
notes for 2/25/25
Announcement: the VM assignment is a partner project

From last time, review: "the tyrrany of C"

(draw the classic C process space.)

we don't have any need for stack/heap separation!

NOT review: what else is out there that *doesn't* follow
stack/heap separation??

Go-style languages with coroutines/goroutines: LOTS of
teeny-tiny stacks, all alike, which cannot be reserved

Something we haven't even thought about yet?

Remember the slab allocator! We had N segments, each
storing a big array of K fixed-size objects

(draw the slab allocator segments again)

an aside: makes fork a little better, can set entire
segments to read-only for code sharing

when is this good?

when is this bad?

how many of these allocators might we need? How often
will this become fragmented? (draw on the side, ask N)

How much hardware are we asking for to support this?

How big do our PCBs get / what's the cost of swapping?

Note: segment-style treatment required N objects to be
contiguous in physical memory. Is this an actual
necessary requirement??

An aside: when does memory need to be physically
contiguous? (interact)

Page Tables

Review: the page table, at the VERY END of last time.

Note: this is the most popular soution

Basic ideas:

what if rather than having [small N] segments of variable
size, we had [large N] segments of fixed size? (annotate
the segments/slab-allocator for this)

there's a good block size that can store (perhaps many
copies of) lots of sizes of object (illustrate)

nobody said that segments couldn't be physically
contiguous... solve big arrays that way! (illustrate in the
physical memory picture)

What's in the page table?

draw out the page table with appropriate bits, basically
the important one is the valid bit, but then there's also
access modes.

Basics of translation

draw out the virtual address, draw out the table, show the
high-order bits and how they index the table.

What are some issues we can see with lots of small
segments?

What does the hardware do??

What does the OS do??

Simplest solution: the giant page table in the sky

(you need to illustrate all of this)

single register: Page Table Base Register (PTBR): points
to per-process page table

On process swap: store/load this register

What does hardware do: Full page table lookup,
automatically(???) <-- this is too expensive, but it does
work!

SHOW: a basic translation of a physical address to a
virtual address, for an example program, using the new
page-table-in-the-sky

Hardware's role: do fast translations

Benefits/drawbacks of current approach?

How big is this big page table for a 64-bit address space?

The TLB: solve the speed-of-lookup problem

The translation-lookaside buffer (TLB) to the rescue!

fixed-size harware table (looootta registers in use for this
one) [how big?? good question! Varies wildly in practice.
Probably 512 entries? MIPS has 64. Lookup on google,
live, for modern arch.]

virtual, physical addrs; valid, prot bits

this is a fully-associative cash

re-illustrate how the TLB saves the day

discuss: issues. replacement algorithm? prefetching?

OK: now what does the OS have to do on a process swap?

interactive! But it's just "flush the TLB" as an added step,
which is basically set all those entries to "invalid"

Aside: scheduling and timers. Now process swaps kinda
are expensive, need to time the interrupts carefully. Lotta
calibration and magic constants!

Multi-level page tables: solve the size-of-table problem

(we will not have time to get here, probably)

Hey, why not just ... have a page table for your page table.
These are "page frames". You can do lots of this

What does hardware actually do?

x86: fully in-hardware multi-level page table

MIPS: fully software-managed, no autofilling TLB.

RISC-V: virtual memory itself is optional, and you can use
base+bounds if you want

SPARC: insane register windows

•

-

-

-

-

-

•

-

-

-

-

-

-

-

-

•

•

-

•

-

-

-

•

-

•

-

•

-

-

•

-

-

-

-

-

•

-

-

•

-

-

-

-

-

•

-

-

•

•

•

•

•

•

