
COS 126 General Computer Science Fall 1997

Final - Solutions1

Question 1

This is a FIFO queue, so we follow a first in, first out policy: E, EA, A, AS, S, SY, SYQ, SYQU, YQU, QU,
QUE, QUES, QUEST, UEST, UESTI, ESTI, ESTIO, STIO, TIO, IO, O, ON, N, empty.

If this were a stack, we would follow a LIFO or last in, first out policy: E, AE, E, SE, E, YE, QYE,
UQYE, QYE, YE, SYE, TSYE, SYE, OSYE, SYE, YE, E, empty, N, empty, crash.

Question 2

PostScript works like a stack. It has a number of primitive “turtle graphics” commands. We imagine that
we have an obedient turtle that will follow our commands. The turtle also has a pen and will write as it
moves, if directed to do so.

The moveto command pops two elements off the stack, say x and y, and the turtle moves to location
(x, y), but without writing anything. The rlineto command pops two elements off the stack, say u and v,
and the turtle moves in that direction (with the pen down) relative to its current location, say (x, y). So,
the turtle moves from (x, y) to (x + u, y + v) with the pen down. In contrast, if it were lineto instead of
rlineto, the turtle would move from (x, y) to (u, v) with the pen down.

So, the command 100 0 moveto causes the turtle to move to (100,0). The next command 0 100 rlineto
causes the turtle to move to (100,100) with the pen down. The next four rlineto commands cause the turtle
to move from (100,100) to (200,100) to (200,200) to (300,200) and finally to (300,300), all with the pen down.
The stroke command actually draws the line segments traced out by the turtle’s pen. The showpage ejects
the page from the printer.

Question 3

There are many ways to solve this problem, iterative and recursive. Here are 3 possible solutions.

link find0(link x)
{ while(x != NULL && x->key != 0) x = x->next;
return x;

}

1Copyright 1999, Kevin Wayne.

1

link find0(link x)
{ for(; x != NULL && x->key != 0; x = x->next)

;
return x;

}

link find0(link x)
{ if (x == NULL || x->key == 0) return x;
return find0(x->next);

}

Question 4

This can be done with recursion or a loop. The recursive version is similar to Question 4, Midterm 2, Fall
1998 – the only difference between is that we only want to delete the first 0, not all of them. So if we find a
0 key, we just return the rest of the list, instead of the 0-free version of the rest of the list. (In practice, we
should also worry about freeing the memory associated with the deleted node.)

link delete0(link x) {
if (x == NULL) return NULL;
if (x->key == 0) return x->next;
x->next = delete0(x->next);
return x;

}

link delete0(link head) {
link x;
if (head == NULL) return NULL;
if (head->key == 0) return head->next;
for (x = head; x->next != NULL; x = x->next)

if (x->next->key == 0) {
x->next = x->next->next;
break;

}
return head;

}

Question 5

144

The data structure test is a node-like structure: each “node” has a key and two pointers to other nodes.
The first few lines of code define the 3 variables x, y and z to be pointers to nodes. Each of their keys is
initialized to 1. Also, each of the 3 variables has two pointers, one pointing to each of the other two variables.

To figure out what gets printed, it’s convenient to create a table and keep track of each variable at every
step. Only variables t, x->k, y->k, and z->k change, so we record these values at the beginning of each
iteration through the for loop. It is not hard to recognize the pattern - Fibonacci numbers. Figuring out
exactly which Fibonacci gets printed out requires a little care.

2

t x y z
x 1 1 1
y 2 1 1
z 2 3 1
x 2 3 5
y 8 3 5
z 8 13 5
x 8 13 21
y 34 13 21
z 34 55 21
x 34 55 89
y 144 55 89
z 144 233 89

At the end of the last iteration of the for loop, z->k gets incremented to 377, then t is reset to x. So
now t->k >= 100 and the for loop terminates. At this point t->key = x->key = 144 so 144 is printed.
Note that the program actually computes all of the Fibonacci numbers less than 100, and then the next 3
Fibonacci numbers. But it prints out only the smallest Fibonacci number bigger than 100.

Question 6

Try out a few values and you will quickly see the pattern:

strange(x) =

{
0 x ≤ 0
x− 1 x ≥ 1

Here’s a formal argument. Obviously if x is nonpositive, strange(x) = 0. If x is positive and odd,
strange(x) = x - 1. So what happens if x is even and positive. Well, strange(x) = 1 + strange(x-1).
Since x is even, x - 1 is odd; thus, so strange(x-1) = x - 2. Hence strange(x) = x - 1 in this case as
well.

Question 7

First let’s write down the truth table for the function given.

x y z f
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Using the standard sum-of-products method, the Boolean function can be expressed as f = x’y’z’ +
x’yz + xy’z + xyz and drawn accordingly using 4 AND gates, 5 NOT gates, and 1 OR gate. Note also that
since (x+y) = x’y + xy’ + xy, we could express f = x’y’z’ + (x+y)z. Thus, we could actually draw the
circuit using only 2 AND gates, 3 NOT, and 2 OR gates. The circuit can be improved further by observing
that x’y’ = (x+y)’. Cleverness pays.

Question 8

This should be pretty straightforward by now.

3

• preorder: A D F - - - B C - E G - - - -

• inorder: - F - D - A - C - G - E - B -

• postorder: - - F - D - - - G - E C - B A

• level-order: A D B F - C - - - - E G - - -

Question 9

4

This is essentially the same as Question 13, Midterm 2, Fall 1997. The only difference is the base case -
a NULL tree has the value 1. The easiest way to answer this question is to hand-simulate the check function,
starting at the bottom of the tree. The value of the check function for node x increases (by 1) from one
level in the tree to the next only if neither child of x is NULL.

In general, here’s what the function computes. We say that a node is fertile if it has two non-NULL
children. (We adopt the convention that a NULL node is fertile - they just aren’t mature enough to have any
children.) The function check(x) returns the maximum number of fertile nodes on any simple path from x.

Question 10

insertion sort, mergesort, quicksort

Quicksort requires roughly N logN time on a randomly ordered file of N keys (Sedgewick, Property 7.2).
It requires roughly N2 time on an already sorted or reverse sorted file (Property 7.1). We note that this N2

time bound can be improved to N logN using a variant of quicksort that selects the partitioning element
more carefully (uniformly at random or median).

Mergesort requires roughly N logN time on any input file, regardless of whether it is sorted, random,
reverse sorted, etc. (Property 8.1). However, empirically, quicksort is typically twice as fast as mergesort on
randomly ordered input files (Table 8.1, Table 9.2).

Insertion sort requires roughly N2 time on a randomly ordered file (Property 6.2). It requires only
roughly N time on a sorted file (Property 6.4). It requires N2 time on a reverse sorted file.

Question 11

Another pretty familiar question by now.

Question 12

E H I O C O I E R R U S S V T S

By convention, we chose to partition on the last element - R. Also for duplicates, we adopt the convention
that both pointers stop. Empirically, this leads to a better balancing of the partitions. So, in this example,
we chose to exchange R and E in the third step.

T H I S C O U R S E I S O V E R T-E
E H I S C O U R S E I S O V T R S-O
E H I O C O U R S E I S S V T R U-I
E H I O C O I R S E U S S V T R R-E
E H I O C O I E S R U S S V T R S-R
E H I O C O I E R R U S S V T S

4

Question 13

int sum(link x)
{
if (x == NULL) return 0;
return x->key + sum(x->l) + sum(x->r);

}

A classical divide-and-conquer recursive program. Clearly our function should return an integer, and the
input should be a link to the first node in the tree. As usual with linked lists and trees, the base case is an
empty tree. In this case, we return 0. The simple, but very critical, observation is that the sum of the keys
in a tree rooted at x is precisely the sum of the following three things (i) x->key, (ii) the sum of the keys in
the left subtree, and (iii) the sum of the keys in the right subtree.

Question 14

37

The best way to answer the question is to start computing the sum values starting at the bottom of the
tree and working your way up the tree, just as in dynamic programming.

Here’s a more complete explanation as to what goes wrong and why the function doesn’t compute the
sum of all the keys, as you might first expect. The structure is no longer a tree. Some nodes have two
incoming arc; hence their sum gets double counted. Actually it is a bit more complicated. The number of
times the key of a node gets counted is equal to the number of different paths from the root to that node.
E.g., the bottom key 3 will get counted five times, since there are 5 different paths. We should point out that
the recursive function from Problem 13 would be essentially useless on such an input (assuming we actually
had a use for the funny looking sum anyway). Why? In general, there can be (exponentially) many paths,
so our function would recompute the same thing over and over. A dynamic programming approach would
be preferred.

Question 15

0 1
0 1 2 start
1 0 1
2 1 2 accept

The key is associating a meaning with each state. State 0 represents bit strings with an even number
of 0’s that end in a 0. State 1 represents bit strings with an odd number of 0’s. State 2 represents bit
strings with an even number of 0’s that end in a 1. Given this interpretation, the FSA is straightforward to
construct.

It’s good practice (but not necessary here) to determine the corresponding RE. Here it is (1*01*01*)*1*1.
The term in parentheses matches all bit strings with exactly 2 zeros. We can replicate this any number of
times to get an even number of zeros. We need the final 1 to make sure the bit string ends with 1. The 1*
is needed to match strings with no zeros, like 111111.

Question 16

First, figure out what languages the nondeterministic FSA accepts. Write down some sample strings in the
language: {1, 11, 111, 1111, 00, 100, 1001, 1001111, 11101111011, ...}. Note that 000 is not
accepted because there is no transition possible from state 2 if the next bit is a 0. FSA’s must end up
exactly in the accept state(s) and use up all of the input characters. The nondeterministic FSA accepts
all bit strings composed of all 1’s or bit strings with exactly 2 0’s, i.e., those corresponding to the regular
expression 11* + 1*01*01*.

5

From lecture, we know that it is always possible to design a deterministic FSA that expresses the same
language as a nondeterministic FSA. We construct such a deterministic FSA. Here it is convenient (and
necessary) to allow multiple accept states.

0 1
0 2 1 start
1 2 1 accept
2 3 2
3 4 3 accept
4 4 4

State 1 represents bit strings with all 1’s. State 2 represents bit strings with exactly one 0. State 3
represents bit strings with exactly two 0’s. State 4 represents bit strings with three or more 0’s. State 0 is
really only needed so that we don’t accept the empty string; otherwise we could delete state 0 and make
state 1 the starting state.

Question 17

There are 4 grammar rules: (i) S → a, and (ii) S → b, (iii) S → aSa, and (iv) S → bSb. The grammar is
context-free (Type II), but not regular (Type III). We start by listing some of the strings in the language,
and see that all odd length palindromes are accepted.

{a, b, aaa, aba, bab, bbb, aaaaa, aabaa, ababa, abbba, ...}
S

a S a

a S a

b S b

b

Question 18

regular

Recall from Lecture 15.5 that we created an FSA to accept bit strings that, if interpreted as binary
numbers, are divisible by 3. Using the same idea, we could test divisibility by 99 (or any other number).
Also, recall that FSA’s are equivalent to RE’s. Hence any language accepted by an FSA is regular (Type
III). Of course, we could also express the given language using a Type 0 grammar, but that would be akin
to describing a 1941 Mouton Rothschild as just a bottle of red wine! The Chomsky hierarchy classifies
different types of grammars in order of their ability to describe more languages. Each type can express more
languages than the previous.

Type Grammar Corresponding Machine
III regular FSA
II context-free nondeterministic PDA
I context-sensitive linear bounded automata
0 recursive Turing machines

Question 19

B

6

The decision version of the traveling salesman problem (Does there exists a tour of length at most L?)
is NP-complete. This means that it is “computationally equivalent” to every other NP-complete problem.
I.e., if you had an algorithm that could guarantee to solve any TSP problem “efficiently,” then you could
solve any NP-complete problem “efficiently.” Of course if we have a large problem (say with 10,000 nodes)
we expect the algorithm will take much longer. By efficiently, we mean that the number of elementary steps
does not grow too quickly as a function of the input size, e.g., N2, N logN . An algorithm is said to be
efficient or polynomial-time if its running time grows no more rapidly than some polynomial function of
the input size. Most computer scientists conjecture that NP-complete problems are intractable: no efficient
algorithm is likely to exists for NP-complete problems, including the TSP.

This does not mean we can not hope to solve particular instances of the TSP problem. The conjecture
really only says that there exist some hard instances that we won’t be able to solve efficiently. But maybe
these hard instances are pathological, and we have no interest in solving them anyway. In fact, there
are many real-world TSP problem with some additional structure that enable us to solve them efficiently.
Unfortunately, there are also some real-world TSP problems (with less than 1000 nodes) that no one has
been able to solve!

• A - Suppose the n points are all on a single line. Then finding an optimal tour is trivial. NP-complete
problems can have many easy instances.

• B - This is the conjecture that most computer scientists believe for all NP-complete problems.

• C - This TSP problem is not one of the unsolvable problems (like the Halting problem). The recursive
algorithm given in Lecture 9.6 will find an optimal tour. It essentially enumerates all (n− 1)! possible
tours. Of course, this algorithm takes way too long to be of any practical use.

• D - Using cleverness, it is possible to eliminate many tours without explicitly considering them. Suppose
the n cheapest links in the network form a tour; then this is a provably optimal tour, and there is no
need to look further.

• E - This statement is essentially equivalent to A. Nothing prevents an algorithm from “getting lucky”
and being able to finish early for some input instances.

Question 20

0014

The first four lines initialize registers R1 = 0, R2 = 1, R3 = 4, and R4 = 5. Line 14 increments R1 by
1 each time it is executed, since R2 is never modified. The instruction 7414 and 7313 (jump and count) are
then used to perform a double nested loop. Instruction 7414 creates an “inner loop” which increments R1
five times. Instruction 7313 creates an “outer loop” which repeats the inner loop four times. Thus, R1 is
incremented 5*4=20 times in total, so the final value of R1 is the hex number 0014.

Question 21

TOY instructions only allocate 2 hex digits (8 bits) for indexed addressing. To access 211 = 2048 words
(instead of 28 = 256), we would need 3 more bits. Thus, instructions would have to be longer than 4 hex
digits (or we would have to make do with fewer instructions).

Question 22

f(3) = 9. It takes 20 calls to g to compute f(3). Here’s the start of the tree. You can figure out the rest.

7

f(3)

g(3) f(2)

g(2) f(2) g(2) f(1)

x f(x) g(x)
0 1 1
1 2 1
2 4 2
3 9 5
4 22 13
5 56 34
6 145 89

The above table actually lists more values than you need to solve the problem. I computed f(20) using
this program. After about a minute and over 500 million mutually recursive calls to f and g it finally returned
the answer. Only 41 different values of f and g are computed, so almost of all the work is redundant and
unnecessary. A dynamic programming approach would solve this problem much more efficiently. Actually,
these types of mutually recursive functions (also called recurrence relations) can be evaluated analytically,
but this requires some advanced math or Maple. It turns out that,

f(x) = 1− 1√
5

(
2

3 +
√

5

)x
+

1√
5

(
2

3−
√

5

)x
.

and that the number of calls to g required to compute f(x) is

5− 3
√

5
10

(
2

3 +
√

5

)x
+

5 + 3
√

5
10

(
2

3−
√

5

)x
− 1

Question 23

other methods in this class

Question 24

int i, max = 0, count[51];
for (i = 0; i <= 50; i++) count[i] = 0;

for (i = 0; i < N; i++) count[a[i]]++;

/* now find the value(s) that occur most often */
for (i = 0; i <= 50; i++)
if (count[i] > max) max = count[i];

for (i = 0; i <= 50; i++)
if (count[i] == max) printf(‘‘%d\n’’, i);

8

For efficiency, it is essential to access each element in the array a[N] only once, since N is assumed to
be huge. We maintain an auxiliary array count[51] to count the number of occurrences of each key in the
range 0 to 50. We actually walk through this auxiliary array 3 times, but this cost is negligible relative to
walking through the huge array a[N].

9

