Next: condition variables, reader/writer locks, and more joy

We're going to do this one live, but | don't have the pthreads library memorized,
so here goes:

pthread_cond_t = PTHREAD_COND_INITIALIZER

pthread_cond_wait(cv, mutex) //remember: releases the lock.

pthread_cond_signal(cv)

The point here: if one thead needs to do something, and another thread needs
to wait for the first thread to finish doing that thing, then we need a notification
framework!!

Talk about the spurious-wakeup thing. Imagine with the class how we can re-
use the basics from futex or park/unpark to implement condition variables.

Do a bit of livecoding to figure out how to use these in an example; ask the
class for situations where we might want condition variables, hypothetical
pieces of code, and then code live and live dangerously

(I cannot find the code that we did in class!! Sorry all. I'm looking :) )

Semaphores

The "wait" one is P(), the "post" one is V(). Call them sem_wait and sem_post.

You call V() to say "a new thread should be allowed to enter" and you call P() to
say "l am a thread who wishes to enter".

Concretely: the semaphore is initialized to a certain number. If that number is
negative after calling P, then the thread that called P waits for the semaphore
to become positive. V() just increments the semaphore.

(do a couple of examples of calling / releasing patterns with thread schedules
on the board, as you usually do with this sort of thing)

Let's take a look at one of the examples from before, perhaps including the one
we just came up with a few minutes ago, and see how we might be able to
implement it with semaphores instead of CVs. A question: what value should
we set the semaphore to?

(Note: you can use semaphores directly in your code---in fact, in POSIX they're
still the preferred way to synchronize across processes and not just across
threads---but usually you won't. Condition Variables plus Mutexes, maybe with
a sprinkling of reader-writer locks, is really all you need.)

Ok! It turns out, semaphores are a general primitive that can cover all sorts of
locking cases! In particular, we can use semaphores to implement a mutex.
How might we do this? Any ideas? (it's just about the initial value)

Ok, reader-writer locks! You can explain how reader-writer locks work,
basically. Draw on the board the reader lock, and the writer lock; illustrate a
schedule of several threads getting reader locks, and then blocking those
threads until we acquire a writer-lock.

Let's ask the class for an example of a scenario where we might want to have a
reader-writer lock, just like we did with the condition variables. Hopefully they
can come up with one.

It turns out, semaphores are general enough to also implement these! Let's see
if we can come up wit how we can use semaphores to implement reader-writer
locks. Hint: an easy way to do this involves two semaphores, but that's not the
only way. Another hint: unlike a mutex, the thread that "releases" a binary
semaphore doesn't need to be the same thread that "acquires" it! Final hint: if
we care about fairness, we might want three semaphores.

(If time allows): let's talk about Deadlock. In particular, let's use the dining
philosophers to do so.

@ U o “ﬂ O *f?)\/llaﬂsf l‘\.EV‘
[10 s
S Pk

What happens if two philosophers try to grab the same fork?



