From last time --- you didn't get to talk about the principle of "own your locks"
before, so maybe start class with a bit of a digression there. If you feel inspired,
you can talk about how other languages choose to expose locking primitives,
beyond just C.

Other things you want to cover:
- concurrency races / how to debug them
- coroutines / event-based concurrency

- locks as containers

Ok, so it sounds like this is going to be a lecture in two parts: part 1, is fancy
locks ... wait, they just did coroutines with Amit. So probably not good to start
with fancy locks then, let's start with co-routines. Which means we need
working coroutine code! Hmmm let's go back to david's tutorial.

Ok, we have coroutines and generators working now. So part 1, we'll show them
coroutines and generators, and then part 2 we'll talk about avoiding deadlock.
Which means dining philosophers, so | should restore that from last week's

notes

More primitives / alternatives

So: at the end of last time, you just saw what continuations and co-routines
are, and we talked a lot about why threads are bad, yes?

(everyone nods. Please. Nod!)

Great! So let's pick back up from there. In c++ this time, because it's a little
closer to C / the syntax you're familiar with.

A coroutine is an abstraction of an interruptable function. In other words, its a
function that can return (or yield) early and then resume execution at the point
at which it returned. Kind of like generators in Python, though it's more flexible
than that.

(let's freehand a basic co-routine on the board, in c++, remember to have your
stuff up+ready ahead of time, this time)!

In order for a co-routine to work, it needs to do a few things differently than a
normal funciton. In particular, with normal functions we have a notion of a call
stack, where each new function call pushes a frame onto the call stack, and

each function return pops it.
_7 @ —> -7 ->

The trouble with co-routines, is that you can now resume a function. But when
you resume it, how do you find its stack frame?

f(int i){
if (i < 2) g(i);
}

glinti) {
f(i+1);
h(); >

}
h(O{}
f(0)

S= Sk

f(inti){
if (i < 2) g(i);
}

g(inti) {
f(i+1);

YIELD;
h(); > =2

h({}
f(0); something; RESUME; Main

You can't with a basic stack! This means that we need to do something special.
There are two schools of thought here: one option is that we make coroutines
shallow---every function knows if it's [transitively, eventually] calling a
coroutine. In this example, as soon as we know we might call a co-routine, we
need to allocate an entirely new stack for it---basically just like when we
about to launch a new pthread!!

e eventun| Caruing

f(0); something; RESUME;

This works really well from an implementation perspective, but it's annoying--it
requiers us to delimit exactly the point at which we might need to return to a
co-routine. So, that can be frustrating in code. But! It doesn't really screw with
the stack at all, and theres a fairly clear resource management story for it. (As
to why we "really” need to do this? Both stacks can grow independently. If we
had the guarantee that we'd only ever be unwinding the coroutine stack, we
could just have stuck it on top of main and then left it there until after the last
resume---which is roughly how things work in Rust, fyi).

The cleaner semantic idea is to just use something called "activation
records”---instead of having a stack, have a tree! Now you don't have to know
whether something is going to be used before you use it. How nice, how easy,

@ > ”@’@‘5}7@

Ma, R

..but it messes with the basic assumptions about how the stack works, which
will screw with everything in your program as soon as you have one co-routine.
Plus, it usually generates a lot of garbage. Which we don't like.

Ok! So, now we have a basic sense of how co-routines work, why do we want
them? Because we can implement event-based concurrency, yes.... but even
better, because we can implement green threads.

Remember when we were working through process scheduling, and we talked
about the various strategies for running and scheduling processes fairly? At
the time, | said that if we could trust the compiler to insert frequent-enough
yields, or the programmer to just never try to hog the CPU, then there would be
no need for a timer-based interrupt scheme. In the context of processes, this
was fantasy; nobody knows why anybody is running any particular process.
But in the context of threads, this suddenly makes sense! Threads runin a
single process space, which (from the operating system's perspective) means
that we can make fundamentally different trust assumptions about how
threads cooperate vs. how processes cooperate. In particular, we can trust
them to yield "enough" to enable cooperative multi-threading.

Let's look at an example of this using the coroutine framewaork in c++, with one
of our classic increment examples as the basis for it.

(this is where we go to the code).

If you can get away with this, please do. With locks, screwing up your critical
regions means you limit concurrency and add overhead. With event-based
coroutines, that's not the case!

...except everything is running on a single code

which leads us to the usual principle of coroutine design:

separate threads from tasks

only have as many threads as cores (i.e. thread=core for our purposes)
run different tasks on different threads

you will still need locking when you have multi-core execution, but often not as
much; since you completely control the scheduler, you can simply choose to
never place two tasks that contend the same area of memory onto the same
core! It takes a careful eye, but modern programming practices can really help
make this less error-prone.

Speaking of modern programming practices...

Locks as containers, or, how to use a good programming language

A lot of what we've heard about so far during locking has been about best-
practices and design patterns; always remember to grab the right lock for the
right data items; alway remember to signal with a CV if you know there is a
waiter; never forget to unlock after you have locked.

Doing this well can be tricky... not because it's conceptually hard, but because
it's a big checklist of tasks to keep in your head!

In modern languages, the compiler can help with that. Because we're in C for
this class, I'll only show the design-pattern equivalent of what | mean here. But
in general, for any of these locking issues, you should be thinking to yourself:

« what is the universal invariant that | am enforcing / need to enforce for
correctness?

« How could | write that down in a general way, so it's not too tied to my exact
code?

Any time you can come up with an invariant, and express it in a general way,
you're probably looking at something a modern programming language or
compiler can help with.

Ok! So let's look at the most-basic one---locks as containers. A simple issue
that can come up when you're handling locks is that you forget to unlock them,
right? Or, that you grab the wrong lock for a protected data item? So, let's see if
we can rethink the locking patterns to ensure that we can't forget to unlock
them.

(let's rederive the container-locks macros live in class. Use the support code if
you need it for correctness).

(This exercise is done live, sorry y'all)

Great! There's lots of examples of times you can do that. Next, let's move on to
talking about another locking primitive that we've seen before: reader-writer
locks (next page).

Ok, reader-writer locks! You can explain how reader-writer locks work,
basically. Draw on the board the reader lock, and the writer lock; illustrate a
schedule of several threads getting reader locks, and then blocking those
threads until we acquire a writer-lock. We should have seen this before, so
hopefully this is just all review!

Now, we've asked for this before, but to ask again---what are some scenarios
where we might want these? (interact!)

It turns out, we can implement these with semaphores! Let's see if we can
come up with how we can use semaphores to implement reader-writer locks.

(let's pop to the code examples we've prepared for this)

Hint: an easy way to do this involves a semaphore and a lock, but that's not the
only way. Another hint: unlike a mutex, the thread that "releases" a binary
semaphore doesn't need to be the same thread that "acquires" it!

Let's do this together in code / on the board.
Hopefully this makes sense? Maybe?

(from here: if time allows)

Deadlock

Let's talk about Deadlock. In particular, let's use the dining philosophers to do
so.

Z = k’l;‘p‘e, m _)17)\/'105019 l‘LEV‘
O\)?[o&f‘%

Basic algorithm: the philosopher first grabs a fork, and then grabs a knife, and
then proceeds to eat!

What happens if two philosophers try to grab the same fork? What happens if
they try to grab the same knife?

Is there an algorithm that we can run at every philosopher in order to ensure we
grab the forks correctly?? (there is not. Somebody needs to be different).

