CONCURRENCY

Introduction: What is a thread?
- on board
multiple "programs” executing within the SAME address space!
usually cooperating to achieve some task, or independent related tasks
- e.g., parallel program, web/db server
thus, each thread has:
- its own private set of registers
- its own program counter
- its own stack (and stack-pointer/base-pointer)
but shares

- rest of address space (heap, static global, code section too)

Control structures: the thread control block (TCB)
,L\(, PC B pemory I

sl

JIXN -H\rwi-lo(.t\
—_—
rejb ters

Line PC
Lin(.l SP

+ here shoold
be spate

S+’CLZ b etween Hlese.

§l’lclt |
shdk 0
| ~——

What makes thread programming hard?

main-thread-0 (no locks)

Examine in detail: imagine a trace of main-thread-0; how is "++" implemented?
assembly on the board: , od J <au,.7) 4JJ _)_/- 5-}-0 re (aJJv>

Why programs get tricky: SHARED DATA
REAL PROBLEM: uncontrolled scheduling (interrupts at any time)
- remember our timer-based scheduler?? This is where it hurts!

- note: this is NOT a problem if we're in cooperative scheduling with
predictable yields.

lots of definitions:

- program is not deterministic (indeterminate)
- critical section (where the bug can be)

- race condition (what the bug is)

- need mutual exclusion (one-at-a-time)

(turn non-deterministic code into quasi-deterministic code)

main-thread-1 (fine-grained locks)

need synch primitives

main-thread-2 (coarse-grained locks)

need synch primitives but be careful

main-thread-3 (implement locks try #1: test-and-set)
justrun it

(what is the problem?)

main-thread-4 (implement locks try #2: x86 xchg)
how to build a lock using special hardware?

(how to use xchg?)

main-thread-5 (implement locks try #2: x86 xchg + spinlock implementation)
this is how

objdump -d to look at it

Conclusions:
Why in OS class?
threads are basic OS primitive

OS itself is a concurrent program!



code fixed (1)

we just init a lock and lock the exact increment

#include <stdio.h>
#include "mythreads.h"
#include <stdlib.h>

#include <pthread.h>

int max;
volatile int balance = 0;

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

void *
mythread(void *arg)
{
char *letter = arg;
//cpubind();
printf("%s: begin\n", letter);
inti;
for (i = 0; i < max; i++) {
Pthread_mutex_lock(&Llock);
balance++;
Pthread_mutex_unlock(&lock);
}
printf("%s: done\n", letter);

return NULL;

int
main(int argc, char *argv[])
{
if (argc 1=2) {
fprintf(stderr, "usage: main-first <loopcount>\n");
exit(1);
}

max = atoi(argv([1]);

pthread_t p1, p2;

printf("main: begin [balance = %d]\n", balance);

Pthread_create(&p1, NULL, mythread, "A");

Pthread_create(&p2, NULL, mythread, "B");

// join waits for the threads to finish

Pthread_join(p1, NULL);

Pthread_join(p2, NULL);

printf(“main: done\n [balance: %d]\n [should: %d]\n",
balance, max*2);

return O;



code fix (2)

we move the lock to outside the loop, and cpubind()

#include <stdio.h>
#include "mythreads.h"
#include "mythreads-2.h"
#include <stdlib.h>

#include <pthread.h>

int max;
volatile int balance = 0;

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

void *

mythread(void *arg)

{
char *letter = arg;
cpubind();
printf("%s: begin\n", letter);
inti;
Pthread_mutex_lock(&Llock);
for (i=0; i < max; i++) {

balance++;

}
Pthread_mutex_unlock(&lock);
printf("%s: done\n", letter);

return NULL;

int
main(int argc, char *argv([])
{
if (argc 1=2) {
fprintf(stderr, "usage: main-first <loopcount>\n");
exit(1);
}

max = atoi(argv[1]);

pthread_t p1, p2;

printf("main: begin [balance = %d]\n", balance);

Pthread_create(&p1, NULL, mythread, "A");

Pthread_create(&p2, NULL, mythread, "B");

// join waits for the threads to finish

Pthread_join(p1, NULL);

Pthread_join(p2, NULL);

printf(“main: done\n [balance: %d]\n [should: %d]\n",
balance, max*2);

return O;



in the exchange-based one
SpinLock(volatile unsigned int *lock) {
while (xchg(lock, 1) ==1)
// spin!
}

SpinUnlock(volatile unsigned int *lock) {

xchg(lock, 0);



