Review from last time---this was all "last
five minutes" material

part 2: representing the filesystem on-disk

what do we need to store? (can be interactive):

- user data (file / directory contents) <--- note, this is where the directory
structure goes, it is not independently stored anywhere else.

« inode data (metadata / stuff returned by stat)

- important thing: this is a table of inode numbers, and the most essential
thing they need to store is the block-address of the data in the real
filesystem.

- this is the point where we get to ask which inode metadata we should
really be storing. We can take a look at the output of stat again and
come up with thoughts about what the "obvious" stuff to put on disk is.

- anything else?

At this point, folks will probably not have an idea of what else to store. We can
segue quickly into how to lay this stuff out on disk

« Open by explaining how to access the disk. Talk about blocks in the
filesystem: note that they can be composed of multiple sectors. The word
"block"” when talking about a raw disk just doesn't mean the same thing as
"block" when talking about a correctly-formatted filesystem residing on this
disk. (It can, though, if you want it to!). Sorry y'all.

« Talk about reserving an early portion of the disk for the inode-table, and
everything else in the disk for the data.

« Ok, challenge: afile's refcount is now zero; we would like to remove it from
the disk. How should we do this?

- remove both the data and the inode contents, recall.

- we need some mechanism to now note that this inode / data region is
free

» from here, we can segue into the bitmaps for the inodes and the data region

- remember slab allocators?? Here's the biggest, most-famous use of
them: inode arrays and data arrays on disk are often (but not always)
slab-allocated.

- So, we have already found our big region of fixed-size chunks; now we
just need the bitmap to tell us what is free in that region!

- (review the slab allocator semantics again, especially how using bitmaps
works)

» ok, are we done? not quite. We need one last item in the filesystem: a small
amount of metadata at a known location that tells the OS where to find all
of these regions and bitmaps! This is called the superblock. It usually also
contains a hash of key information, and an FS identifier telling the OS what
FS this is.

- If you've ever tried to mount a filesystem on linux and gotten an error
back of "bad superblock," then that means some of this metadata was
corrupted. Note that it does not mean that the data in the filesystem
itself was harmed! Just that the OS has no idea where to look to find it,
or what format it should be in when it does find it.

+ another note: we can think about atomicity when we are building and using
this. remember: sector writes are atomic. So structures where a torn write
is very bad ought to stay smaller than a single disk sector. Makes filesystem
recovery plausible.

ok, let's try to use this thing

* return to the example directory structure, and let's walk through a
[hypothetical] set of disk accesses, using the on-disk and in-kernel
structures we've already developed

- recall: in-kernel inode table, on-disk inode table, superblock, data region.
- show how we know how to index into... anything.
« if you have time, here are some other things that we should go over in class

- how do you know how big a file is? We talked about an inode containing
a pointer to the first block in a file, but what about the last block? There
are options here; the three big ones are "just a linked list," "array of block
pointers (with indrection)", "it's just segments all over again." Note: we
have all the freedom here that we wished for in the VM world! There's no
hardware to play-nice with, and we have SO MUCH LATENCY to hide
things in. It's great!

- extended permissions: ACLs

- fun tricks with UNIX permissions (e.g. groups can r/w but users can't).
SetUID and setGID binaries. The idea of the "root" user.

- the rest of the data in the in-memory file table---e.g. current read
position and seek/lseek

- unified page cache (see the textbook for details about this)
- buffering writes (and the associated need to fsync after)

- performance considerations / memory usage trade-offs

Part 3: realistic issues in filesystems

 contiguous access (remember: flash "flashes" big chunks at a time (about
256KB); it's "free" to access neighbors)

+ fragmentation

* LVM -- logical volume management. AKA, "why do inodes need to be
physical addresses anyway?" lets us solve fragmentation "transparently”

« special large files treatment?

» power loss, or how to keep things sane on the disk in an emergency (recall,
sectors are atomic)

Journaling and filesystem recovery

So far, a lot of the problems we've seen with disks mirror those that we've seen
with memory---virtualized mappings, fragmentation, caching policies,
allocation strategies and the like are all basically the same on-disk as they are
in-memory. In fact, they're arguably better on the disk; because the latency of
transfer is our bottleneck, we often* don't need to rely on restricted hardware
primitives to implement our filesystem abstractions. So we really can just
design whatever datastructures we want!

But it also comes with a major drawback: the disk is persistent. It will continue
to exist after power failures, and we will need to be able to read from it even in
that situation.

Let's walk through an example of what happens when we write to the disk
under our basic filesystem, and then see what's going on after a power failure
(note: we should already have walked through what reading and writing from
the on-disk filesystem looks like by now. If we haven't, stop and do that).

[LS of‘m’Pj‘
/ \

Op'}{ou“ “uut on‘[‘rj
Fablp of chwuwl;
molti —lewe | \O’J'r;
advt fable o &

So, looking at this, we have a lot of metadata. ~— h-x F’*T&

V:]/e ZFsi ha;]ve a lot of d(ijstinct gositions in — 1 P,‘.r)N a dd\ $;.5]2 = Pvf.[} 'ilbl{
the disk where we need to update to .

perform a file allocation. Let's look at) P'h. +° dL&) V“Vl')"' \'w\e 'MIC

what happens if we lose power in the
middle of doing one of those. (we do this on the board)

How do we fix this?

Point 1: remembe sector atomicity! If we can fit lots of stuff in a sector, then
the sector can't show us a "skewed write". And sectors can be reasonably
big---at least 512 bytes (and the atomic region is a lot bigger in flash---many
kilobytes). If we make sure that our inodes are sector-aligned (e.g. no inode
splits across sectors), then it should never be the case that our inodes reflect a
split write. Our metadata is safe!

Point 2: Sometimes, some operations can be carefully handled in a particular
order to effectively guarantee sanity. For example, if we're looking to create a
file or change its size, we can do this in the in-RAM inode first, then in the data
portion of the disk, and finally in the on-disk inode. Similarly, when creating a
file, we can always reserve a slot in the in-memory (ram) inode table first, and
then make sure the inode is well-formatted on disk, before writing to the on-
disk inode bitmap. It's entirely possible to create always-sane filesystems
using some combination of these two approaches: ensuring atomic writes, and
carefully selecting the order of operations.

In fact, this is a special case of a more general pattern of lock-free
datastructures. Check it out.

But it also seriously constrains the design space of our filesystems! There's a
pair of much simpler solution that's used in practice:

Let it burn.

Just write a tool (usually a version of fsck) that goes through the filesystem and
tries to make the internal structures sane, by restoring their data invariants. By
combining an fsck-recovery with the idea of being careful about write-order,
you can represent a much bigger class of filesystem designs while maintaining
crash consistency!

On our simple filesystem, here's how fsck would work (draw this):

« superblock: figure out what we're looking at, and where the inode, bitmap,
data tables are. Do some basic sanity checks; the filesystem is of a known
type, the overall filesystem size in the superblock is within the bounds of
the current disk partition, etc.

- Note: filesystems often have many copies of the superblock, so that
corruption of one superblock copy doesn't render the filesystem
unusable.

« inodes: rather than relying on the bitmap of free/used, we scan the entire
inode table and recreate the on-disk structures as the inodes see them.
Note that this requires that we have some metadata in the inode that helps
us understand if we're looking at garbage data; but even here, sanity-
checking helps.

+ Data: we look through the filesystem tree on the disk, to see how many links
each inode actually has in the directory structure. Inodes that don't seem to
be linked in anywhere refer to "lost" files, and we can link these in to a
special "lost+found" directory at the root of our filesystem (or discard them,
if you want).

There are a few common error cases you'll hit with this:
« bad block: an inode pointer is going somewhere obviously impossible

« duplicates: two inodes own overlapping disk regions. We usually
deduplicate through copying.

 general corruption: lots of fields can have impossible values. Usually just
zero them out.

This kiiinda works, but it is very very slow.
The filesystem journal.

This is stolen from the databases community, where journaling has been long-
studied. The short version: you want to make filesystem operations
"transactional," and guarantee atomicity across multiple disk accesses. To do
this, we reserve a space on the disk to serve as a ring buffer, and always write
an "intended action" to that buffer before we begin executing it. In addition, we
do not start executing the first intended action in that buffer until all intended
actions in a single transaction have been written to the buffer. Only then can
we execute the first action. Finally, we need to make sure these transactions
are idempotent; doing a logged transaction twice in a row (even if the
transaction was only logged once) should always be fine (as long as there were
no intervening operations). Ok, now really finally: write a quick "done"
message to the log after the main-disk operations have all been flushed to disk.

You need to draw this on the board. You should also just put the journal
somewhere on the disk, usually in the front.

The correctness idea is simple; in normal operation, this log just gets
continuously appended to and never observed. But during a failure recovery,
we can look at the log to see if there's any transactions which have been fully
written to the log, but don't have the "done" marker after them.

Interactive: given the simple protocol we've described, is there a bound on
how many not-quite-done transactions will be in the log?

For the simplest logs (like the one we've described), there will be at most one of
these transactions present. For more-complex versions, there can be several
(e.g., we delay access to the main filesystem for performance reasons so that
we can do write coalescing pretty often).

Interactive: so, what do you suppose we should do now?
Well, just redo the transaction!

Interactive: what do you think we should do about transactions that are only
partially present in the log?

Well, this depends on the user-facing semantics you want. The usual answer is
that you should just discard them; more advanced answers include that you
should run a "recovery tool" which can deduce missing actions based on the
parts of the log that are present. Or even that you should create a special
"lost+found" directory on the disk, where you can link in files (or file fragments)
whose contents appear in the log but whose location in the filesystem is
forever lost. Lots of options here!!

What about performance?

Interactive! Do we care? Do we have ideas? Talk to your neighbor.

if we have time, talk about revoke records.

If we have time, talk about the log-structured filesystem (append-only ftw!)

« inodes are scattered; inode map is written periodically to the end of the log,
which points to all of them.

 inode map is still scattered; a single checkpoint region points to the latest
inode map

« note: both of these things are really only needed for recovery. Anin-
memory inode map (and inode table) works just fine for regular access. And
the log is built-in, so it's really just "replay from the last point the
checkpoint-region points to"

« final note: the inode-map is a necessary indirection; inodes can move, so
their exact location cannot be stored in directories! See also lvm (logical
volume management)

» garbage collection btw, it's the usual answer.

