
March 2025

Raft

Raft
Leader Election

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

(log entries here)

0 0
-1
0
0
[]
[]

currentTerm latest term server has seen

votedFor candidate ID that received vote in current term,
or -1 if none

commitIndex index of highest log entry known to be committed

lastApplied index of highest log entry applied to state machine

nextIndex for each server, index of the next log entry to send
to that server

matchIndex for each server, index of highest log entry known to
be replicated on the server

(Only on leader)
Logs are 1-indexed

currentTerm
votedFor

<empty>

0 0
-1

currentTerm latest term server has seen

votedFor candidate ID that received vote in current term,
or -1 if none

State required for election

Everyone sets a randomized timer that expires in [T, 2T] (e.g. T = 150ms)

When timer expires, increment term and send a RequestVote to everyone

Retry this until either:

You get majority of votes (including yourself): become leader

You receive an RPC from a valid leader: become follower again

Recap: Leader Election

Scenario 1: During System Bootup

currentTerm
votedFor

<empty>

0 0
-1

currentTerm
votedFor

<empty>

1 0
-1

currentTerm
votedFor

<empty>

2 0
-1

Timeout

currentTerm
votedFor

<empty>

0 1
0

currentTerm
votedFor

<empty>

1 0
-1

currentTerm
votedFor

<empty>

2 0
-1

RequestVote
Term: 1
CandidateID: 0
LastLogIndex: -1
LastLogTerm: -1

currentTerm
votedFor

<empty>

0 1
0

currentTerm
votedFor

<empty>

1 1
0

currentTerm
votedFor

<empty>

2 1
0

RequestVoteReply
Term: 1
VoteGranted: true

currentTerm
votedFor

<empty>

0 1
0

currentTerm
votedFor

<empty>

1 1
0

currentTerm
votedFor

<empty>

2 1
0

Scenario 2: During Normal Execution
(suppose there are existing log entries…)

currentTerm
votedFor

0 3
1

currentTerm
votedFor

1 3
1

currentTerm
votedFor

2 3
1

1 1 1 2 3

1 1 1 2 3 1 1 1 2 3

Timeout

currentTerm
votedFor

0 4
0

currentTerm
votedFor

1 3
1

currentTerm
votedFor

2 3
1

1 1 1 2 3

1 1 1 2 3 1 1 1 2 3

RequestVote
Term: 4
CandidateID: 0
LastLogIndex: 5
LastLogTerm: 3

currentTerm
votedFor

0 4
0

currentTerm
votedFor

1 4
0

currentTerm
votedFor

2 4
0

1 1 1 2 3

1 1 1 2 3 1 1 1 2 3

RequestVoteReply
Term: 4
VoteGranted: True

currentTerm
votedFor

0 4
0

currentTerm
votedFor

1 4
0

currentTerm
votedFor

2 4
0

1 1 1 2 3

1 1 1 2 3 1 1 1 2 3

1. We did not vote for anyone else in this term

2. Candidate term must be >= ours

3. Candidate log is at least as up-to-date as ours

a. The log with higher term in the last entry is more up-to-date

b. If the last entry terms are the same, then the longer log is more up-to-date

Conditions for granting vote

Which one is more up-to-date?

1 1 1 2 3

1 1 1 1 1 1 1

Which one is more up-to-date?

1 1 1 2 3

1 1 1 2 3 3 3

Which one is more up-to-date?

1 1 1 2 3

1 1 4

Why reject logs that are not up-to-date?
Leader log is always the ground truth

Once someone is elected leader, followers must throw away conflicting entries

Must NOT throw away committed entries!

Note: Log doesn’t need to be the MOST up-to-date among all servers

What if we accept logs that are not as
up-to-date as ours?

1 1 1 2 3

1 1 1

1 1 1 2 3

S0

S1

S2

1 1 1 1 1 1

S3

S4

1 1 1

2 3

Suppose entries 4-5 have
already been committed

4 52 31

Then previous leader S0
crashes and S3 times out

If S3 becomes leader then
committed entries 4 and 5

may be overwritten!

1 1 1 2 3

1 1 1

1 1 1 2 3

S0

S1

S2

1 1 1 1 1 1

S3

S4

1 1 1

2 3

4 52 31 Why is it OK to throw
away these entries?

If these entries had
been committed, then it
means they must exist
on a majority of servers

In that case S4 could
receive votes from the

same majority and
become a valid leader

1 1 1 2 3

1 1 1

1 1 1 2 3

S0

S1

S2

1 1 1

S3

S4

1 1 1

2 3

4 52 31

2 3

2 3

Raft
Normal Operation

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

<empty>

0 0
-1
0
0
[]
[]

currentTerm latest term server has seen

votedFor candidate ID that received vote in current term,
or -1 if none

commitIndex index of highest log entry known to be committed

lastApplied index of highest log entry applied to state machine

nextIndex for each server, index of the next log entry to send
to that server

matchIndex for each server, index of highest log entry known to
be replicated on the server

(Only on leader)
Logs are 1-indexed

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

<empty>

0 0
-1
0
0
[]
[]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

<empty>

1 0
-1
0
0
[]
[]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

<empty>

2 0
-1
0
0
[]
[]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

<empty>

0 1
0
0
0
[1, 1, 1]
[0, 0, 0]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

<empty>

1 1
0
0
0
[]
[]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

<empty>

2 1
0
0
0
[]
[]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

<empty>

0 1
0
0
0
[1, 1, 1]
[0, 0, 0]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

<empty>

1 1
0
0
0
[]
[]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

<empty>

2 1
0
0
0
[]
[]

AppendEntries
Term: 1
LeaderID: 0
PrevLogIndex: 0
PrevLogTerm: -1
LeaderCommit: 0

AppendEntries
Term: 1
LeaderID: 0
PrevLogIndex: 0
PrevLogTerm: -1
LeaderCommit: 0

AppendEntriesReply
Term: 1
Success: True

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

<empty>

0 1
0
0
0
[1, 1, 1]
[0, 0, 0]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

<empty>

1 1
0
0
0
[]
[]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

<empty>

2 1
0
0
0
[]
[]

AppendEntriesReply
Term: 1
Success: True

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

<empty>

0 1
0
0
0
[1, 1, 1]
[0, 0, 0]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

<empty>

1 1
0
0
0
[]
[]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

<empty>

2 1
0
0
0
[]
[]

Client
Request 1

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

0 1
0
0
0
[1, 1, 1]
[0, 0, 0]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

<empty>

1 1
0
0
0
[]
[]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

<empty>

2 1
0
0
0
[]
[]

1 1 1

Client
Request 1

Request 2

Request 3

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

0 1
0
0
0
[4, 1, 1]
[3, 0, 0]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

<empty>

1 1
0
0
0
[]
[]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

<empty>

2 1
0
0
0
[]
[]

1 1 1

AppendEntries
Term: 1
LeaderID: 0
PrevLogIndex: 0
PrevLogTerm: -1
LeaderCommit: 0

1 1 1

AppendEntries
Term: 1
LeaderID: 0
PrevLogIndex: 0
PrevLogTerm: -1
LeaderCommit: 0

1 1 1

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

0 1
0
0
0
[4, 1, 1]
[3, 0, 0]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

1 1
0
0
0
[]
[]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

2 1
0
0
0
[]
[]

1 1 1
1 1 1

1 1 1

AppendEntriesReply
Term: 1
Success: True

AppendEntriesReply
Term: 1
Success: True

while commitIndex > lastApplied,
apply commands to state machine

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

0 1
0
3
0
[4, 4, 4]
[3, 3, 3]

1 1 1

Entry 3 is now replicated on a
majority, so we can commit it

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

0 1
0
3
3
[4, 4, 4]
[3, 3, 3]

1 1 1

Once leader has applied
an entry to state machine,
it is safe to tell the client

that the entry is committed

Client
Response 1 2 3

Raft
After new leader election

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

0 1
0
3
3
[4, 4, 4]
[3, 3, 3]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

1 1
0
0
0
[]
[]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

2 1
0
0
0
[]
[]

1 1 1
1 1 1

1 1 1

Timeout

Partition!

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

0 1
0
3
3
[4, 4, 4]
[3, 3, 3]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

1 2
1
0
0
[4, 4, 4]
[0, 3, 0]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

2 2
1
0
0
[]
[]

1 1 1
1 1 1

1 1 1

 2
 1
 3
 1
 0

AppendEntries
Term:
LeaderID:
PrevLogIndex:
PrevLogTerm:
LeaderCommit:

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

0 1
0
3
3
[4, 4, 4]
[3, 3, 3]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

1 2
1
0
0
[4, 4, 4]
[0, 3, 0]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

2 2
1
0
0
[]
[]

1 1 1
1 1 1

1 1 1

AppendEntriesReply
Term: 2
Success: True

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

0 1
0
3
3
[4, 4, 4]
[3, 3, 3]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

1 2
1
3
3
[4, 4, 4]
[0, 3, 3]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

2 2
1
0
0
[]
[]

1 1 1
1 1 1

1 1 1

AppendEntries
Term: 2
LeaderID: 1
PrevLogIndex: 3
PrevLogTerm: 1
LeaderCommit: 3

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

0 1
0
3
3
[4, 4, 4]
[3, 3, 3]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

1 2
1
3
3
[4, 4, 4]
[0, 3, 3]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

2 2
1
3
3
[]
[]

1 1 1
1 1 1

1 1 1

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

0 1
0
3
3
[4, 4, 4]
[3, 3, 3]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

1 2
1
5
5
[4, 6, 6]
[0, 5, 5]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

2 2
1
5
5
[]
[]

1 1 1
1 1 1

1 1 1

2

2 2

2

Committing entries
in the new term...

Later, the network partition is fixed …

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

0 1
0
3
3
[4, 4, 4]
[3, 3, 3]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

1 2
1
5
5
[4, 6, 6]
[0, 5, 5]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

2 2
1
5
5
[]
[]

1 1 1
1 1 1

1 1 1

2

2 2

2

AppendEntries
Term: 1
LeaderID: 0
PrevLogIndex: 3
PrevLogTerm: 1
LeaderCommit: 3

AppendEntries
Term: 1
LeaderID: 0
PrevLogIndex: 3
PrevLogTerm: 1
LeaderCommit: 3

AppendEntriesReply
Term: 2
Success: false

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

0 1
0
3
3
[4, 4, 4]
[3, 3, 3]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

1 2
1
5
5
[4, 6, 6]
[0, 5, 5]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

2 2
1
5
5
[]
[]

1 1 1
1 1 1

1 1 1

2

2 2

2

AppendEntriesReply
Term: 2
Success: false

Rejected request
because local term

is higher (2 > 1)

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

0 2
-1
3
3
[]
[]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

1 2
1
5
5
[4, 6, 6]
[0, 5, 5]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

2 2
1
5
5
[]
[]

1 1 1
1 1 1

1 1 1

2

2 2

2

Old leader is dethroned!

AppendEntries
Term: 2
LeaderID: 1
PrevLogIndex: 3
PrevLogTerm: 1
LeaderCommit: 5

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

0 2
-1
3
3
[]
[]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

1 2
1
5
5
[4, 6, 6]
[0, 5, 5]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

2 2
1
5
5
[]
[]

1 1 1
1 1 1

1 1 1

2

2 2

2

2 2

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

0 2
-1
5
5
[]
[]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

1 2
1
5
5
[4, 6, 6]
[0, 5, 5]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

2 2
1
5
5
[]
[]

1 1 1
1 1 1

1 1 1

2

2 2

2

AppendEntriesReply
Term: 2
Success: true

2 2

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

0 2
-1
5
5
[]
[]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

1 2
1
5
5
[6, 6, 6]
[5, 5, 5]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

2 2
1
5
5
[]
[]

1 1 1
1 1 1

1 1 1

2

2 2

2
2 2

Everyone is on the
same page again

When log entries don’t match...

When log entries don’t match...

● The leader will find the latest log entry in the follower where the
two logs agree

● At the follower:
○ Everything after that entry will be deleted
○ The leader’s log starting from that entry will be replicated on

the follower

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

0 5
1
5
5
[]
[]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

1 5
1
5
5
[6, 6, 6]
[5, 5, 0]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

2 3
2
3
3
[]
[]

1 1 1
1 1 1

1 1 1

3 4

2 2 2

3 4

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

0 5
1
5
5
[]
[]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

1 5
1
5
5
[6, 6, 6]
[5, 5, 0]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

2 3
2
3
3
[]
[]

AppendEntries
Term: 5
LeaderID: 1
PrevLogIndex: 5
PrevLogTerm: 4
LeaderCommit: 5

prevLogIndex = 5
S1 log[5] = 4
S2 log[5] = 2

Mismatch!

1 1 1
1 1 1 3 4

3 4

1 1 1 2 2 2

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

0 5
1
5
5
[]
[]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

1 5
1
5
5
[6, 6, 6]
[5, 5, 0]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

2 5
-1
3
3
[]
[]

AppendEntriesReply
Term: 5
Success: False

1 1 1
1 1 1 3 4

3 4

1 1 1 2 2 2

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

0 5
1
5
5
[]
[]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

1 5
1
5
5
[6, 6, 5]
[5, 5, 0]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

2 5
-1
3
3
[]
[]

AppendEntries
Term: 5
LeaderID: 1
PrevLogIndex: 4
PrevLogTerm: 3
LeaderCommit: 5

4

prevLogIndex = 4
S1 log[4] = 3
S2 log[4] = 2

Mismatch!

1 1 1
1 1 1 3 4

3 4

1 1 1 2 2 2

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

0 5
1
5
5
[]
[]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

1 5
1
5
5
[6, 6, 5]
[5, 5, 0]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

2 5
-1
3
3
[]
[]

AppendEntriesReply
Term: 5
Success: False

1 1 1
1 1 1 3 4

3 4

1 1 1 2 2 2

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

0 5
1
5
5
[]
[]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

1 5
1
5
5
[6, 6, 4]
[5, 5, 0]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

2 5
-1
3
3
[]
[]

AppendEntries
Term: 5
LeaderID: 1
PrevLogIndex: 3
PrevLogTerm: 1
LeaderCommit: 5

3 4

prevLogIndex = 3
S1 log[3] = 1
S2 log[3] = 1

Match!

1 1 1
1 1 1 3 4

3 4

1 1 1 2 2 2

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

0 5
1
5
5
[]
[]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

1 5
1
5
5
[6, 6, 4]
[5, 5, 0]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

2 5
-1
5
5
[]
[]

AppendEntriesReply
Term: 5
Success: True

1 1 1
1 1 1 3 4

3 4

1 1 1 2 2 2

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

0 5
1
5
5
[]
[]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

1 5
1
5
5
[6, 6, 6]
[5, 5, 5]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

2 5
-1
5
5
[]
[]

Everyone is on the
same page again

1 1 1
1 1 1 3 4

3 4

1 1 1 3 4

Optimization to reduce
number of messages?

Key Idea
● Reduce the number of rejected AppendEntries RPCs
● One RPC per conflicting term, rather than one RPC per conflicting entry

Detailed Algorithm:
● When rejecting an AppendEntries request, the follower can include the term

of the conflicting entry and the first index it stores for that term.
● With this information, the leader can decrement nextIndex to bypass all of the

conflicting entries in that term.
● See page 7-8 in Raft (extended version)

https://raft.github.io/raft.pdf

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

0 5
1
5
5
[]
[]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

1 5
1
5
5
[6, 6, 6]
[5, 5, 0]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

2 3
2
3
3
[]
[]

1 1 1
1 1 1 3 4

3 4

AppendEntries
Term: 5
LeaderID: 1
PrevLogIndex: 5
PrevLogTerm: 4
LeaderCommit: 5

1 1 1 2 2 2

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

0 5
1
5
5
[]
[]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

1 5
1
5
5
[6, 6, 6]
[5, 5, 0]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

2 5
-1
3
3
[]
[]

AppendEntriesReply
Term: 5
Success: False
ConflictTerm: 2
ConflictFirstIndex: 4Specify the term of the

conflicting term and the
first index of this term

1 1 1
1 1 1 3 4

3 4

1 1 1 2 2 2

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

0 5
1
5
5
[]
[]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

1 5
1
5
5
[6, 6, 4]
[5, 5, 0]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

2 5
-1
3
3
[]
[]

AppendEntries
Term: 5
LeaderID: 1
PrevLogIndex: 3
PrevLogTerm: 1
LeaderCommit: 5

3 4

1 1 1
1 1 1 3 4

3 4

1 1 1 2 2 2

Leader sends its log
entries that are different

from the follower’s
starting the specified

conflicting term

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

0 5
1
5
5
[]
[]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

1 5
1
5
5
[6, 6, 6]
[5, 5, 5]

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

2 5
-1
5
5
[]
[]

Key Idea:
Decrement nextIndex

one term at a time

1 1 1
1 1 1 3 4

3 4

1 1 1 3 4

1. The entry exists on a majority AND it is written in the current term

2. The entry precedes another entry that is committed

Conditions for committing an entry

Caveat for committing old entries

S1 is the leader

S1.log[2] is only
partially
replicated...

Can’t assume an old entry has been committed even if it exists on a majority

Caveat for committing old entries
Can’t assume an old entry has been committed even if it exists on a majority

S1 crashes,
S5 becomes leader

Caveat for committing old entries

S5 crashes,
S1 becomes leader

S1.log[2] is now
replicated to a
majority

Can’t assume an old entry has been committed even if it exists on a majority

Caveat for committing old entries

S1 crashes,
S5 becomes leader

S5 replicates
S5.log[2] to all other
nodes...

Can’t assume an old entry has been committed even if it exists on a majority

Caveat for committing old entries

Entry 2 was overwritten
even though it was

replicated on a majority!

Cannot assume entry 2
was committed

Can’t assume an old entry has been committed even if it exists on a majority

Caveat for committing old entries

Entry 2 is committed once
entry 3 is committed

Commit old entries
indirectly

S1 commits entry 3

Can’t assume an old entry has been committed even if it exists on a majority

Exercise...

Exercise...
Rules for deciding which log is more up-to-date:
● Compare index and term of last entries in the logs
● If the terms are different: log with later term is more

up-to-date
● If the terms are the same: longer log is more up-to-date

Q1: Is this a possible configuration?

1 1 2 3

1 1

1 1 2 3

S0

S1

S2

1 1 1 1 1

S3

S4

1 1

2 3

4 52 31

Trace the steps...

1

1

1

S0

S1

S2

1

S3

S4

1

1

1 1 2 3

1 1

1 1 2 3

S0

S1

S2

1 1 1 1 1

S3

S4

1 1

2 3

4 52 31

Trace the steps...

1

1

1

S0

S1

S2

1

S3

S4

1

1

1 1 2 3

1 1

1 1 2 3

S0

S1

S2

1 1 1 1 1

S3

S4

1 1

2 3

4 52 31

1

1

1

1

1

2

Trace the steps...

1

1

1

S0

S1

S2

1

S3

S4

1

1

1 1 2 3

1 1

1 1 2 3

S0

S1

S2

1 1 1 1 1

S3

S4

1 1

2 3

4 52 31

1

1

1

1

1

2

1 1 1

Trace the steps...

1

1

1

S0

S1

S2

1

S3

S4

1

1

1 1 2 3

1 1

1 1 2 3

S0

S1

S2

1 1 1 1 1

S3

S4

1 1

2 3

4 52 31

1

1

1

1

1

2

1 1 1

Trace the steps...

1

1

1

S0

S1

S2

1

S3

S4

1

1

1 1 2 3

1 1

1 1 2 3

S0

S1

S2

1 1 1 1 1

S3

S4

1 1

2 3

4 52 31

1

1

1

1

1

2

1 1 1

2

2

2

Trace the steps...

1

1

1

S0

S1

S2

1

S3

S4

1

1

1 1 2 3

1 1

1 1 2 3

S0

S1

S2

1 1 1 1 1

S3

S4

1 1

2 3

4 52 31

1

1

1

1

1

2

1 1 1

2

2

2

Trace the steps...

1

1

1

S0

S1

S2

1

S3

S4

1

1

1 1 2 3

1 1

1 1 2 3

S0

S1

S2

1 1 1 1 1

S3

S4

1 1

2 3

4 52 31

1

1

1

1

1

2

1 1 1

2

2

2

Trace the steps...

1

1

1

S0

S1

S2

1

S3

S4

1

1

1 1 2 3

1 1

1 1 2 3

S0

S1

S2

1 1 1 1 1

S3

S4

1 1

2 3

4 52 31

1

1

1

1

1

2

1 1 1

2

2

2

3

3

3

Q2: Is this a possible configuration?

1 1 2 3

1 1

1 1 2 3

S0

S1

S2

1 1 1 1 1

S3

S4

1 1

2 3

4 52 31

4

S3 cannot become leader in term 4
(Who’s going to vote for him?)

NO!

Q3: Is this a possible configuration?

1 1 5 6

1 1

1 1 5 6

S0

S1

S2

1 1 1 1 1

S3

S4

1 1

5 6

4 52 31

4

What happened to terms 2 and 3?

Yes

1. Split vote: no one became leader
2. Partitions: no one became leader
3. Simply no requests in these terms

Q4: Is this a possible configuration?

1 1

1 1

1 1

S0

S1

S2

42 31

3

31 NO!
Let’s try tracing the steps...

Q4: Is this a possible configuration?

1 1

1 1

1 1

S0

S1

S2

42 31

1

1 1

1 1

1 1

S0

S1

S2

42 31

3

31

Q4: Is this a possible configuration?

1 1

1 1

1 1

S0

S1

S2

42 31

1

1 1

1 1

1 1

S0

S1

S2

42 31

3

31

No one becomes leader in term 2...

Q4: Is this a possible configuration?

1 1

1 1

1 1

S0

S1

S2

42 31

1

1 1

1 1

1 1

S0

S1

S2

42 31

3

31

3

Q4: Is this a possible configuration?

1 1

1 1

1 1

S0

S1

S2

42 31

1

1 1

1 1

1 1

S0

S1

S2

42 31

3

31

3

Q4: Is this a possible configuration?

1 1

1 1

1 1

S0

S1

S2

42 31

1

1 1

1 1

1 1

S0

S1

S2

42 31

3

31

3

S0 previously voted for S2 in term 3
S0 can only vote for S1 for term 4!

4

Q4: Is this a possible configuration?

1 1

1 1

1 1

S0

S1

S2

42 31

3

31

The two entries in term are in
different positions

S1 and S2 could not have written
these entries without being leaders

3

But they can’t both be leaders in
the same term!

Q5: Is entry 2 (term 2) guaranteed to be committed?

1

1

1

S0

S1

S2

21

2

2

S3

S4 1

1

Entry 2 is on a majority of nodes

No one else has a more up-to-date log

Yes!

2

Q6: Is entry 3 (term 2) guaranteed to be committed?

1

1

1

S0

S1

S2

21

S3

S4 1

1

S3 could become leader if S0 crashes

Entry 3 is an entry from an old term
(See Figure 8 in Raft paper)

NO!
3

2

2

2

3

1

1

1

Q7: Is entry 3 (term 2) guaranteed to be committed?

1

1

1

S0

S1

S2

21

S3

S4 1

1

S3 could still become leader if S0 crashes
(votes from S2, S3 and S4)

NO!
3

2

2

2

3

1

1

1

4
4

4

Q8: Is entry 3 (term 2) guaranteed to be committed?

1

1

1

S0

S1

S2

21

S3

S4 1

1

Entry 4 is guaranteed to be committed
because no one else has a more

up-to-date log

All entries before entry 4 are safe

Yes!
3

2

2

2

3

1

1

1

4
4

4

21 4

