
1

AI Systems:
Building GenAI workflows

COS 418/518: Distributed Systems
Lecture 21

Mike Freedman, Wyatt Lloyd

1

• Large language models (ChatGPT, Claude, Llama, etc.) are here

• Today’s topic: How can we use them when building systems?

• What we are NOT covering:

– How LLMs work: model architecture, training, serving

– See COS 485, COS 568

2

Today’s lecture

2

• Foundational models

• Fine-tuning vs. contextual learning

• Retrieval-Augmented Generation (RAG)

• Vector Search on embeddings

• Model Context Protocol (MCP)

• Deploying models behind APIs

3

Outline

3

• AI models that generate new content (text, images, code, etc.) from learned
probability distributions. Try to produce new samples (e.g., what’s the next
word/token) given input and model.

• Difference from traditional discriminative models (e.g., classifiers, which try to classify
inputs to existing samples.

• Examples:
– Text generation: GPT family (next-token prediction via transformers).
– Image synthesis: GANs, diffusion models (denoising data step-by-step).
– Code generation: GitHub Copilot (autoregressive models trained on code repositories).

• Underlying techniques:
– Neural networks, especially transformers
– Trained on massive datasets

4

What is Generative AI?

4

2

• Versatile and basis for many GenAI systems

• Large, general-purpose models trained on broad data (today, often ”transformer based”)

• Examples: GPT (OpenAI), LLaMA (Meta), Claude (Anthropic), Gemini (Google)

• Characteristics:

• Billions of parameters (GPT-3: 175B parameters, GPT-4 even larger).

• Training today requires large-scale distributed computing, GPU clusters, and large-scale
optimization techniques.

5

What are Foundational Models?

5

Fine-tuning
• Additional training on specialized data to

produce a new version of the model

• Produces a new version of the model

• Take foundation model's weights as initial.

• Train (typ. supervised learning) on task-specific
labeled datasets with smaller learning rates.

• Result: Model's weights adjusted to capture
new data, altering internal representations.

• Pros: High accuracy, task-specific knowledge

• Cons: Expensive, slower, risk of forgetting

6

Improving foundational models for use case
Contextual learning
• Provide additional information directly in

the input prompt (prompt engineering).

• Doesn't change model weights; uses
original model at inference.

• Examples of context:

• Recent thread of discussion between
user and model

• “Few-shot” learning with several labelled
examples.

• Pros: much more flexible at run-time

• Cons: limited context

6

7

Examples of contextual learning

7
8

Few-shot prompting

• LLM is given a few examples of input-output
pairs to help guide behavior for a specific task.

• Useful when you want the model to generalize
from a small number of demonstrations rather
than rely only on task descriptions.

8

3

9

Few-shot: Text Classification
• Classify the following movie reviews as Positive or Negative.

• Review: "I loved the story and the acting was superb!"
• Sentiment: Positive

• Review: "The plot was predictable and the characters were flat."
• Sentiment: Negative

• Review: "It was a fun and engaging experience with brilliant visuals."
• Sentiment:

9
10

Few-shot: Named Entity Recognition (NER)
• Extract the names of people, locations, and organizations.

• Text: "Barack Obama was born in Hawaii and was president of the United States."
• Entities: Person: Barack Obama; Location: Hawaii; Organization: United States

• Text: "Sundar Pichai is the CEO of Google, which is based in Mountain View."
• Entities:

10

11

Few-shot prompting

• Write a blog post in the style of Mike Freedman, describing X.

• Examples: <Two recent blog posts>

11
12

What if your context is really large?

• Examples:
– Software repository with 1M lines of source code
– 100s of pages of technical documentation
– Internal corporate knowledge base / intranet

• Enter Retrieval-Augmented Generation (RAG)…

12

4

RAG = Embedding + Vector Search + LLM
Pipeline:

Technical Pipeline:
1. User query converted to embedding vector.
2. Embedding used for semantic vector search to retrieve relevant documents (context retrieval step).
3. Retrieved documents included in prompt, feeding into generative model (LLM).

4. Generative model outputs response conditioned explicitly on retrieved context.
Advantages:
• Reduces hallucination by grounding responses in actual retrieved data.
• Combines the strengths of embeddings (semantic accuracy) and generative models (expressiveness).

Example Tech Stack:
• Embedding model (Sentence-BERT, OpenAI embeddings).
• Vector DB (FAISS, Pinecone).

• LLM (GPT-4 or similar models).

13

Retrieval-Augmented Generation (RAG)

Data
Set

Model

2. Search
Query:
Input

3. Top-K
Results:
Context

4. Prompt:
Input, Context

5. Generated
Answer1. Input

13

RAG = Embedding + Vector Search + LLM
Pipeline:

Technical Pipeline:
1. User query converted to embedding vector.
2. Embedding used for semantic vector search to retrieve relevant documents (context retrieval step).
3. Retrieved documents included in prompt, feeding into generative model (LLM).

4. Generative model outputs response conditioned explicitly on retrieved context.
Advantages:
• Reduces hallucination by grounding responses in actual retrieved data.
• Combines the strengths of embeddings (semantic accuracy) and generative models (expressiveness).

Example Tech Stack:
• Embedding model (Sentence-BERT, OpenAI embeddings).
• Vector DB (FAISS, Pinecone).

• LLM (GPT-4 or similar models).

14

How to “search” in RAG?

• Traditional “keyword search” bad for semantic meaning
– “User” and “person” don’t match in keyword search, but mean similar things in English

• Semantic search
– Concept: Search by meaning, not exact match
– But how to find nearest items in “semantic space”?

14

• Method to find similar items (text, images, audio) by comparing mathematical
representation of items – called embeddings or vectors – in high-dimension space

• Problem: Given a set of vectors D and an input vector I, find some k vectors in D that are
nearest to I according to a distance metric
– Common distance metrics: cosine similarity, Euclidean distance in high-dimensional space
– Anywhere from 100s of vector embeddings to billions of embeddings

• This is basically a search or indexing problem to find the top-k vectors:
– IVFFlat (InVerted File Flat)
– HNSW (Hierarchical Navigable Small World Graph)
– DiskANN (Disk-based Approximate Nearest Neighbor)

• Vector DBs: Pinecone, Qdrant, Weaviate, Postgres pgvector, Timescale pgvectorscale
15

Vector Search on Embeddings

15
16

Ex: Hierarchical Navigable Small World Graph

Conceptual idea: Skip List

16

5

17

Ex: Hierarchical Navigable Small World Graph

Conceptual idea: Navigable Small World

17
18

Ex: Hierarchical Navigable Small World Graph

Hierarchical Navigable Small World

18

19

Ex: Hierarchical Navigable Small World Graph

Hierarchical Navigable Small World

19

Vector index creation:
• Take input set of documents.

• For each input document:
• Divide document into text chunks

• For each chunk, use embedding
model to compute vector
embedding

• Insert vector embedding into
database

• Create mapping from vector
embedding to text chunk

• Build a vector index on embeddings

20

Vector Search on Embeddings

Vector Search:
• Given input query

• Use embedding model to
compute vector embedding of
input query

• Perform vector search to find
top-k embeddings closest to
input embedding

• Lookup text chunk associated
with each top-k embedding

• Return top-k text chunks

20

6

RAG = Embedding + Vector Search + LLM
Pipeline:

Technical Pipeline:
1. User query converted to embedding vector.
2. Embedding used for semantic vector search to retrieve relevant documents (context retrieval step).
3. Retrieved documents included in prompt, feeding into generative model (LLM).

4. Generative model outputs response conditioned explicitly on retrieved context.
Advantages:
• Reduces hallucination by grounding responses in actual retrieved data.
• Combines the strengths of embeddings (semantic accuracy) and generative models (expressiveness).

Example Tech Stack:
• Embedding model (Sentence-BERT, OpenAI embeddings).
• Vector DB (FAISS, Pinecone).

• LLM (GPT-4 or similar models).

21

Retrieval-Augmented Generation (RAG)

Vector
DB

Model
1. Input

2a. Search
Query:
Input

3b. Top-K
Results:
Context

4. Prompt:
Input, Context

5. Generated
Answer

Model
2b. Search

Query:
Embedding

3a. Top-K
Embeddings

21

• Generalize notion of “getting context” for our model?
– In Nov 2024, Anthropic released MCP, a protocol for structuring how applications and

tools can provide context to LLMs.
– Think of MCPs as the “APIs” for LLMs

22

Model-Context Protocol (MCP)

• What do MCP servers expose?

– Resources: File-like data that can be read by clients
(like API responses or file contents)

– Tools: Functions that can be called by the LLM
(with user approval)

– Prompts: Pre-written templates that help users
accomplish specific tasks

22

23

Model-Context Protocol (MCP)

23
24

Model-Context Protocol (MCP)

24

7

25

Example MCP: Neon Database Server

Example: Tool Discovery

25
26

Example MCP: Neon Database Server

26

27

Deploying models behind APIs

Model
Model

Model
Model

API endpoint

• Models have significant latency, may get overwhelmed, may fail.

• API endpoint:
– Manage large numbers of open connections with streaming
– Connection rate limiting to create client back-pressure, avoid overload
– Implement priority queuing between many clients

• Client endpoint:
– Request timeouts and retry logic from errors
– (Exponential) backoff from rate limiting

• Common needs
– Chained tool calling require ordering / sequence numbers
– Tool calling without idempotency may require transaction numbers

• Similar problems as many RPC systems!

Client

27

• We’re in the “Cambrian Era” of GenAI models and systems

• Every 3 months is something new; industry and tools are rapidly
changing and evolving.

• One fundamental difference:

– For past 50 years, our computer systems are heavily deterministic. We
rely on that determinism.

– GenAI systems (and the inputs to them) are inherently non-deterministic.
Natural language is not precise. Still figuring out how to build “robust”
systems in face of such non-determinism / imprecision.

28

Conclusions

28

8

29

29

