
1

Bitcoin and the Blockchain

COS 418/518: Distributed Systems
Lecture 21

Mike Freedman, Wyatt Lloyd

1

• New bitcoins are “created” every ~10 min,                    
owned by “miner” (more on this later)

• Thereafter, just keep record of transfers
– e.g., Alice pays Bob 1 BTC

• Basic protocol:
– Alice signs transaction:   txn = SignAlice (BTC, PKBob)

– Alice shows transaction to others…

2

Bitcoin: 10,000 foot view

2

Can Alice “pay” both Bob and Charlie 
with same bitcoin ?

( Known as “double spending” )

3

Problem:  Equivocation!

3
4

How traditional e-cash handled problem

• When Alice pays Bob with a coin, Bob validates that coin 
hasn’t been spend with trusted third party

• Introduced “blind signatures” and “zero-knowledge protocols” 
so bank can’t link withdrawals and deposits

Alice Bob

Bank 

4



2

5

How traditional e-cash handled problem

• When Alice pays Bob with a coin, Bob validates that coin 
hasn’t been spend with trusted third party

• Introduced “blind signatures” and “zero-knowledge protocols” 
so bank can’t link withdrawals and deposits

Alice Bob

Bank 

Bank maintains linearizable log of transactions

5

Problem:  Equivocation!

Goal:  No double-spending in decentralized environment

 Approach:  Make transaction log    

1. public

2. append-only
3. strongly consistent

6

6

• Public 

– Transactions are signed:   txn = SignAlice (BTC, PKBob)

– All transactions are sent to all network participants

• No equivocation:  Log append-only and consistent

– All transactions part of a hash chain

– Consensus on set/order of operations in hash chain

7

Bitcoin: 10,000 foot view

7

8

Cryptography Hash Functions
• Take message m of arbitrary length and produces \fixed-

size (short) number H(m)
– e.g., SHA-1 produces 160-bit output, SHA-256 has 256-bit output

• One-way function
– Efficient:  Easy to compute H(m)

– Hiding property: Hard to find an m, given H(m)  

• Collision resistance:
– Strong resistance:  Find any m != m’  such that   H(m) == H(m’)

– Weak resistance: Given m,  find m’  such that   H(m) == H(m’)

8



3

Tamper-evident logging

9

9

• Hash chain creates “tamper-evident” log of txns

• Security based on collision-resistance of hash function
– Given m and h = hash(m), difficult to find m’                          

such that  h = hash(m’) and m != m’

10

Blockchain: Append-only hash chain

txn 7

prev: H(  )

txn 6

prev: H(  )

txn 5

prev: H(  )

10

11

Blockchain: Append-only hash chain

11
12

Problem remains:  forking

txn 7

prev: H(  )

txn 6

prev: H(  )

txn 5

prev: H(  )

txn 7’

prev: H(  )

txn 6’

prev: H(  )

12



4

• Fault-tolerant protocols to achieve consensus of 
replicated log with malicious participants
– Requires: n >= 3f + 1 nodes, at most f  faulty 

• Problem  
– Communication complexity is n2

– Requires strong view of network participants

13

Goal: Consensus

13

• Traditional consensus protocols based on membership
– … assume independent failures …
– … which implies strong notion of identity

• “Sybil attack”  (p2p literature ~2002)
– Idea: one entity can create many “identities” in system

– Typical defense:  1 IP address =  1 identity
– Problem:  IP addresses aren’t difficult / expensive to get,                     

esp. in world of botnets & cloud services

14

Consensus susceptible to “Sybils”

14

• Rather than “count” IP addresses, bitcoin “counts” the 
amount of CPU time / electricity that is expended

• Proof-of-work:  Cryptographic “proof” that certain 
amount of CPU work was performed

15

Consensus based on “work”

“The system is secure as long as honest nodes 
collectively control more CPU power than any 
cooperating group of attacker nodes.” 
        - Satoshi Nakamoto

15
16

Key idea: Chain length requires work

txn 7

prev: H(  )

txn 6

prev: H(  )

txn 5

prev: H(  )

• Generating a new block requires “proof of work”

• “Correct” nodes accept longest chain 

• Creating fork requires rate of malicious work >> rate of correct
– So, the older the block, the “safer” it is from being deleted

txn 9

prev: H(  )

txn 8

prev: H(  )

txn 6’

prev: H(  )

16



5

• Recall hash functions are one-way / collision resistant

– Given h, hard to find m such that h = hash(m)

• But what about finding partial collision?

– m whose hash has most significant bit = 0?

– m whose hash has most significant bit = 00?

– Assuming output is randomly distributed, complexity grows 
exponentially with # bits to match

 17

Use hashing to determine work!

17

Find nonce such that

   hash (nonce || prev_hash || block data)  <  target

e.g., hash has certain number of leading 0’s

What about changes in total system hashing rate?

• Target is recalculated every 2 weeks

• Goal:  One new block every 10 minutes

 

18

Bitcoin proof of work

18

19

Historical hash rate trends of bitcoin

Currently: 900 Exahash/s
   9 x 1020

Tech:  CPU → GPU → FPGA → ASICs 

19
20

Why consume all this energy?

• Creating a new block creates bitcoin!
– Initially 50 BTC, decreases over time, currently 3.125

• Last halving on April 19, 2024
• Block height is 893,272 as of 4-20-2025

– New bitcoin assigned to party named in new block, called “mining” 
as you search for gold/coins

20



6

As of April 20, 2025, 3.125 BTC = ~$264,400
21

Bitcoin is worth (LOTS OF) money!

21

• Race to find nonce and claim block reward, at which time 
race starts again for next block

 hash (nonce || prev_hash || block data) 
– As solution has prev_hash, corresponds to particular chain

• Correct behavior is to accept longest chain
– “Length” determined by aggregate work, not # blocks

– So miners incentivized only to work on longest chain, as 
otherwise solution not accepted

– Remember blocks on other forks still “create” bitcoin, but 
only matters if chain in collective conscious (majority)

22

Incentivizing correct behavior?

22

• Each time a nonce is found:

– New leader elected for past epoch (~10 min) 

– Leader elected randomly, probability of selection 
proportional to leader’s % of global hashing power

– Leader decides which transactions comprise block

23

Form of randomized leader election

23
24

One block = many transactions

• Each miner picks a set of transactions for block

• Builds “block header”: prevhash, version, timestamp, txns, …

• Until hash < target OR another node wins:
– Pick nonce for header, compute hash = SHA256(SHA256(header))

24



7

25

Transactions are delayed

• At some time T, block header constructed
• Those transactions had been received [ T – 10 min, T] 

• Block will be generated at time T + 10 min (on average)

• So transactions are from 10 - 20 min before block creation
• Can be much longer if “backlog” of transactions are long

25
26

Commitments further delayed

• When do you trust a transaction?
– After we know it is “stable” on the hash chain

– Recall that the longer the chain, the hard to “revert”

• Common practice:  transaction “committed” when 6 blocks deep

– i.e., Takes another ~1 hour for txn to become committed

26

27

Bitcoin & blockchain intrinsically linked

security of 
block chain

value of 
currency

health of 
mining 

ecosystem

27
28

Summary

• Coins xfer/split between “addresses” (PK) in txns

• Blockchain:  Global ordered, append-only log of txns

– Reached through decentralized consensus
• Each epoch, “random” node selected to batch  

transactions into block and append block to log

– Nodes incentivized to perform work and act correctly
• When “solve” block, get block rewards + txn fees
• Only “keep” reward if block persists on main chain

28



8

29

Appendix

29
30

Transaction format:  strawman

Create 12.5 coins, credit to Alice

Transfer 3 coins from Alice to Bob       SIGNED(Alice)

Transfer 8 coins from Bob to Carol       SIGNED(Bob)

Transfer 1 coins from Carol to Alice       SIGNED(Carol)

How do you determine if Alice has balance?  
Scan backwards to time 0 !

30

31

Transaction format
Inputs: Ø   // Coinbase reward

   Outputs: 25.0→PK_Alice
Inputs: H(prevtxn, 0) // 25 BTC from Alice 

   Outputs: 25.0→PK_Bob        SIGNED(Alice)
Inputs: H (prevtxn, 0) // 25 BTC From Alice

   Outputs: 5.0→PK_Bob, 20.0 →PK_Alice2     SIGNED(Alice)
Inputs: H (prevtxn1, 1), H(prevtxn2, 0)   // 10+5 BTC

   Outputs: 14.9→PK_Bob        SIGNED(Alice)

• Transaction typically has 1+ inputs, 1+ outputs
• Making change:  1st output payee, 2nd output self

• Output can appear in single later input (avoids scan back)

31
32

Transaction format
Inputs: Ø   // Coinbase reward

   Outputs: 25.0→PK_Alice
Inputs: H(prevtxn, 0) // 25 BTC from Alice 

   Outputs: 25.0→PK_Bob        SIGNED(Alice)
Inputs: H (prevtxn, 0) // 25 BTC From Alice

   Outputs: 5.0→PK_Bob, 20.0 →PK_Alice2     SIGNED(Alice)
Inputs: H (prevtxn1, 1), H(prevtxn2, 0)   // 10+5 BTC

   Outputs: 14.9→PK_Bob        SIGNED(Alice)

• Unspent portion of inputs is “transaction fee” to miner
• In fact, “outputs” are stack-based scripts

• 1 Block = 1MB max

32



9

33

Storage / verification efficiency
• Merkle tree

– Binary tree of hashes

– Root hash “binds” leaves 
given collision resistance

• Using a root hash 

– Block header now 
constant size for hashing

– Can prune tree to reduce 
storage needs over time

33
34

Storage / verification efficiency
• Merkle tree

– Binary tree of hashes

– Root hash “binds” leaves 
given collision resistance

• Using a root hash 

– Block header now 
constant size for hashing

– Can prune tree to reduce 
storage needs over time
– Can prune when all 

txn outputs are spent
– Now: 80GB pruned, 

300GB unpruned

34

35

Bitcoin & blockchain intrinsically linked

security of 
block chain

value of 
currency

health of 
mining 

ecosystem

35
36

Rich ecosystem:   Mining pools

• Mining == gambling:
– Electricity costs $, huge payout, low probability of winning

• Development of mining pools to amortize risk
– Pool computational resources, participants “paid” to mine            

e.g.,  rewards “split” as a fraction of work, etc
– Verification?  Demonstrate “easier” proofs of work to admins

– Prevent theft?  Block header (coinbase txn) given by pool

health of 
mining 

ecosystem

36



10

More than just currency…

37

37
38

38


