
COS 445 - PSet 3

Due online Monday, March 24th at 11:59 pm.

Instructions:

• Some problems will be marked as no collaboration problems. This is to make sure you have
experience solving a problem start-to-finish by yourself in preparation for the midterms/final.
You cannot collaborate with other students or the Internet for these problems (you may still
use the referenced sources and lecture notes). You may ask the course staff clarifying ques-
tions, but we will generally not give hints.

• Submit your solution to each problem as a separate PDF to codePost. Please make sure
you’re uploading the correct PDFs to the correct locations!1 If you collaborated with other
students, or consulted an outside resource, submit a (very brief) collaboration statement as
well. Please anonymize your submission, although there are no repercussions if you forget.

• The cheatsheet gives problem solving tips, and tips for a “good proof” or “partial progress.”

• Please reference the course collaboration policy here.

For convenience, we restate some definitions used in this problem set.

1We will assign a minor deduction if we need to maneuver around the wrong PDFs. Please also note that depending
on if/how you use Overleaf, you may need to recompile your solutions in between downloads to get the right files.
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Problem 1: Linear Programming (20 points, no collaboration)
Alice is trying to get enough oranges and bananas to host a fruit party. To successfully host a party
she needs at least 4 oranges and at least 3 bananas. Unfortunately, her local grocery story only
sells fruit in bundles. Bundle A costs 7 dollars and contains 2 oranges and 5 bananas. Bundle B
costs 4 dollars and contains 3 oranges and 2 bananas. Fortunately, the grocery story will allow
Alice to buy fractions of bundles (i.e. she can buy 2.5 bundle As). They will not allow Alice to buy
negative bundles (i.e. she cannot buy -1 bundle As and 3 bundle Bs).

Alice would like to buy xA bundle As and xB bundle Bs to guarantee she has at least 4
oranges and at least 3 bananas. Moreover, she would like to find the solution that minimizes her
dollars spent.

Part a (10 points)
Write a linear program whose solution is the optimal choice of xA, xB for Alice’s problem.

Part b (10 points)
Take the dual of the linear program from part a.

Note for Problem 1: There are lots of valid methods to take the dual (such as Lagrangians, transposing the constraint matrix, etc.) – any method is acceptable.
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Problem 2: Repeated Prisoner’s Dilemma (50 points)
Consider the following payoff matrix for prisoner’s dilemma. The left number in each entry de-
notes the payoff for Alice, and the right denotes the payoff for Bob. The left two strategies denote
Alice’s actions, and the top two strategies denote Bob’s.

(Alice, Bob) Cooperate Defect
Cooperate (2,2) (0,5)

Defect (5,0) (1,1)

In this problem, we’ll consider the case where Alice and Bob repeatedly play prisoner’s dilemma
for 1000 rounds. That is, for all t from 1 to 1000, Alice and Bob each choose to Cooperate or De-
fect. Based on their actions, they each receive some payoff according to the payoff matrix above.
When deciding which strategy to use in round t, Alice and Bob each know the entire history of
decisions made by the other player (and theirself) for the first t − 1 rounds. We’ll call this game
Repeated Prisoner’s Dilemma.

Observe that a complete strategy for Repeated Prisoner’s Dilemma must decide for all t, as a
function of the history from the first t− 1 rounds, which action to play in round t.

Part a: No Dominant Strategies (10 points)
Prove that neither Alice nor Bob has a weakly dominant strategy in Repeated Prisoner’s Dilemma.
See Lecture Game Theory I for a formal definition of weakly dominant strategies.

Hint: Make sure you’ve understood exactly what a strategy is for Repeated Prisoner’s Dilemma,
and what it would mean for that strategy to be dominant.

Part b: Iterated Deletion of Dominated Strategies (20 points)
Recall that iterated deletion of weakly dominated strategies repeatedly finds a strategy for some
player that is weakly dominated and deletes that strategy (possibly updating which strategies of the
other player are weakly dominated), and terminates when both players have no weakly dominated
strategies remaining. Recall also that this process is not well-defined, because it may terminate
differently depending on how you execute this process (i.e. how you choose which strategies to
delete). See Lecture Game Theory I for a formal definition of iterated deletion of weakly dominated
strategies.

Prove that there exists an execution of iterated deletion of weakly dominated strategies that ter-
minates with Alice and Bob each only having a single remaining strategy (and state that strategy).

Hint: Again, make sure you’ve understood exactly what a strategy is for Repeated Prisoner’s
Dilemma, and shown that every strategy (except the remaining one) must be deleted.

Part c: Tit-for-Tat (20 points)
Prove that if Alice plays the “Tit-for-Tat” strategy (defined below), then no matter what Bob does,
Bob’s total payoff after 1000 rounds is at least as large as Alice’s payoff after 1000 rounds.

Definition 1 (Tit-for-Tat). The Tit-for-Tat strategy plays Cooperate in round one. In any round
t > 1, it copies its opponent’s action from round t− 1.
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Problem 3: Noisy Cascades (60 points)
Recall the model of information cascades from Lecture Information Cascades: I have a bag con-
taining some number of colored balls. With probability 1/2 the bag contains 2 red balls and 1 blue
ball, and with probability 1/2 the bag contains 2 blue balls and 1 red ball. One by one, people
observe a ball randomly selected from the bag, and guess (based on this observation and all prior
guesses) whether the bag has more red balls or blue balls.

In this problem we’ll examine a variant of this game. Assume that all players are perfectly
rational and guess to maximize their probability of being correct, and know that all other players
are perfectly rational and are guessing to maximize their probability of being correct. If the player
ever believes that both cases are equally likely, assume that they tie-break to guess the color of their
own draw.

The difference between this problem and lecture is that each person’s guess is viewed noisily;
that is, with probability α, each player’s true guess is replaced by a uniformly random color before
it is announced to the other players (and everyone knows α, and everyone knows that everyone
knows α). But each player is aware of their own draw, without noise.

To be extra clear: if player one truly guesses blue, then this is turned into a viewed guess of
blue with probability 1 − α/2 and a viewed guess of red with probability α/2. The other players
witness this viewed guess (and it is the same viewed guess for all players that view it), and have no
other information about the true guess.

Note: Most parts of this problem involve non-trivial calculations. You should both “show your
work” for any non-trivial calculations, and also state in text why your calculations are correct (e.g.
if you apply Bayes’ rule, you should state which equality follows from Bayes’ rule. You do not
need to argue why your algebra/formula manipulation is correct).

Part a (10 points)
Assume that each of the first k players makes a true guess equal to their draw from the urn. Let
S = ⟨G1, . . . , Gk⟩ be an ordered sequence of viewed guesses, where each Gi is either red or blue,
and let exactly B of the k revealed guesses be blue, and R = k−B of the revealed guesses be red.
What is the probability, as a function of α, conditioned on the bag containing two red balls and one
blue ball, that you will observe exactly the sequence S of guesses?

Hint: First, try to compute the probability that a particular viewed guess Gi is red, conditioned on
the bag containing two red balls and one blue ball. As a sanity check, make sure your formula is
correct when α = 1 and α = 0.

Part b (10 points)
Assume that each of the first k players makes a true guess equal to their draw from the urn. Let
S = ⟨G1, . . . , Gk⟩ be an ordered sequence of viewed guesses, where each Gi is either red or blue,
and let exactly B of the k revealed guesses be blue, and R = k−B of the revealed guesses be red.
Imagine that you have seen exactly the sequence S of viewed guesses before you, and you yourself
draw a red ball from the urn. Conditioned on this, what is the probability, as a function of α, that
the bag contains two red balls and one blue ball?
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Hint: Use Bayes’ rule. Part a helps you find the probability of seeing S (plus you draw a red)
conditioned on there being two red balls and one blue ball.

Part c (15 points)
Assume that each of the first k players makes a true guess equal to their draw from the urn. As a
function of α, how many more red viewed guesses than blue viewed guesses (or vice versa) would
you have to see before you decide to ignore your own draw?

Use this to briefly argue that, for all α < 1, a cascade will eventually happen. Also briefly argue
that when α = 1, a cascade will never happen. This brief argument can be just a few sentences, and
is not expected to have any mathematical formality.

Hint: The math will be simpler if you try to argue that you believe it is more likely the urn is red
versus blue, rather than trying to argue that the probability that the urn is red is > 1/2.

Part d (10 points)
When α < 1, let S = ⟨G1, . . . , Gk⟩ be an ordered sequence of viewed guesses so that a red cascade
begins right after viewed guess k (that is, the (k + 1)st player will ignore their draw). Let S ′ be the
ordered sequence S, but with all reds and blues flipped (that is, all reds are now blue, and blues are
now reds).

As a function of α, what is Pr[S|two reds one blue]/Pr[S ′|two reds one blue]?

Part e (15 points)
When α < 1, as a function of α, what is the probability that the eventual cascade is correct?
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Extra Credit: Another Algorithm for Nash
Recall that extra credit is not directly added to your PSet scores, but will contribute to your partic-
ipation. Some extra credits are quite challenging. We do not suggest attempting the extra credit
problems for the sake of your grade, but only to engage deeper with the course material. If you are
interested in pursuing an IW/thesis in CS theory, the extra credits will give you a taste of what that
might be like.2

For this problem, you may collaborate with any students. You may not consult course resources
or external resources. In this problem we will guide you through the proof of a well-known result,
so you should not copy the proof from one of the course texts (nor should you try to find a proof
from external sources). You must follow the guide below (and not provide an alternative proof).

Consider any symmetric two-player game. That is, p1(x, y) = p2(y, x) for all x, y. Consider
also the following system of inequalities. We’ll refer to this as the Lemke-Howson Polytope.

• Variables x1, . . . , xn.

• (Non-negativity) xi ≥ 0 for all i.

• (Responsiveness)
∑

j xjp1(i, j) ≤ 1.

Part a
Say that an action i is covered in x⃗ if either the non-negativity constraint is tight (i.e. xi = 0) or
the Responsiveness constraint is tight (i.e.

∑
j xjp1(i, j) = 1), or both. Prove that if x⃗ is inside the

Lemke-Howson polytope, and x⃗ ̸= 0, and all actions i are covered in x⃗, then x⃗/|x⃗|1 is a symmetric
Nash equilibrium (that is, x⃗/|x⃗|1 is a best response to itself).

Part b
For this part, you should assume that any set of n equations taken above have a solution, and that
this solution is unique.

The Lemke-Howson algorithm starts from the point 0⃗ and repeatedly pivots. That is, the current
point will always have exactly n tight constraints. The pivot will pick one of these constraints and
“relax” it (keeping the other n − 1 tight). A new constraint will become tight, and this will be the
new point (you do not need to prove that this procedure is well-defined).

From 0⃗, the pivot rule simply picks an arbitrary tight constraint to relax (let’s say x1 = 0). This
causes a new constraint to become tight. If it’s the 1st Responsiveness constraint, then by Part a
we’ve found a Nash and are done! If not, then we have exactly one double-covered action. That is,
there is some action i such that the non-negativity and Responsiveness constraints are both tight.
We pick the non-negativity constraint for i to relax next.

In general, for our current point x⃗ ̸= 0⃗, if there is no double-covered action we terminate (and
hope that it’s a Nash and not back at 0⃗). If there’s a double-covered action, it’s because we just
made one of the constraints for i tight. So relax the other one and continue.

Prove that the Lemke-Howson algorithm will never revisit a vertex y⃗ without first revisiting
the origin. You may use without proof the fact that if z⃗ pivots to w⃗ when constraint C is relaxed,

2Keep in mind, of course, that you will do an IW/thesis across an entire semester/year, and you are doing the extra
credit in a week. Whether or not you make progress on the extra credit in a week is not the important part — it’s
whether or not you enjoy the process of tackling an extremely open-ended problem with little idea of where to get
started.
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causing constraint D to become tight, then w⃗ pivots to z⃗ when constraint D is relaxed, causing
constraint C to become tight.

Part c
Prove that the Lemke-Howson algorithm cannot ever return to 0⃗. Conclude that the Lemke-Howson
algorithm finds a Nash after at most

(
2n
n

)
pivots.

Hint: You may want to prove that the algorithm terminates as soon as 1 becomes covered.
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