How locks work

Basic flow: from last time, we need to make sure that we know how the
definitions work. So, write on board (left wing), main definitions:

« critical regions

* mutual exclusion
+ atomic / atomicity
* race condition

These definitions are review from both 217-C and from Tuesday, so hopefully
can be provided interactively.

Go back to the counter example, and once again show the critical regions
(guard the increment). Talk about atomicity, and talk about what things are, or
are not, atomic. Note: we will also want to draw out where the various variables
are in the address space for this one:

(o ds)
wleFile:
mox Dalesce qt.:ﬂl‘-lc:er‘/"b C oh ML C.M'}'Er" lbﬂq'\&)
ock hi¥ memory
U sharedt

TS
noratomt, bo¥ privete.

This can be interactive! Let's see if the class knows that individual instructions
are atomic, by asking if there's an alternative way we could design hardware or
an OS to prevent us from needing locks when doing this increment example.
Also a good time to talk about privacy / private data never needs locks.

Walk through exactly what happens when a compiler interacts with the
volatile keyword, and interacts with the reads/writes of various things in this
example. In particular, focus on the compiler's choice to emit things in
registers vs. memory. Talk about X86 and total store order (TSO), and why this
matters for concurrency. We're getting into multicore now...

in particular (draw this on the board): we're going to have three things to
consider: (1) does the compiler emit the operation at all? (2) does the compiler
put things in registers or memory? (3) is the memory operation hitting cache, or
hitting main storage? (4) in a multi-core setting, what happens when you hit
storage vs hit cache? How might multi-core slow things down?

Draw diagram: (- bus . /J

D f ':;eh D

caoke Ca(/‘\é

The pthreads lock API has to ensure locks define atomic regions. What are the
considerations for this, in this diagram? (recall: everything that gets locked
needs to be atomic).

How do we ensure that an individual write actually makes its way from one
cache to the other? Answer: barriers. Hardware primtive that forces writes to
become available everywhere. Can be implemented differently in different
places, e.g. direct communication between caches vs. cache invalidations. No
matter what, it is SLOOOW

(draw a log of writes to the cache, and then a "Barrier!", and then copy a bunch
of stuff through the caches into memory)

In all of this, we're still using the counter example as our main thing. Keep it on
the board, if you have space to do so.

Define: consistency. Given a write performed at a certain location, what are
the possible reads that can be performed at other locations?

Talk about hadware differences: in X86 TSO, simply emitting a write ensures
an amount of consistency on it, so you can get away with things being volatile
there which you can't get away with in modern architectures (including the
ones that most of us our running here).

Ok, now we know what's going on with this example. Let's talk about
how to implement threads despite this

Last time: we talked about a scheduler-first policy for implementing threads.
Draw same diagram on the board to remind the class.

This time: let's talk about a lot of different ways we can combine OS and
hardware help to implement locks.

First: observe from before---if we just had an "atomic" fetch-and-add for this
example, and X86 TSO, the hardware itself would have introduced atomicity!
Powerful primitive. Note: even on hardware that doesn't talk about a total store
order, there's usually an explicitly atomic fetch-and-add available to
programmers. (So how might that have worked in hardware? We can imagine
it, but (as an OS) we don't really have to know. Beyond the performance
implications). It will fetch-and-add and return the value that results

Next: ignore the scheduler, and assume two cores running two threads
actually-concurrently. Can we use the atomic-fetch-and-add to implement a
lock? Genuinely, work through this one. With a partner. (sidebar: might want to
try asking this for the other points of interaction earlier in this class). Note: you
can do this, but you will need to invent a spin-lock to do so--hopefully folks can
at least show you how to do the initial "decide who wins the race" part.

Note: we need to emphasize the spin part. What happens when someone
loses the race for the lock??

Ok, there's actually different hardware primitives, test-and-set / compare-and-
swap, that people use in practice to avoid the potential overflow and wasted
writes that you'd get from this strategy.

On the board: here's how compare-and-swap works.

In code: here's the assembly for this in X86.

Note: these are all spin locks; they assume the threads are always scheduled,
and so always need something to do. Is this bad? Not really if there are at
least as many cores as threads (and you don't care about energy cost).
(sidebar: the "mine crypto" lock. Not a real thing b/c hashing takes too long, but
a funny thought).

Next: what can an OS provide as an abstraction to help with this?
« simple idea: just yield when you spin (not ideal---woken without purpose)

« SOLARIS idea: park / unpark(tid). Actually write the thread implementation
using park/unpark, and hope they spot the race condition!

- Recall: the thread library needs to have a queue for this, so maybe
handwave how to lock the queue for management reasons? Or spinlock
on the queue?

« More complex: the lock-management we've been talking about (but it's not
fair! talk about fairness)

* What is happening in Linux: futexes.
- futex_wait(addr,exp) vs futex_wake(addr)

- this is very similar to the feature we described with the scheduler before,
except there is an explicit queue now! Note: futex_wait takes an
"expected" value for what's at the address---use it to solve the same
problem as the "setpark” from Solaris (again, can interact for this!)

» Do we like any of these better than the others?

Note: we will need to use precept time to walk through data races and get
students to think about them in more detail, probably.

