COS 445 - PSet 4

Due online Monday, April 7th, 2025 at 11:59 pm.

Instructions:

* Some problems will be marked as no collaboration problems. This is to make sure you have
experience solving a problem start-to-finish by yourself in preparation for the midterms/final.
You cannot collaborate with other students or the Internet for these problems (you may still
use the referenced sources and lecture notes). You may ask the course staff clarifying ques-
tions, but we will generally not give hints.

* Submit your solution to each problem as a separate PDF to codePost. Please make sure
you're uploading the correct PDFs to the correct locations!! If you collaborated with other
students, or consulted an outside resource, submit a (very brief) collaboration statement as
well. Please anonymize your submission, although there are no repercussions if you forget.

* The cheatsheet gives problem solving tips, and tips for a “good proof” or “partial progress.”
* Please reference the course collaboration policy here.

For convenience, we restate some definitions used in this problem set.

"We will assign a minor deduction if we need to maneuver around the wrong PDFs. Please also note that depending
on if/how you use Overleaf, you may need to recompile your solutions in between downloads to get the right files.


https://www.cs.princeton.edu/courses/archive/spring25/cos445/files/cheatsheet.pdf
https://www.cs.princeton.edu/courses/archive/spring25/cos445/files/infosheet.pdf

Problem 1: Noisy Optimizers aren’t Good Enough (40 points)

For this problem, you should assume that all bidders’ values for the item are non-negative. This
problem will try to address the “robustness” of the second-price auction (or more generally, ideas
used for VCG) to underlying optimization algorithms which are imperfect. Consider the following
error-prone algorithm A for computing the argmaximum of a set {by, ..., b, } of numbers:

* If the second-highest number is exactly one less than the largest number, then output the
index of the second-highest number (break ties lexicographically).

* Otherwise, output the index of the largest number (break ties lexicographically).

Consider the following error-prone version of the second-price auction with n buyers and a single
item:

e Accept bids by, . . . ,b,, all of which are > 0.

* Award the item to the bidder A(by, ..., b,). Note that if A were not error-prone, this would be
the highest bidder.

* Charge the winning bidder b A(E,i;—2)~3 To clarify, A(l;_i; —2) means “replace b; with —2 and
keep all other bids the same. Then run A.” Put another way,: find the bidder ;7 which A
selects as the winner on input (l;,z-; —2), and charge bidder ¢ b;. Note that if A were not error
prone, j would be the highest bidder among those # .

Part a (10 points)

Prove that for any given I;_i (list of bids submitted by all bidders except for z), there exists a price p
such that no matter what bid bidder ¢ makes, bidder 7 will either win the item and pay p, or not get
the item (and pay nothing).

Part b (10 points)

Say that v; > v; for all j # 4 (i is the highest bidder). Prove that if all other bidders tell the truth
(that is, bid v;), bidder ¢’s best response is a bid which wins the item (you do not need to specify
exactly what that bid is).

Part ¢ (10 points)

Prove that the error-prone second-price auction is not incentive compatible by providing (and ana-
lyzing) a vector of values vy, . .., v, such that if everyone tells the truth, the second-highest bidder
wins and pays strictly more than their value (pick an n and provide a single example. It is OK to
use non-integer values, if desired).

2To be extra clear: if the third-highest number is exactly one less than the largest number, but the second-highest
number is not, then the index of the highest number is output. If there are two numbers with the same highest value,
then the second-highest number is equal to the highest number.

3The choice of —2 is made just to guarantee that A(b_; —2) # i when all b; > 0.



Part d (10 points)

Prove that the error-prone second-price auction is not incentive compatible by providing (and an-
alyzing) a vector of values vy, ..., v, such that if everyone tells the truth, the highest bidder wins,
but the second-highest bidder would have been strictly happier by lying about their value (pick an
n and provide a single example. It is OK to use non-integer values, if desired).



Problem 2: Revenue Equivalence (50 points)

This problem will recall the following definitions.

Definition 1 (Equal Revenue Curve). The Equal Revenue Curve (denoted by E) is a distribution
with F(z) =1— 1 forallz > 1, and f(z) = 2 forallx > 1. Forz < 1, F(z) = 0and f(z) = 0.

xT

Definition 2 (All-Pay Auction). In the All-Pay Auction, each bidder i submits a bid b;. The item is
awarded to the highest bidder (tie-breaking lexicographically), and all bidders pay their bids. So if
bidder i wins the auction, their utility is v; — b;. If they lose, their utility is —b;.

Definition 3 (Bidding Strategy). A bidding strategy is a function b(-) that takes as input a value v
and proposes a bid b(v) to make in the auction.

Definition 4 (Bayes-Nash Equilibrium). A bidding strategy b(-) is a Bayes-Nash equilibrium for
the All-Pay Auction with two bidders drawn from E if for all vy, given that bidder 2 is going to
draw a value vy <+ E and bid b(v,), your expected utility is (weakly) maximized by bidding b(v;).*

The following parts will guide you to find a Bayes-Nash Equilibrium using Revenue Equiva-
lence. You should complete all parts and not provide an alternative proof.

Part a (10 points)

What is the expected revenue of the second-price auction when two bidders with values indepen-
dently drawn from equal-revenue curves bid their true value?

Part b (10 points)

In the second-price auction, what is the expected payment made by bidder one, conditioned on
bidding vy, and that bidder two truthfully reports vy <— E?

Note that we are not conditioning on bidder 1 winning. To be extra formal, let P74 (v, v5)
denote the random variable that is equal to v, if v; > wv9, and 0 otherwise. For a fixed v;, what is
]EU2HE[P15PA<U17 U2>]?

Part c¢ (10 points)

Consider the bidding strategy b(-) defined by b(v;) := E,,. p[P 74 (v, v5)]. Prove that if both
bidders use bidding strategy b(+) in the All-Pay auction, then the bidder with the highest value will
always win the item.

Part d (10 points)

Assume that bidder two is using the bidding strategy b(-) from part ¢ in the All-Pay auction. If bid-
der one’s value is v1, what is the expected utility that bidder one achieves by bidding b;? Formally,
if Uy (v, b, b1,v9) is a random variable that is equal to v; — b; when b(vy) < by, and —b; when
b(vy) > by, what is E,,. g[U(vy, b, by, v2)]?°

4You may want to see Lecture 16 for how we proved something is a Bayes-Nash equilbrium for two bidders drawn
from Uniform([0, 1]). for the First-Price Auction.

3To be extra clear: for a given v; > 1, and b; > 0, your answer should say the expected utility that bidder one
achieves by bidding b;. So the variables by, v; should appear in your answer, but b(+) and v, should not.



Part e (10 points)

Prove that the same b(-) from part c is a Bayes-Nash Equilibrium of the All-Pay auction for two
bidders with values drawn independently from the equal-revenue curve. Your solution should in-
clude a (brief) justification of why the mathematical optimization you formulate correctly solves the
problem, and also a (brief) justification of why you solved the mathematical optimization correctly.



Problem 3: Super Selfish Mining (40 points)

In this problem, you’ll examine a variant of the selfish mining strategy. If it helps, you may think
of the following as selfish mining done by a prophet who knows in advance who will be selected to
mine in each round.® Throughout this problem, you are the attacker, and we will refer to you as m.

Imagine that you control an « fraction of the total computational power in the Bitcoin network,
all other miners follow longest-chain and always tie-break against you, and you use the following
mining strategy (which is different from lecture). We describe the strategy below in both text and
math — it will be helpful to think of the order of operations during every time step as (a) a block
is created by a randomly chosen miner, equal to m with probability o and # m with probability
1 — «a, (b) all other miners broadcast all of their blocks, and then (c) you may broadcast any blocks
you like.

Intuitively, your strategy is exploiting its knowledge of the future, and will only hide a block if
you know that you will mine the next block and build a lead of two. Below, note that your decisions
on what to do in step ¢ will depend on whether or not you are mining the block in step ¢ + 1.

Super Selfish Mining:
* Notation: For every time step ¢,

— Let M; denote the identity of the miner who is selected to mine at time ¢. That is, if
M; = m, then the attacker is selected during step ¢. If M, # m, then another miner is
selected.

— Atall times t, let h,,(t) denote the height of the highest block mined by you (computed
after step (b), before step (c) when you are choosing what to broadcast), and let h(t)
denote the height of the highest block that has been broadcast publicly (again after step
(b), before step (c)). Recall that the other miners know A(t), but do not know h,,(t) if
some of your blocks are hidden.

* Mining: During every time step ¢, mine on top of the longest chain (among all blocks that
were broadcast, or created by m), tie-breaking in favor of m (yourself).

* Broadcasting when M, # m: During every time step ¢, if another miner broadcasts a block
of height h(t) during step (b) and:’

1. hn,(t) < h(t), announce your block of height h(t), if one exists (if one does not exist,
broadcast nothing).

2. hp(t) > h(t) + 1, announce your block of height h(t).

3. hu(t) = h(t) + 1, announce your two blocks of height i(t) and h(t) + 1.

* Broadcasting when )/, = m: During every time step ¢, if M; = m, decide whether to
announce your new block according to the following rule:

4. If h,,(t) = h(t) + 1 and M;,; # m, announce your block of height h(¢) + 1. That is,
if you are mining this round, but not mining next round, and your new block only beats
the public chain by one, broadcast your new block immediately.

5But if it does not help, you should solve the problem below, exactly as stated, and not focus on this. Note also
that you may discover a smarter selfish mining strategy than the one defined below, but you should analyze exactly the
strategy defined below, and not something more clever.

"Note that this will happen during any round where M; # m.

6



5. If hy,(t) = h(t) + 1 and M,,; = m, do not announce any blocks. That is, if you are
mining this round and next round, hide your block.

6. If M; = m and h,,(t) > h(t) + 1, do not announce any blocks. That is, if you are
mining this round and have a large secret lead, hide your block.

Part a (15 points)

Consider the case when miners are selected according to the following sequence (two, six, and
seven are not m): (My, My, M3, My, M5, Mg, M7) = (m,# m,m,m,m,# m,# m). Which
of the six broadcasting cases is triggered during each round? You should present your answer in
the form (cy, co, c3, ¢4, ¢5, Cg, C7), Where each ¢; is an integer from 1 to 6 denoting which case was
triggered in round 7, followed by a brief justification that each answer is computed correctly.®

Part b (25 points)

Describe (or draw, if you prefer) a Markov chain (as a function of «) to analyze the expected
reward achieved with the super selfish mining strategy defined above. You should also provide a
brief explanation of why your analysis is correct. More specifically, you should provide:

1. A (possibly infinite) list of states.
2. For each pair of states, = and y, the probability of transitioning from state x to y, ¢y,.’

3. For each pair of states, x and y, two values, H,, and S, (think of /., as counting the number
of blocks that the honest portion of the networks gets in the eventual longest chain when we
transition from x to y, and .S, as counting the number of blocks that the selfish miner gets
in the eventual longest chain when we transition from z to %).'”

4. If you find it convenient, you may create multiple “types” of transitions between two states,
rather than rigorously add duplicate states. But there are solutions for which this is neither
necessary nor convenient. You can ignore this bullet if you find it confusing and/or unhelpful.

5. Your brief justification should clearly prove that every block that is eventually in the longest
chain is counted during exactly one transition, and also that only blocks which are in the
longest chain are counted."!

Your solution should have the property that that if ' denotes the stationary distribution of your
Markov chain (that is, as time goes to infinity, for all x your Markov chain is at state x a p, fraction
of the time), the expected reward achieved by the super selfish mining strategy is:'>

ny Pz Quy - Sa:y
Zr,ypm "Gy - (Sﬂvy + HID?J)

81f you want to be kind to the graders, you can also type around your answer.
°If for many pairs, Gzy = 0, you may simply write “all other transition probabilities are zero” after you define the

non-zero ones.

10Again, you must define all non-zero values, and can declare the rest to be zero.

Your brief justification does not have to be set up to explicitly make both of these statements, but both of these
statements should clearly and easily follow from your brief justification.

12Observe that if 'is the stationary distribution, then p,, - Gy 1s the fraction of time that we spend transitioning from
state x to state y.




You do not need to find the stationary probabilities of your Markov chain, nor compute
the expected reward achieved by this strategy. You only need to describe the Markov chain
as detailed above, and briefly explain why the analysis is correct.

Hint: Refer to Lecture Notes and/or Precept Notes for an example of how to do this for non-
super selfish mining.

Extra Credit: Walrasian Equilibria

Recall that extra credit is not directly added to your PSet scores, but will contribute to your partic-
ipation. Some extra credits are quite challenging. We do not suggest attempting the extra credit
problems for the sake of your grade, but only to engage deeper with the course material. If you are
interested in pursuing an IW/thesis in CS theory, the extra credits will give you a taste of what that
might be like."”

For this problem, you may collaborate with any students and office hours. You may not consult
course resources or external resources, as this is a proof of a well-known result.'*

In a combinatorial auction there are m items for sale to n buyers. Each buyer ¢ has some
valuation function v;(-) which takes as input a set S of items and outputs that bidder’s value for that
set (so v;(S) = 5 means that bidder ¢ gets value 5 for receiving set S). These functions will always
be monotone (v;(S UT) > v;(S) for all S, T), and satisfy v;(0) = 0. A Walrasian Equilibrium is a
non-negative price for each item p such that:

* Each buyer i selects to purchase a set B; € arg maxs{v;(S) — >_;cqpj}-
* The sets B; are disjoint, and U; B; = [m].

Prove that a Walrasian equilibrium exists for vy, ..., v, if and only if the optimum of the LP
relaxation below (called the configuration LP) is achieved at an integral point (i.e. where each

zis €{0,1}).
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Finally, provide an example of two valuation functions vy, vo over two items where a Walrasian
equilibrium doesn’t exist.

13Keep in mind, of course, that you will do an IW/thesis across an entire semester/year, and you are doing the extra
credit in a week. Whether or not you make progress on the extra credit in a week is not the important part — it’s
whether or not you enjoy the process of tackling an extremely open-ended problem with little idea of where to get
started.

“You may consult course resources for general refreshers on Linear Programming, but not for anything specific to
this problem.



