depends on one’s prior knowledge. The Tess you know.
the more information is provided. Information theory measures information content in bits.
One bit of information is enough to answer a yes/no question about which one has no idea.
such as the flip of a fair coin. In general, if the possible answers ¢, have probabilities 77t¢;).
then the information content 7 of the actual answer is given by

1 <i, —',) = f% log, % — % log, % =] bit.
If the coin is loaded to give 99% heads, we get 1 (1/100.99 1007 = 0.0~ bits. and as the
probability of heads goes to 1. the information of the actual answer goes to 0,

For decision tree learning. the question that needs answering is: for a given example.
what is the correct classification? A correct decision tree will answer this question. An esti-
mate of the probabilities of the possible answers before any of the attributes have been tested
is given by the proportions of positive and negative examples in the training set. Suppose the
training set contains p positive examples and 71 negative examples. Then an estimate of the
information contained in a correct answer s

i " =L o poo_ o, -
</)A11 tpen > J 10@3 pEn P l()“3 p=n

The restaurant training set in Figure 18.3 has p = 1 = 6. so we need 1 bit ol information.
Now a test on a single attribute A will not usually tell us this much information. but
it will give us some of it. We can measure exactly how much by looking at how much

660

INFORMATION GAIN

TEST SET

LEARNING CURVE

Chapter 18. Learning from Observations

information we still need after the attribute test. Any attribute -1 divides the training set 2" into
subsets E.. ... E,. according to their values for 1. where -1 can have ¢ distinct values. Each
subset £, has p; positive examples and n; negative examples, so if we 2o along that branch,
we will need an additional T (p,/(pi + 1), n;/(pi = ni)) bits of information to answer the
question. A randomly chosen example from the training set has the ith value for the attribute
with probability (p; + r;)/(p - n). 50 On average. after testing attribute . 1. we will need
-
Remainder(d) = %’:—ZI’[(/T%: #)
i=1

bits of information to classify the example. The information gain from the attribute test is
the difference between the original information requirement and the new requirement:

Gaim(dy =1 (L J’—) — Remainder(A4) .

Pt o pAn
The heuristic used in the CHOOSE-ATTRIBUTE function is just to choose the attribute with
oain. Returning to the attributes considered in Figure 18.4. we have

f=

Cain(Patrons) = 1 — [100, 1) = (51(L0) {51 (3.1)] = 0.1 bits
(22 Ly 23]
Vb)) =

confirming our intuition that Patrons is a better attribute to split on. In fact. Pafrons has
the highest gain of any of the attributes and would be chosen by the decision-tree learning

the largest

o=

Gain(Type) = 1 — \rl%[<l, i,) + él (%

algorithm as the root.

Assessing the performance of the learning algorithm

A learning algorithm is good if it produces hypotheses that do a good job of predicting the
classifications of unseen examples. In Section 18.5. we will see how prediction quality can
be estimated in advance. For now. we will fook at a methodology for assessing prediction
quality after the fact.

Obviously. a prediction is good il it turns out to be true. so we can assess the quality of a
hypothesis by checking its predictions against the correct classification once we know it. We
do this on a set of examples known as the test set. It we train on all our available examples.
then we will have to go out and get some more 1o test on. S0 often it is more convenient to

adopt the following methodology:

I. Collect a large set of examples.
Divide it into two disjoint sets: the training set and the test set.

()

V'S

Apply the learning algorithm to the training set. generating a hypothesis h.

Measure the percentage of examples in the test set that are correctly classified by /i.

+

. Repeat steps 2 to 4 for different sizes of training sets and different randomly selected

N

training sets ot each size.

The result of this procedure is a set of data that can be processed to give the average prediction
quality as a function of the size of the training set. This function can be plotted on a araph.

giving what is called the learning curve

or the algorithm on the particular domain. The

gl

Section 18.3 Learning Decision Trees 661

et off test

Proportiomn cor

)) bt LM}

Figure 18.7 A learning curve for the decision tree algorithm on 100 randomly genernted
! examples in the restaurant domain. The graph summanzes 20 trials

Jearning curve for DECISION-TREE-LEARNING with the restaurant examples s shown in
Figure 18.7. Notice that, as the training set grows. the prediction quality increases. (For this
| reason. such curves are also called happy graphs.) This is a good sign that there is indeed
some pattern in the data and the learning algorithm is picking it up.
Obviously. the learning algorithm must not be allowed to “see” the test data before the
learned hypothesis is tested on them. Unfortunately. it is all too casy 10 fall into the trap
PEEKING of peeking at the test data. Peeking typically happens as follows: A learning algorithm can
have various “knobs™ that can be twiddled to tunc its behavioi-—for example. various different
criteria for choosing the next attribute in decision tree learning, We generate hy potheses for
various different settings of the knobs. measure their performance on the testset. and report
the prediction performance of the best hypothesis. Alas, peeking has occurred! The reason is
that the hypothesis was celected on the basis of ifs test set performance. so information about
the test set has leaked into the learning algorithm. The moral of this tale is that any process
that involves comparing the performance of hypotheses 0B a test sCLMust Use & e test set
to measure the performance of the hypothesis that is finally selected. In practice. this 1s too
difficult. so people contlinue to run experiments on tainted sets of examples.

Noise and overfitting

We saw earlier that if there are two or more examples with the same description (in terms of
the attributes) but different classifications, then the DECISION-TREE-LEARNING algorithm
must fail to find a decision tree consistent with all the examples. The solution we mentiongd
before is to have each leaf node report either the majority classification for its set of exam-
ples, if a deterministic hypothesis is required, or report the estimated probabilities of each
classification using the relative frequencies. Unfortunately. this is far from the whole story. It
is quite possible. and in fact likely, that even when vital information is missing. the decision
iree learning algorithm will find a decision tree that is consistent with all the examples. This
is because the algorithm can use the irrelevant attributes, if any, 10 make spurious distinctions

among the examples.

OVERFITTING

DECISICN TREE
PRUNING

SIGNIFICANCE TEST
NULL HYFOTHESIS

Chapter 8. Learning from Observations

Consider the problem of trying to predict the roll of a die. Suppose that experiments
are carried out during an extended period of time with various dice and that the attributes
describing each training example are as follows:

I. Dav: the day on which the die was rolled (Mon. Tue, Wed. Thu).

_ Month: the month in which the die was rolled (Jan or Feb).

[

3. Color: the color of the die (Red or Blue).

As long as no two examples have identical descriptions. DECISION-TREE-LEARNING will
find an exact hypothesis. The more atiributes there are. the more likely it is that an exact
hypothesis will be found. Any such hypothesis will be totally spurious. What we would like
is that DECISION-TREE-LEARNING return a single leat node with probabilities close to 1/6
for each roll, once it has seen enough examples.

Whenever there is a large set of possible hypotheses. one has to be careful not to use
the resulting freedom to find meaningless “regularity” in the data. This problem is called
overfitting. A very general phenomenon. overfitting occurs even when the target function is
not at all random. 1t afflicts every kind of learning algorithm. not just decision trees.

A complete mathematical treatment of overfitting is beyond the scope of this book.
Here we present a simple technique called decision tree pruning to deal with the problem.
Pruning works by preventing recursive splitting on attributes that are not clearly relevant,
even when the data at that node in the tree are not uniformly classified. The guestion is. how
do we detect an irrelevant attribute?

Suppose we split a set of examples using an irrelevant attribute. Generally speaking, we
would expect the resulting subsets to have roughly the same proportions of each class as the
original set. In this case. the information gain will be close to zero.* Thus. the information
gain is a good clue to irrelevance. Now the question is. how large a gain should we require in
order to split on a particular attribute?

We can answer this question by using a statistical significance test. Such a test begins
by assuming that there is no underlying pattern (the so-called null hypothesis). Then the ac-
tual data are analyzed to calculate the extent (o which they deviate from a pertect absence of
pattern. If the degree of deviation is statistically unlikely (usually taken to mean a 5% prob-
ability or less). then that is considered to be good evidence for the presence of a significant
pattern in the data. The probabilities are calculated from standard distributions of the amount
of deviation one would expect to see in random sampling.

In this case. the null hypothesis is that the attribute is irrelevant and. hence. that the
information gain for an infinitely large sample would be zero. We need to calculate the
probability that. under the null hypothesis. a sample of size would exhibit the observed
deviation from the expected distribution of positive and negative examples. We can measure
the deviation by comparing the actual numbers of positive and negative examples in each
subset. p; and n;, with the expected numbers, p; and 1, assuming true irrelevance:

R pi R i 0

pi=p X ——— N; =1 X ———— .

p+n P+ n

! In fact. the gain will be positive unless the proportions are all exactly the same. (Sec Exercise 18.10.)

ons

onts
ttes

will
xact
like
y 1/6

Y USC
alled
on s

YOOk,
em.
want.
. how

o.owe
s the
ation
ire in

egins
e de-
e of
nrob-
ticant
nount

it the
e the
SETH ;'L'.
gasurc

1 each

Section 18.3.

Learning Decision Trees 603

9
Y\ T PRUNING

CROSS-VALIDATION

A convenient measure of the total deviation is given by

9

L= pT (=)
[):Y‘* i] i s 2 A 1
:;—‘l Pi 1

Under the null hypothesis. the value of D is distributed according to the \= (chi-squared)
distribution with v — 1 degrees of freedom. The probability that the auribuie is really -
relevant can be calculated with the help of standard \~ tables or with statistical software.
Exercise 18.11 asks you to make the appropriate changes 1o DECISION-TREE-LEARNING to
implement this form of pruning. which is known as \“ pruning.

With pruning. noise can be tolerated: classification errors give a lincar increase in pre-
diction error. whereas errors in the descriptions of examples have an asymptotic effect that
gets worse as the tree shrinks down to smaller sets. Trees constructed with pruning per-
form significantly better than trees constructed without pruning when the data contain a large
amount of noise. The pruned trees are often much smaller and hence easier to understand.

Cross-validation is another technique that reduces overtitting. 1t can be applied to any
learning algorithm. not just decision tree learning. The basic idea is to estimate how well
each hypothesis will predict unseen data. This is done by setting aside some fraction of the
known data and using it to test the prediction performance ol a hypothesis induced from the
remaining data. A-fold cross-validation means that you run A experiments. cach time setting
aside a different 1/ of the data to test on. and average the results. Popular values for &
arc 5 and 10. The extreme is & = 7. also known as leave-one-out cross-validation. Cross-
validation can be used in conjunction with any tree-construction method (including pruning)
in order to select a tree with good prediction performance. To avoid peeking. we must then
measure this performance with a new test sct.

Broadening the applicability of decision trees

In order to extend decision tree induction to a wider variety of problems. a number of issues
must be addressed. We will briefly mention cach. su
obtained by doing the associated exercises:

goesting that a full understanding 1s best

{> Missing data: In many domains, not all the attribute values will be known for every
example. The values might have gone unrecorded. or they might be too expensive to
obtain. This gives rise to two problems: First. given a complete decision tree. how
should one classify an object that is missing one of the test attributes” Second. how
should one modify the information gain formula when some examples have unknown
values for the attribute? These questions are addressed in Exercise 18.12

Multivalued attributes: When an attribute has many possible values, the mnformation

gain measure gives an inappropriate indication of the attribute’s usefulness. In the ex-
treme case. we could use an attribute, such as RestourantNome, that has a different
value for every example. Then each subset of examples would be a singleton with a
unique classification. so the information gain measure would have 1ts highest value for
this attribute. Nonetheless, the attribute could be irrelevant or useless. One solution is

to use the gain ratio (Exercise 18.13)

664

SPLIT POINT

REGRESSION TREE

Chapter 18. Learning from Observations

e

¢ Continuous and integer-valued input attributes: Continuous or integer-valued at-
wributes such as Height and Weight. have an infinite set of possible values. Rather than
generate infinitely many branches, decision-tree learning algorithms typically find the
split point that gives the highest information gain. For example. ata aiven node in the
tree. it might be the case that testing on Weight > 160 gives the most information. Ef-
ficient dynamic programming methods exist for finding good split points. but it is still
by tar the most expensive part of real-world decision tree learning applications.

& Continuous-valued output attributes: If we are trying to predict & numerical value.
such as the price of a work of art. rather than a discrete classification. then we need
a regression tree. Such a ftree has at each leaf a linear function of some subset of
numerical attributes. rather than a single value. For example. the branch for hand-
colored engravings might end with a linear function of area. age. and number of colors.
The learning algorithm must decide when to stop splitting and begin applying linear
regression using the remaining attributes (or some subset thereof).

A decision-tree learning system for real-world applications must be able to handle all of
these problems. Handling continuous-valued variables is especially important. because both
physical and financial processes provide numerical data. Several commercial packages have
been built that meet these criteria, and they have been used to develop several hundred fielded
systems. In many areas of industry and commerce, decision trees arc usually the first method
tried when a classification method is to be extracted from a data set. One important property
of decision trees is that it is possible for 4 human to understand the output of the learning
algorithm. (Indeed. this is a legal requirement tor financial decisions that are subject o anti-
discrimination laws.) This is a property not shared by neural networks (sce Chapter 20).

18.4 ENSEMBLE LEARNING

ENSEMBLE
LEARNING

So far we have looked at learning methods in which a single hypothesis. chosen from &
hypothesis space. 1s used to make predictions. The idea of ensemble learning methods 1s 10
select a whole collection. or ensemble. of hypotheses from the hypothesis space and combine
their predictions. For example. we might generate a hundred different decision trees from the
same training set and have them vote on the best classification for a new example.

The motivation for ensemble learning is simple. Consider an ensemble of A/ =5 hy-
potheses and suppose that we combine their predictions using simple majority voting. For the
ensemble to misclassify a new example. at least three of the five hvpotheses have to misclas:
sifv it. The hope is that this is much less likely than a misclassification by a single hypothesib‘.
Suppose we assume that each hypothesis /i; in the ensemble has an error of p—_that 1s. the
probability that a randomly chosen example is misclassitied by /1, is p. Furthermore. suppose
we assume that the errors made by each hypothesis are independent. In that case. if pis small.
then the probability of a large number of misclassifications oceurring is minuscule. For ex
ample. a simple calculation (Exercise 18.14) shows that using an ensemble of five hypothese’
reduces an error rate of 1 in 10 down to an error rate of less than 1 in 100. Now. obviously

(IR W S

e

Section 18.4.

Ensemble Learning 665

BOOSTING
WEIGHTED TRAI
SE AINING

_/’//

Figure 18.8 lllustration of the increased expressive power obtained by ensemble learning.
We take three linear threshold hypotheses, each of which classifies positively on the non-
shaded side. and classify as positive any example classified positively by all three. The
resulting triangular region is a hypothesis not expressible in the original hvpothesis space.

the assumption of independence is unreasonable, because hypotheses are likely to be misled
in the same way by any misieading aspects of the training data. But if the hypotheses are at
least a little bit different, thereby reducing the correlation between their errors. then ensemble
learning can be very useful.

Another way to think about the ensemble idea is as a generic way of enlarging the
hypothesis space. That is. think of the ensemble itself as a hypothesis and the new hypothesis
space as the set of all possible ensembles constructible from hypotheses in the original space.
Figure 18.8 shows how this can result in a more expressive hypothesis space. If the original
hypothesis space allows for a simple and efficient learning algorithm. then the ensemble
method provides a way to learn a much more expressive class of hypotheses without incurring
much additional computational or algorithmic complexity.

The most widely used ensemble method is called boosting. To understand how it works.
we need first to explain the idea of a weighted training set. In such a training set. each
example has an associated weight «; > 0. The higher the weight of an example. the higher
is the importance attached to it during the learning of a hypothesis. It is straightforward to
modify the learning algorithms we have seen so far to operate with weighted training sets.”

Boosting starts with w; = 1 for all the examples (i.e.. a normal training set). From this
set. it generates the first hypothesis. /1. This hypothesis will classify some of the training
examples correctly and some incorrectly. We would like the next hypothesis to do better on
the misclassified examples. so we increase their weights while decreasing the weights of the
correctly classified examples. From this new weighted training set. we generate hvpothesis
Jio. The process continues in this way until we have generated 1/ hypotheses. where A/ is

For learning algorithms in which this is not possible. one can instead create a replicated training set where
the 7th example appcars «; times. using randomization to handle fractional weights.

660

WEAK LEARNING

DECISION STUMP

Chapter 18. Learning {rom Observations

|
‘;:

| Figure 18.9 How the boosting algorithm works. Each shaded rectangle corresponds 0
| an example: the height of the rectangle corresponds to the weight. The ticks and crosses

1 indicate whether the example was classified correctly by the current hypothesis. The size of

| the decision tree indicates the weight of that hypothesis in the final ensemble.

- T T

an input to the boosting algorithm. The final ensemble hypothesis is a weighted-majority
combination of all the M hypotheses. cach weighted according to how well it performed on
the training set. Figure 18.9 shows how the algorithm works conceptually. There are many
variants of the basic boosting idea with different ways of adjusting the weights and combining
the hypotheses. One specific algorithm, called ADABOOST. is shown in Figure 18.10. While
the details of the weight adjustments are not so important. ADABOOST does have a very
important property: if the input learning algorithm L 1s a weak learning ulgorithm‘—which
means that L always returns 4 hypothesis with weighted error on the training set that 1s slightly
better than random guessing (1.€.. 50% for Boolean classification)—then ADABOOST will
ng data perfectly for large enough A/, Thus. the

return a hypothesis that clussifies the traini
algorithm boosts the accuracy of the original learning algorithm on the training data. This
result holds no matter how inexpressive the original hypothesis space and no matter how
complex the function being learned.

Let us see how well boosting does on the restaurant data. We will choose as our original
hypothesis space the class of decision stumps. which are decision trees with just one test at
the root. The lower curve in Figure 18.1 1(a) shows that unboosted decision stumps are not
very effective for this data set. reaching a prediction performance of only 81% on 100 training
examples. When boosting is applied (with A = 5). the performance is better. reaching 93%
after 100 examples.

An interesting thing happens 48 the ensemble size M increases. Figure 18.11(b) shows
the training set performance {on 100 examples) as a function of A/. Notice that the errof
reaches zero (as the boosting theorem tells us) when M is 20z thatis. @ weighted—nmjorit)’

ns Section 18.4. Ensemble Learning 0667

function ADABOOST(cxamples. L. M) returns a weighted-majority hypothesis ‘
inputs: examples. set of N labelled examples (. yi1.. ... ARTAN
L. alearning algorithm
i ; A . the number of hypotheses in the ensemble
_3 local variables: w. a vector of N example weights, initiallv 1A
h. a vector of A hypotheses
‘ i z. a vector of A/ hypothesis weights
\ t
| i for 1 = 1 to A do
‘ him|— Licramples. w)
‘ error — (O
i ; for j =1 to N do
| if hiwn|(2) # y; then error — crror + w.j
| for j=1to N do :
| ifhim|(e;) =y, then wij. —w[j]- error/(1 — crror) |
‘ : w — NORMALIZE(W)
::i j z[m] —log (1 — error)/ error
! return WEIGHTED-MAJORITY (h.z)
| J Figure 18.10 The ADABOOST variant of the boosting method for ensemble learning. The
- | algorithm generates hypotheses by successively reweighting the trainng examples. The func-
§ tion WEIGHTED-MAJORITY generates a hypothesis that returns the output value with the
ity ; highest vote from the hypotheses in h, with votes weighted by z.
on
mny — :
ing i |- Ly -
le Z 093 T TN
Ty z 0.9 4
ich g 085 Z . .
Zo0x 2 0.85 4 Training error ———
llly B i - : Testerror —-=----
‘ £ 075 0.8 1
vl E O ' .75
the Z 065 ! Boosted decision stumps _
his ; 0.6 \\ Decision stump =~===-=- = 0.5 1
ow Zoss (.65
0.3 . . 0.0 . \
0 20 40 60 80 100 0 S0 100 £50 200
nal Training set size Number of hypotheses M
rat ‘ ‘ () (b)
not)
ing — . ‘ < . |
3G i Figure 18.11 (a) Graph showing the performance of boosted decision stumps with A/ =5
‘ versus decision stumps on the restaurant data. (b) The proportion correct on the training set ‘
| and the test set as a function of A7, the number of hypotheses in the ensemble. Notice that |
WS the test set accuracy improves slightly even after the training accuracy reaches 1. i.e.. after !
TOT oy ‘

| the ensembte fits the data exactly.
rity ‘ =

SRl R

668

Chapter 8. Learning from Observationg

—_—

combination of 20 decision stumps suftices to fit the 100 examples exactly. As more stumpg
are added to the ensemble. the error remains at zero. The graph also shows that e tes;
set performance continues to increase long after the training ser error has reached zero. Ay
M = 20. the test performance is 0.95 (or .05 error). and the performance increases 1o ().98
as late as A/ = 137, before gradually dropping to 0.95.

This finding, which is quite robust across data sets and hypothesis spaces. came as quite
a surprise when it was first noticed. Ockham’s razor tells us not to make hypotheses more
complex than necessary, but the graph tells us that the predictions improve as the ensemble
hypothesis gets more complex! Various explanations have been proposed for this. One view
is that boosting approximates Bayesian learning (see Chapter 20). which can be shown to
be an optimal learning algorithm. and the approximation improves as more hypotheses are
added. Another possible explanation is that the addition of further hypotheses enables the
ensemble to be more definite in its distinction between positive and negative examples. which
helps it when it comes to classifying new examples.

18.5 WHY LEARNING WORKS: COMPUTATIONAL LEARNING THEORY

COMPUTATIONAL
LEARNING THEORY

Ué’

"ROBABLY
APPROXIMATELY
CORRECT

PAC-LEARNING

STATIONARITY

The main unanswered question posed in Section 18.2 was this: how can one be sure that
one’s learning algorithm has produced a theory that will correctly predict the future? In
formal terms. how do we know that the hypothesis /i is close to the target function [if we
don't know what / is? These questions have been pondered for several centuries. Until we
tind answers. machine learning will. at best., be puzzled by its own success.

The approach taken in this section is based on computational learning theory. u field
at the intersection of AL statistics. and theoretical computer science. The underlying principle
is the following: anv hypothesis that is seriously wrong will almost certainly be “found out”
with high probability after a small number of examples. because it will make an incorrect
prediction. Thus, any hvpothesis that is consistent with a sufficiently large set of training
examples is unlikelv to be seriouslvwrong: that is. it must be probably approximately correct.
Any learning algorithm that returns hypotheses that arc probably approximately correct is
called 4 PAC-learning algorithm.

There are some subtleties in the preceding argument. The main question is the con-
nection between the training and the test examples: after all. we want the hypothesis to be
approximately correct on the test set. not just on the training sct. The key assumption I8
that the training and test sets are drawn randomly and independently from the same pop-
ulation of examples with the same probability distribution. This is called the stationarity
assumption. Without the stationarity assumption. the theory can make no claims at all about
the future, because there would be no necessary connection between future and past. The
stationarity assumption amounts to supposing that the process that selects examples is ot
malevolent. Obviously, if the training set consists only of weird examples—two-headed dogs.
for instance—then the learning algorithm cannot help but make unsuccesstul generalizations
about how to recognize dogs.

s

Section 18.3.

ERROR

€-BALL

Why Learning Works: Computational Learning Theory 6H6Y

How many examples are needed?

In order to put these insights into practice, we will need some notation
o Let X be the set of all possible examples.
» Let D be the distribution from which examples are drawn.

o Let H be the set of possible hypotheses.
o Let N be the number of examples in the training set.

Initially. we will assume that the true function f is a member of H. Now we can define the
error of a hypothesis /i with respect to the true function f given a distribution [over the
examples as the probability that 7 is different from f on an example:
error(h) = P(h{a) # f(a)|x drawn from D) .
This is the same quantity being measured experimentally by the learning curves shown earlier.
A hypothesis /i is called approximately correct if error(/;) < . where ¢ is a small
constant. The plan of attack is to show that after seeing \” examples. with high probability.
all consistent hypotheses will be approximately correct. One can think of an approximately
correct hypothesis as being “close™ to the true function in hypothesis space: it lies inside what
is called the e-ball around the true function f. Figure 18.12 shows the set of all hypotheses
H. divided into the e-ball around f and the remainder. which we call Hp,.

H

Figure 18.12 Schematic diagram of hypothesis space, showing the “c-ball” around the
true function f.

We can calculate the probability that a “seriously wrong™ hypothesis /1, € Hpag is
consistent with the first /A" examples as follows. We know that error(/i;,} > ¢. Thus. the
probability that it agrees with a given example is at least 1 — ¢. The bound for \" examples is

Py, agrees with N examples) < (1 — e)‘\' .

The probability that Hy,y contains at least one consistent hypothesis is bounded by the sum

of the individual probabilities:
.

P(Hy,qg contains a consistent hypothesis) < [Hpy|(1 —)" < [Hi(l —er

SAMPLE
COMPLEXITY

CECISION LIST

Chapter 18. Learning {rom Observations

where we have used the fact that |Hya| < [HI. We would like to reduce the probability of
this event below some small number o:

HI(1—¢)" <0,
Given that 1 — ¢ < e, we can achieve this if we allow the algorithm to see
o1 1
N> - hlgﬁ—hl“H‘ (18.1)
€ (

examples. Thus. if a learning algorithm returns a hypothesis that is consistent with this many
examples. then with probability at least 1 — &. it has error at most €. In other words. it is
probably approximately correct. The number of required examples. as a function of € and 4.
is called the sample complexity of the hypothesis space.

[t appears. then, that the key question is the size of the hypothesis space. As we saw
earlier. if H is the set of all Boolean functions on n attributes. then HI = 22" Thus. the
sample complexity of the space grows as 91 Because the number of possible examples 13
also 2 this says that any learning algorithm for the space of all Boolean functions will dono
better than a lookup table if it merely returns a hypothesis that is consistent with all known
examples. Another way to see this s to observe that for any unseen example. the hypothesis
space will contain as many consistent hypotheses that predict a positive outcome as it does
hypotheses that predict a negative outcome.

The dilemma we face. then. is that unless we restrict the space of functions the algorithm
can consider. it will not be able to learn: but if we do restrict the space. we might eliminate
the true function altogether. There are two ways to “escape” this dilemma. The first way 15 10
insist that the algorithm return not just any consistent hypothesis. but preferably a simple one
(as is done in decision tree learning). The theoretical analysis of such algorithms is beyond the
scope of this book. but in cases where finding simple consistent hypotheses is tractable. the
sample complexity results are generally better than for analyses based only on consistency.

The second escape. which we pursue here. is to focus on learnable subsets of the entire set of,

Boolean functions. The idea is that in most cases we do not need the full expressive power
of Boolean functions. and can get by with more restricted languages. We now examine one
such restricted language in more detail.

Learning decision lists

A decision list is a logical expression of a restricted form. 1t consists of a series of tests. each
of which is a conjunction of literals. It a test succeeds when applied to an example description,
the decision list specities the value to be returned. If the test fails. processing continues with
the next test in the list.® Decision lists resemble decision trees. but their overall structure i
simpler. In contrast, the individual tests are more complex. Figure 18.13 shows a decision
list that represents the following hypothesis:

7o WillWait(x) & Patrons (. Some) v { Patrons(r. Fully A Fri/Sat(rl).

If we allow tests of arbitrary size. then decision lists can represent any Boolean function
(Exercise 18.13). On the other hand. if we restrict the size of each test to at most I literals.

Section 18.5

hDl
kDT

Why Learning Works: Computational Learning Theory 671

i Yes Yes

‘ Figure 18.13 A decision list for the restaurant problem.

then it is possible for the learning algorithm to generalize successtully from a small number
of examples. We call this language A-pL. The example in Figure 18.13is1n 2-DL. Itis casy to
show ‘Exercise 18.15) that 4-pt. includes as a subset the language /-pT. the set of all decision
trees of depth at most /. It is important to remember that the particular language referred 1o
by kL depends on the attributes used to describe the examples. We witl use the notation
J--pL(i) to denote a k-DL language using 11 Boolean attributes.

The first task is to show that &-pL is learnable—that is, that any function in /-pi.can
be approximated accurately after training on a reasonable number of examples. To do this.
we need to calculate the number of hypotheses in the language. Let the language of tests—
conjunctions of at most & literals using n attributes—be Cony (1.). Because a decision list
is constructed of tests. and because each test can be attached to either a Yes ora Vo outcome
or can be absent from the decision list. there are at most 3 €771 distinet sets of component
tests. Each of these sets of tests can be in any order, so

eni ()] < 3/ €O RI Cong (.)]
! | .

The number of conjunctions of & literals from » attributes is given by

[

2n

Conj{n. k) = = O(n".

[Conj)l =3 |~ (n")
=0

Hence. after some work, we obtain

‘ R Yo (W
‘/.'—D[,(’I)H — 20(11 log, (1)))

We can plug this into Equation (18.1) to show that the number of examples needed for PAC-
fearning a /-pL function is polynomial in 7:

N > ! (lnl\ + 0" log.)(n/"))>
€ 0 o
Therefore. any algorithm that returns a consistent decision list will PAC-learn a /-p1. function
in a reasonable number of examples. for small /.

The next task is to find an efficient algorithm that returns a consistent decision list.
We will use a greedy algorithm called DECISION-LIST-LEARNING that repeatedly finds a
test that agrees exactly with some subset of the training set. Once it finds such a test. it
adds it to the decision list under construction and removes the corresponding examples. It
then constructs the remainder of the decision list. using just the remaining examples. This 1s
repeated until there are no examples left. The algorithm is shown in Figure 1814,

This algorithm does not specify the method for selecting the next test to add to the
decivion list. Although the formal results given earlier do not depend on the selection method.

IDENTIFICATICN IN
THE LIMIT

Chapter 18. Learning from Observations

e e T

T
-

| function DECISION-LiST-LEARNING (examples) returns a decision list. or fatluwre \

it examples is empty then return the trivial decision list No
| # — a test that matches a nonempty subset cramples, of examples |
‘ such that the members of examples, are all positive or all negative

| if there is no such / then return failure |
| if the examples in examples, are positive then o — Yes else 0 — No

return a decision list with initial test ¢ and outcome o and remaining tests given by |
| DECISTON-LIST-LEARNING (ezamples — examples,) ‘

i M

== e S

“ Figure 18.14 An algorithm for learning decision lists.

[-

\

\ 5

! z

|

\ z) |

| 3 i Decision tree |

| £ 0.7 A It Decision list ==-===" |
E ; |

l = '

| 2069/ 1

\ z |

| 205 \

| & |

\ 0.4 . i

| 0 20 40 60 80 100 \

1 Training set size |

1 S

| Figure 18.15 Learning curve for DECISION-LIST-LEARNING algorithm on the restaurant |

‘ data. The curve for DECISION-TREE-LEARNING is shown for comparison. \

N —

_____________"_/____——-——_______________,_/—-

¢ would seem reasonable to prefer small tests that match large sets of uniformly classified
axamples. so that the overall decision list will be as compact as possible. The simplest strategy
is to find the smallest test ¢ that matches any uniformly classified subset. regardiess of the size
of the subset. Even this approach works quite well. as Figure 18.15 suggests.

Discussion

Computational learning theory has generated a new way of looking at the problem of learn-
ing. In the early 1960s. the theory of learning focused on the problem of identification in
the limit. According to this notion, an identification algorithm must return & hypothesis that
exactly matches the true function. One way to do that is as follows: First. order all the hy-
potheses in H according to some measure of simplicity. Then. choose the simplest hypothesis
consistent with all the examples so far. As new examples arrive. the method will abandon @
simpler hypothesis that is invalidated and adopt a more complex one instead. Once it reaches
(he true function. it will never abandon it. Unfortunately. in many hyvpothesis spaces. the num-
ber of examples and the computation time required to reach the true function are enormous.
Thus. computational learning theory does not insist that the learning agent find the “one true

T

i

Section 18.6.

Summary 673

law™ governing its environment. but instead that it find « hypothesis with a certain degree of
predictive accuracy. Computational learning theory also brings sharply into focus the tradeot!
between the expressiveness of the hypothesis language and the complexity of learning. and
has Ted directly to an important class of learning algorithms called support vector machines.
The PAC-learning results we have shown are worst-case complexity results and do not
necessarily reflect the average-case sample complexity as measured by the learming curves
we have shown. An average-case analysis must also make assumptions about the distribu-
tion of examples and the distribution of true functions that the algorithm will have to learn.
As these issues become better understood. computational learning theory continues to pro-
vide valuable guidance to machine learning researchers who are interested i predicting or
modifying the learning ability of their algorithms. Besides decision lists, results have been
obtained tor almost all known subclasses of Boolean functions. for sets of first-order logical
sentences (see Chapter 19). and for neural networks (see Chapter 20). The results show that
the pute inductive learning problem, where the agent begins with no prior knowledge about
the target function, is generally very hard. As we show in Chapter 19. the use of prior knowl-
edge to guide inductive learning makes it possible to learn quite large sets of sentences from
reasonable numbers of examples. even in a language as expressive as first-order logic.

18.6 SUMMARY

This chapter has concentrated on inductive learning of deterministic functions from examples.
The main points were as follows:

e Learning takes many forms. depending on the nature of the performance clement. the
component to be improved, and the available feedback.

¢ [the available feedback, either from a teacher or from the environment. provides the
correct value for the examples. the learning problem is called supervised learning.
The task. also called inductive learning. is then to learn a function from examples
of its inputs and outputs. Learning a discrete-valued function is called classification:
learning a continuous function is called regression.

¢ Inductive learning involves finding a consistent hypothesis that agrees with the ex-
amples. Ockham’s razor suggests choosing the simplest consistent hypothesis. The
difficulty of this task depends on the chosen representation

e Decision trees can represent all Boolean functions. The information gain heuristic
provides an efficient method for finding a simple, consistent decision tree.

e The performance of a learning algorithm is measured by the learning curve. which
shows the prediction accuracy on the test set as a function of the training set size

¢ Ensemble methods such as boosting often perform better than individual methods.

e Computational learning theory analyzes the sample complexity and computational

complexity of inductive learning. There is a tradeoff between the expressiveness of the

hypothesis language and the ease of learning.

674

Chapter 8. Learning from Observations

BIBLIOGRAPHICAL AND HISTORICAL NOTES

BAGGING

Chapter ! outlined the history of philosophical investigations into inductive learning. William
of Ockham (1280-1349), the most influential philosopher of his century and a major con-
tributer to medieval epistemology, logic, and metaphysics. is credited with a statement called
“Ockham’s Razor’—in Latin, Entia non sunt multiplicanda praeter necessitarem, and in En-
glish, “Entities are not to be multiplied beyond necessity.” Unfortunately, this laudable piece
of advice is nowhere to be found in his writings in precisely these words.

EPAM. the “Elementary Perceiver And Memorizer” (Feigenbaum. 1961), was one of
the earliest systems to use decision trees (or discrimination nets). EPAM was intended
as a cognitive-simulation model of human concept learning. CLS (Hunt et al., 1966) used
a heuristic look-ahead method to construct decision trees. 1D3 (Quinlan. 1979) added the
crucial idea of using information content to provide the heuristic function. Information theory
itself was developed by Claude Shannon to aid in the study of communication (Shannon and
Weaver, 1949). (Shannon also contributed one of the earliest examples ot machine learning, a
mechanical mouse named Theseus that learned to navigate through a maze by trial and error.)
The 2 method of tree pruning was described by Quinlan (1986). C4.5, an industrial-strength
decision tree package. can be found in Quinlan (1993). An independent tradition of decision
tree learning exists in the statistical literature. Classification and Regression Trees (Breiman
et al.. 1984), known as the “CART book,” is the principal reference.

Many other algorithmic approaches to learning have been tried. The current-best-
hypothesis approach maintains a single hypothesis. specializing it when it proves too broad
and generalizing it when it proves too narrow. This is an old idea in philosophy (Mill. 1843).
Early work in cognitive psychology also suggested that itis a natural form of concept learning
in humans (Bruner er al., 1957). In Al the approach is most closely associated with the work
of Patrick Winston. whose Ph.D. thesis (Winston, 1970) addressed the problem of learning
descriptions of complex objects. The version space method (Mitchell. 1977, 1982) takes
a different approach, maintaining the set of all consistent hypotheses and eliminating those
found to be inconsistent with new examples. The approach was used in the Meta-DENDRAL
expert system for chemistry (Buchanan and Mitchell, 1978), and later in Mitchell’s (1983)
LEX system. which learns to solve calculus problems. A third influential thread was formed
by the work of Michalski and colleagues on the AQ series of algorithms. which learned sets
of logical rules (Michalski. 1969: Michalski er al., 1986b).

Ensemble learning is an increasingly popular technique for improving the performance
of learning algorithms. Bagging (Breiman, 1996), the first effective method. combines hy-
potheses learned from multiple bootstrap data sets. each generated by subsampling the orig-
inal data set. The boosting method described in the chapter originated with theoretical work
by Schapire (1990). The ADABOOST algorithm was developed by Freund and Schapire
(1996) and analyzed theoretically by Schapire (1999). Friedman er al. (2000) explain boost-
ing from a statistician’s viewpoint.

Theoretical analysis of learning algorithms began with the work of Gold (1967) on
identification in the limit. This approach was motivated in part by models of scientific

Section 18.6.

KOLMOGCROY
COMPLEXITY

MINIMUL!
DESCRiPTION
LENGTH

UNIFORN
CONVEHGENCE
THzORY

VC DIMENSION

Summary 0675

discovery from the philosophy of science (Popper. 1962). but has been applied mainly to the
problem of learning grammars from example sentences (Osherson er al.. 1980).

Whereas the identification-in-the-limit approach concentrates on eventual convergence.
the study of Kolmogorov complexity or algorithmic complexity. developed independently
by Solomonoff (1964) and Kolmogorov (1965). attempts to provide a formal definition for the
notion of simplicity used in Ockham’s razor. To escape the problem that simplicity depends
on the way in which information is represented. it is proposed that simplicity be measured by
the length of the shortest program for a universal Turing machine that correctly reproduces
the observed data. Although there are many possible universal Turing machines. and hence
many possible “shortest™ programs. these programs differ in length by at most a constant that
is independent of the amount of data. This beautiful insight. which essentially shows that any
initial representation bias will eventually be overcome by the data itself, is marred only by the
undecidability of computing the length of the shortest program. Approximate measures such
as the minimum description length. or MDL (Rissanen. 1984) can be used instead and have
produced excellent results in practice. The text by Li and Vitanyi (1993) is the best source
for Kolmogorov complexity.

Computational learning theory—that is. the theory of PAC-learning—was inaugurated
by Leslie Valiant (1984). Valiant's work stressed the importance of computational and sample
complexity. With Michael Kearns (1990). Valiant showed that several concept classes cannot
be PAC-learned tractably. even though sufficient information is available in the examples.
Some positive results were obtained for classes such as decision lists (Rivest. T987).

An independent tradition of sample complexity analysis has existed in statistics. begim-
ning with the work on uniform convergence theory (Vapnik and Chervonenkis. 1971). The
so-called VC dimension provides a measure roughly analogous to. but more gencral than. the
In [H| measure obtained from PAC analysis. The VC dimension can be applied to continuous
function classes. to which standard PAC analysis does not apply. PAC-learning theory and
VC theory were first connected by the “four Germans™ (none of whom actually is German):
Blumer. Ehrenfeucht. Haussler. and Warmuth (1989). Subsequent developments in VC the-
ory led to the invention of the support vector machine or SVM (Boser er al.. 19921 Vapnik.
199%), which we describe in Chapter 20.

A large number of important papers on machine Jearning have been collected in Read-
ings in Machine Learning (Shavlik and Dietterich, 1990). The two volumes Machine Learn-
ing 1 (Michalski er al.. 1983) and Machine Learning 2 (Michalski er al.. 1986a) also contain
many important papers. as well as huge bibliographies. Weiss and Kulikowski (1991) pro-
vide a broad introduction to function-learning methods from machine learning. statistics. and
neural networks. The STATLOG project (Michie er al.. 1994) is by far the most exhaustive
investigation into the comparative performance of learning algorithms. Good current rescarch
in machine learning is published in the annual proceedings of the International Conference
on Machine Learning and the conference on Neural Information Processing Systems. in Ma-
chine Learning and the Journal of Machine Learning Research. and in mainstream Al jour-
nals. Work in computational learning theory also appears in the annual ACM Workshop on
Computational Learning Theory (COLT). and is described in the texts by Kearns and Vazirani
(1994) and Anthony and Bartlett (1999).

676

Chapter 8. Learning from Observations

EXERCISES

" CLASS PROBABILITY

18.1 Consider the problem faced by an infant learning to speak and understand a language.
Explain how this process fits into the general learning model. identitying each of the compo-
nents of the model as appropriate.

18.2 Repeat Exercise 18.1 for the case of learning to play tennis (or some other sport with
which you are familiar). Is this supervised learning or reinforcement learning?

18.3 Draw a decision tree for the problem of deciding whether to move forward at a road
intersection, given that the light has just turned green.

18.4 We never test the same attribute twice along one path in a decision tree. Why not?

18.5 Suppose we generate a training set from a decision tree and then apply decision-tree
learning to that training set. [s it the case that the learning algorithm will eventually return
the correct tree as the training set size goes to infinity? Why or why not?

18.6 A good “straw man” learning algorithm 1s as follows: create a table out of all the
training examples. Identify which output occurs most often among the training examples;
call it . Then when given an input that is not in the table. just return ¢{. For inputs that are
in the table. return the output associated with it (or the most frequent output. if there is more
than one). Implement this algorithm and see how well it does on the restaurant domain. This
should give you an idea of the baseline for the domain—the minimal performance that any
algorithm should be able to obtain.

18.7 Suppose you are running a learning experiment on a new algorithm. You have a data
set consisting of 25 examples of each of two classes. You plan (o use leave-one-out Cross-
validation. As a baseline, you run your experimental setup on a simple majority classifier. (A
majority classifier is given a set of training data and then always outputs the class that is in
the majority in the training set. regardless of the input.) You expect the majority classifier to
score about 50% on leave-one-out cross-validation, but to your surprise. it scores zeto. Can
you explain why?

18.8 In the recursive construction of decision trees. it sometimes happens that a mixed set
of positive and negative examples remains at a leaf node. even after all the attributes have
been used. Suppose that we have p positive examples and 7 negative examples.
a. Show that the solution used by DECISION-TREE-LEARNING. which picks the majority
classification. minimizes the absolute error over the set of examples at the leaf.

b. Show that the class probability p/(p + r) minimizes the sum of squared errors.

18.9 Suppose that a learning algorithm is trying to find a consistent hypothesis when the
classifications of examples are actually random. There are n Boolean attributes. and examples
are drawn uniformly from the set of 2" possible examples. Calculate the number of examples
required before the probability of finding a contradiction in the data reaches 0.5.

i s e e e o

ee

he

e
e
NS

ald

A
.
10
“an

the
ples
ples

Section 18.6

Summary 17

18.10 Suppose that an attribute splits the set of examples £ into subsets £, and that each
subset has p; positive examples and », negative examples. Show that the attribute has strictly
positive information gain unless the ratio i/ P+ ny)is the same for all /.

18.11 Modify DECISION-TREE-LEARNING 10 include \“-pruning

- You might wish to con-
sult Quinlan (1986) for details.

18.12 The standard DECISION-TREE-LEARNING algorithm described in t

he chapter does
not handle cases in which some examples have missing attribute values.

a. First. we need to find a way to classify such examples. given a decision trec that includes
tests on the attributes for which values can be missing. Suppose that an example \ has
a missing value for attribute A and that the decision tree tests for A at 4 node that X
reaches. One way to handle this case is to pretend that the example has «ll possible
values for the attribute, but to weight each value according to its frequency among all
of the examples that reach that node in the decision tree. The classification algorithm
should follow all branches at any node for which a value is missing and should multiply
the weights along each path. Write a modified classification algorithm for decision trees
that has this behavior.

b. Now modity the information gain calculation so that in any given collection of exam-
ples (" at a given node in the tree during the construction process. the examples with
missing values for any of the remaining attributes are given “as-if” values according to
the frequencies of those values in the set (.

ble values can cause
problems with the gain measure. Such attributes tend to split the examples into numerous
small classes or even singleton classes, thereby appearing to be highly relevant according to
the gain measure. The gain ratio criterion selects attributes according to the ratio between
their gain and their intrinsic information content——that is. the amount of information con-
tained in the answer to the question. “What is the value of this attribute” The €ain ratio crite-
rion therefore tries to measure how efficiently an attribute provides information on the correct
classification of an example. Write a mathematical expression for the information content of
an attribute. and implement the gain ratio criterion in DECISION-TREE-LEARNING.

18.13 In the chapter, we noted that attributes with many different possit

18.14 Consider an ensemble learning algorithm that uses simple majority voting among
M Tearned hypotheses. Suppose that each hypothesis has error ¢ and that the errors made
by cach hypothesis are independent of the others’. Calculate o formula for the error of the
ensemble algorithm in terms of A/ and ¢. and evaluate it for the cases where 1/ — 5. 10. and
20and c = 0.1. 0.2, and 0.4. If the independence assumption is removed, is it possible for the
ensemble error to be worse than €?

18.15 This exercise concerns the expressiveness of decision lists (Section 18,5).

a. Show that decision lists can represent any Boolean function. if the size of the tests is
not jimited.

b. Show that if the tests can contain at most / literals each. then decision lists can represent
any function that can be represented by a decision tree of depth /.

