
Review notes
Start: Let's review the whole thing, from the ground up.

We turn on a computer. The operating system needs to get loaded up. What
happens now?

Answer: fault handlers get installed (we need this very early)

Answer: the OS's page table gets initialized! (yup, the OS gets one too!)

Answer: we map (into physical memory) certain critical pages, e.g. the OS
code pages and [mapped] page table entries.

The order of these is specific to the architecture, they're the two most-basic
things we need to have happen.

At some point, we read the disk and learn about the filesystem, so that we can
find things on it. Filesystems are not covered in this exam, and will be reviewed
later in the class.

We jump to the start of the OS's first code page! And... then, the virtual
memory system takes over and runs the rest :)

Ok! The OS is ready to launch a process. What happens now?

Answer: the OS sets up the process control block.

Answer: the OS (often in the process control block, sometimes in other
dedicated memory) sets up the process page table

Answer: the OS maps the process code pages from disk directly into page
table; page faults will bring them into memory when needed.

Answer: the OS makes sure to page in [to physical memory] the first few
(mapped) entries of the process's page table (including the page table
itself!)

Answer: the OS sets the status bit in the process-control-block to "Ready"

Answer: The OS adds the pcb to the scheduler

Answer: the OS runs the scheduler

The scheduler!

What does the scheduler do? Figure out which process to run next.

How does the scheduler run the process? Just... run it! Limited Direct
Execution, as much as possible just jump to the first instruction of the process
and you're off to the races.

Most important scheduler: the multi-level feedback queue

What is a multi-level feedback queue?

Answer: a list of "round-robin" queues, in priority order

Follow-up: what is a "round-robin" queue?

Answer: A queue that runs each process for a fixed (maximum) quantum; all
processes in queue will run for first quantum before any process runs for
second quantum

Follow-up: how do we ensure a process runs for a fixed maximum quantum?

Answer: the process can just call yield

Answer: we have a timer that causes the hardware to interrupt; the interrupt
handler forces the process to yield

Back to MLFQ: The rules of the MLFQ

1: Take from the highest-priority queue

2: Use the highest-priority queue as a round-robin queue

3: Put new jobs at the highest-priority queue

4: Track the amount of time a process is actually running; if it yields before
a fixed "quantum" then keep it at the same priority level. the quantum is
tracking is cumulative. When a quantum has been exhausted (potentially
after multiple runs through the RR queue), demote the process

5: Every now and then (another hardware timer), append all queues to end
of high-priority queue. There's now just one queue.

Sidebar: How many timers are there in the hardware????

Answer: we can only assume one.

Sidebar: how are we doing all these different timers then???

Answer: one approach? Just have our single timer tick at fixed rate; when
timer fires, OS checks if anyone needed to be interrupted / if MLFQ needed
to be flattened. If not? just jump back to process

Sidebar: how to set timer?

Answer: Set it to the quantum for which you want processes to (maximally)
run without interruption. Make everything else a multiple of that.

Sidebar: is this how things really work?

Answer: Sometimes! In Linux, yes until recently-enough that it was a
problem for android phones. But a lot of modern systems are "tickless", and
timers are just used as-needed. Gotta be a bit careful about how you set
them!

We've launched a process. What now?

Process needs access to hardware / OS-managed resources (like... the ability
to launch more processes). How do we provide that?

Answer: system calls.

What is a system call?

Answer: fancy library function

Answer: changes privilege mode

Answer: we call doing this a "trap", as in "trapping into the kernel"

What is the privilege mode?

Answer: controls access to important registers (e.g the page-table base
register, so controls all the memory you can access)

Answer: controls access to important instructions (e.g. in RISC, setting /
flushing the TLB)

What if we want to spawn more processes?

Answer: the fork system call makes copy of your process

trace through how this works, copying the PCB, on the blackboard

Answer: the exec system call replaces your process

trace through how this works, mucking up the page table, on the
blackboard

Answer: the spawn system call just does it all at once.

What if we want to swap what process is running?

Answer: the scheduler decides this

Answer: flush the TLB, store the registers (including the PBTR and PC) to
the pcb, load registers from next proc's pcb. (This is slightly simplified).

...And that's about it!

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

-

•

-

•

•

•

