
Page tables, virtual memory, and mmap

Last [few] times: virtual memory, paging, huge page tables, and the TLB.

multi-level

page table

looking at a single row of a page table, entries are:

[virtual-address; physical-address; valid-bit; present-bit; protections; clock-bit]

what do these mean?

virtual-address: what the program sees. Address of the page; need to mask
to lookup. (Should walk through this, with the masking, in lecture---but not
right now)

physical-address: corresponding physical page addr

valid-bit: is this page mapped? i.e. should the program have access to it?

present-bit: is this page present in physical memory, or is it on disk?

protections: can we read? write? execute? Note: overlaps with valid a bit (in
that "not valid" is "no read / write / execute)

clock-bit: have we accessed this page since the last page fault?

Now: walk through (on the board) an address translation, with masking, for a
hypothetical (all-X) address:

mask off the page offset (just preserve page-identifying bits), search TLB

TLB hit: done

TLB miss:

search page table; in multi-level, mask off first few bits to find entry in
outer table, next few bits to find entry in inner table

check entry:

valid? if no, segfault

present? if no, pagefault

protected? if yes, protfault

set clock-bit = 1

load entry into TLB

fault: goto OS

no fault: retry TLB access (hit)

Sidebar: what does "physical addr" mean when valid=0? when present=0?

(present=0: contains disk mapping)

segfault: program handles it (segfault handler) default: kill

pagefault: OS handles it (needs to sync in page from disk)

protfault: either program handles it (still segfault handler, default: kill) or
autokill

Let's talk about MMAP!

System call: manually add entry to page table

Why do we do it? Big reason: loading from disk!

set "present" to 0, set "physical addr" to desired location on disk.

Also: setting up shared memory regions (this is a linux thing!)

Also: getting memory associated with a paritcular desired set of virtual
pages!

Finally: we know how to load programs :)

Final important thing: where is the page table?

Multi-level page tables: often in dedicated physical memory (its why they need
to be multi-level).

Why not just ... put it in virtual memory? What could happen if we did this?

(Walk through an access to a page table in virtual memory.)

•

•

•

•

•

•

•

•

•

-

-

-

-

-

-

-

•

•

•

•

-

•

•

•

