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AI Systems:
Building GenAI workflows
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Mike Freedman, Wyatt Lloyd
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• Large language models (ChatGPT, Claude, Llama, etc.) are here

• Today’s topic:  How can we use them when building systems?

• What we are NOT covering:

– How LLMs work:  model architecture, training, serving

– See COS 485, COS 568
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Today’s lecture
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• Foundational models

• Fine-tuning vs. contextual learning

• Retrieval-Augmented Generation (RAG)

• Vector Search on embeddings

• Model Context Protocol (MCP)

• Deploying models behind APIs
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Outline
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• AI models that generate new content (text, images, code, etc.) from learned 
probability distributions.  Try to produce new samples (e.g., what’s the next 
word/token) given input and model.

• Difference from traditional discriminative models (e.g., classifiers, which try to classify 
inputs to existing samples.

• Examples:
– Text generation: GPT family (next-token prediction via transformers).
– Image synthesis: GANs, diffusion models (denoising data step-by-step).
– Code generation: GitHub Copilot (autoregressive models trained on code repositories).

• Underlying techniques:
– Neural networks, especially transformers
– Trained on massive datasets
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What is Generative AI?
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• Versatile and basis for many GenAI systems

• Large, general-purpose models trained on broad data (today, often ”transformer based”)

• Examples: GPT (OpenAI), LLaMA (Meta), Claude (Anthropic), Gemini (Google)

• Characteristics:

• Billions of parameters (GPT-3: 175B parameters, GPT-4 even larger).

• Training today requires large-scale distributed computing, GPU clusters, and large-scale 
optimization techniques.
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What are Foundational Models? 
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Fine-tuning
• Additional training on specialized data to 

produce a new version of the model

• Produces a new version of the model

• Take foundation model's weights as initial.

• Train (typ. supervised learning) on task-specific 
labeled datasets with smaller learning rates.

• Result: Model's weights adjusted to capture 
new data, altering internal representations.

• Pros: High accuracy, task-specific knowledge

• Cons: Expensive, slower, risk of forgetting
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Improving foundational models for use case
Contextual learning
• Provide additional information directly in 

the input prompt (prompt engineering).

• Doesn't change model weights; uses 
original model at inference.

• Examples of context:

• Recent thread of discussion between 
user and model

• “Few-shot” learning with several labelled 
examples. 

• Pros: much more flexible at run-time

• Cons: limited context
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Examples of contextual learning 
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Few-shot prompting

• LLM is given a few examples of input-output 
pairs to help guide behavior for a specific task. 

• Useful when you want the model to generalize 
from a small number of demonstrations rather 
than rely only on task descriptions.
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Few-shot:  Text Classification
• Classify the following movie reviews as Positive or Negative.

• Review: "I loved the story and the acting was superb!"  
• Sentiment: Positive

• Review: "The plot was predictable and the characters were flat."  
• Sentiment: Negative

• Review: "It was a fun and engaging experience with brilliant visuals."  
• Sentiment:
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Few-shot:  Named Entity Recognition (NER)
• Extract the names of people, locations, and organizations.

• Text: "Barack Obama was born in Hawaii and was president of the United States."  
• Entities: Person: Barack Obama; Location: Hawaii; Organization: United States

• Text: "Sundar Pichai is the CEO of Google, which is based in Mountain View."  
• Entities:
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Few-shot prompting

• Write a blog post in the style of Mike Freedman, describing X.

• Examples:   <Two recent blog posts>
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What if your context is really large?

• Examples:
– Software repository with 1M lines of source code
– 100s of pages of technical documentation
– Internal corporate knowledge base / intranet

• Enter Retrieval-Augmented Generation (RAG)…
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RAG = Embedding + Vector Search + LLM
Pipeline:

Technical Pipeline:
1. User query converted to embedding vector.
2. Embedding used for semantic vector search to retrieve relevant documents (context retrieval step).
3. Retrieved documents included in prompt, feeding into generative model (LLM).

4. Generative model outputs response conditioned explicitly on retrieved context.
Advantages:
• Reduces hallucination by grounding responses in actual retrieved data.
• Combines the strengths of embeddings (semantic accuracy) and generative models (expressiveness).

Example Tech Stack:
• Embedding model (Sentence-BERT, OpenAI embeddings).
• Vector DB (FAISS, Pinecone).

• LLM (GPT-4 or similar models).
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Retrieval-Augmented Generation (RAG)
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How to “search” in RAG?

• Traditional “keyword search” bad for semantic meaning
– “User” and “person” don’t match in keyword search, but mean similar things in English

• Semantic search
– Concept: Search by meaning, not exact match
– But how to find nearest items in “semantic space”?
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• Method to find similar items (text, images, audio) by comparing mathematical 
representation of items – called embeddings or vectors – in high-dimension space

• Problem:  Given a set of vectors D and an input vector I, find some k vectors in D that are 
nearest to I according to a distance metric
– Common distance metrics: cosine similarity, Euclidean distance in high-dimensional space
– Anywhere from 100s of vector embeddings to billions of embeddings

• This is basically a search or indexing problem to find the top-k vectors:
– IVFFlat (InVerted File Flat)
– HNSW (Hierarchical Navigable Small World Graph)
– DiskANN (Disk-based Approximate Nearest Neighbor)

• Vector DBs:  Pinecone, Qdrant, Weaviate, Postgres pgvector, Timescale pgvectorscale
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Vector Search on Embeddings
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Ex: Hierarchical Navigable Small World Graph

Conceptual idea:  Skip List
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Ex: Hierarchical Navigable Small World Graph

Conceptual idea:  Navigable Small World
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Ex: Hierarchical Navigable Small World Graph

Hierarchical Navigable Small World
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Ex: Hierarchical Navigable Small World Graph

Hierarchical Navigable Small World
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Vector index creation:
• Take input set of documents.  

• For each input document:
• Divide document into text chunks

• For each chunk, use embedding 
model to compute vector 
embedding

• Insert vector embedding into 
database

• Create mapping from vector 
embedding to text chunk

• Build a vector index on embeddings
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Vector Search on Embeddings

Vector Search:
• Given input query

• Use embedding model to 
compute vector embedding of 
input query

• Perform vector search to find 
top-k embeddings closest to 
input embedding

• Lookup text chunk associated 
with each top-k embedding

• Return top-k text chunks
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RAG = Embedding + Vector Search + LLM
Pipeline:

Technical Pipeline:
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• LLM (GPT-4 or similar models).
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• Generalize notion of “getting context” for our model?
– In Nov 2024, Anthropic released MCP, a protocol for structuring how applications and 

tools can provide context to LLMs.
– Think of MCPs as the “APIs” for LLMs
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Model-Context Protocol (MCP)

• What do MCP servers expose?

– Resources: File-like data that can be read by clients 
(like API responses or file contents)

– Tools: Functions that can be called by the LLM 
(with user approval)

– Prompts: Pre-written templates that help users 
accomplish specific tasks
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Model-Context Protocol (MCP)
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Model-Context Protocol (MCP)
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Example MCP:  Neon Database Server

Example:  Tool Discovery
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Example MCP:  Neon Database Server
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Deploying models behind APIs

Model
Model

Model
Model

API endpoint

• Models have significant latency, may get overwhelmed, may fail. 

• API  endpoint:
– Manage large numbers of open connections with streaming
– Connection rate limiting to create client back-pressure, avoid overload
– Implement priority queuing between many clients

• Client endpoint:
– Request timeouts and retry logic from errors
– (Exponential) backoff from rate limiting

• Common needs 
– Chained tool calling require ordering / sequence numbers 
– Tool calling without idempotency may require transaction numbers

• Similar problems as many RPC systems!

Client
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• We’re in the “Cambrian Era” of GenAI models and systems

• Every 3 months is something new; industry and tools are rapidly 
changing and evolving. 

• One fundamental difference:  

– For past 50 years, our computer systems are heavily deterministic.  We 
rely on that determinism.  

– GenAI systems (and the inputs to them) are inherently non-deterministic.  
Natural language is not precise. Still figuring out how to build “robust” 
systems in face of such non-determinism / imprecision.
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Conclusions
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