
Alternative OS Process Models
COS 417: Operating Systems

Spring 2025, Princeton University

Processes, Revisited

Processes, Revisited
Multiplexing
Share a single physical resource among multiple processes.

Processes, Revisited
Multiplexing
Share a single physical resource among multiple processes.

Virtualization
Take an existing resource and transform it into an (often) more
general, powerful and easy to use virtual form of itself.

Processes, Revisited
Multiplexing
Share a single physical resource among multiple processes.

Virtualization
Take an existing resource and transform it into an (often) more
general, powerful and easy to use virtual form of itself.

Abstraction
Take a low level resource and use it to provide a higher level (e.g.,
easier or more expressive) interface that is significantly different.

Processes provide all of the above

Process

Multiplexing

Virtualization Abstraction

Processes provide all of the above

Process

Multiplexing

Virtualization Abstraction

Through these properties, processes can…

Through these properties, processes can…
Introduce Concurrency
Run your web browser, music player and weather app side by side,
without explicit coordination.

Through these properties, processes can…
Introduce Concurrency
Run your web browser, music player and weather app side by side,
without explicit coordination.

Provide Isolation
Processes cannot (generally) access each other’s data, and a stuck
or crashed process does not affect others.

Through these properties, processes can…
Introduce Concurrency
Run your web browser, music player and weather app side by side,
without explicit coordination.

Provide Isolation
Processes cannot (generally) access each other’s data, and a stuck
or crashed process does not affect others.

Enable Portability
Processes program against an abstract machine (e.g., fork, wait).

Processes are pretty great!
So … why not just use them?

why are we still talking about this?

Diverse requirements & constraints!
All computers run multiple apps, no?

Diverse requirements & constraints!
In many systems: single application!
A ton of systems just run a single application! They don’t need to run
independent processes concurrently (i.e., without coordination).

Diverse requirements & constraints!
In many systems: single application!
A ton of systems just run a single application! They don’t need to run
independent processes concurrently (i.e., without coordination).

But there’s no disadvantages to processes!

Diverse requirements & constraints!
In many systems: single application!
A ton of systems just run a single application! They don’t need to run
independent processes concurrently (i.e., without coordination).

Real systems only have finite resources!
Overprovisioning of resources (e.g., memory, CPU) can lead to
“starvation”. Apps can get sluggish, miss important deadlines (like
buffering video), and even need to be terminated by the OS.

Diverse requirements & constraints!
What about performance and overheads?

Diverse requirements & constraints!
Processes themselves introduce overheads.
Virtualizing resources of a machine by context switching between
processes takes time. Tracking process state consumes memory.

Diverse requirements & constraints!
Processes themselves introduce overheads.
Virtualizing resources of a machine by context switching between
processes takes time. Tracking process state consumes memory.

Virtualization and abstraction can impact performance.
Using virtualized resources or high-level abstractions can prevent an
application from taking advantage of the hardware’s full potential.

Diverse requirements & constraints!
Processes themselves introduce overheads.
Virtualizing resources of a machine by context switching between
processes takes time. Tracking process state consumes memory.

Virtualization and abstraction can impact performance.
Using virtualized resources or high-level abstractions can prevent an
application from taking advantage of the hardware’s full potential.

At least processes provide isolation & security!

Diverse requirements & constraints!
Processes themselves introduce overheads.
Virtualizing resources of a machine by context switching between
processes takes time. Tracking process state consumes memory.

Virtualization and abstraction can impact performance.
Using virtualized resources or high-level abstractions can prevent an
application from taking advantage of the hardware’s full potential.

Process isolation is often imperfect.
Side channels leak information between processes (like wait time).

UNIX Processes are still pretty neat!
But there’s a plethora of other approaches,

each with their own tradeoffs!

Alternative OS Process Models
Desktop-class Operating Systems
Not much variety. Linux, Android, macOS,
iOS, … all UNIX-inspired (fork + exec
model). Windows has a spawn-like API
(CreateProcess).

Alternative OS Process Models
Desktop-class Operating Systems
Not much variety. Linux, Android, macOS,
iOS, … all UNIX-inspired (fork + exec
model). Windows has a spawn-like API
(CreateProcess).

Embedded, Cloud, Accelerators…
A ton of different approaches!

Work around one or more of the issues
mentioned previously.

Let’s Explore the Design Space

Do we need processes at all?
Many applications don’t need virtualization or multiplexing!

Can you think of examples?

Do we need processes at all?
Many applications don’t need virtualization or multiplexing!

Do we need processes at all?
Many applications don’t need virtualization or multiplexing!

Do we need processes at all?
Many applications don’t need virtualization or multiplexing!

def lightswitch_main():
 state = False # off on startup
 while True:
 if button.read() == True:
 # button was pressed!
 state = not state
 broadcast_new_state(state)

Typically referred to as “bare metal programming”. A single process
has full, direct and sole control over the hardware.

Bare-metal programs can still use abstractions!
Write portable code using functions like
button.read(), broadcast_new_state(), …

Run on many different hardware systems:

Bare-metal programs can still use abstractions!
Write portable code using functions like
button.read(), broadcast_new_state(), …

Library Operating Systems and Unikernels
Provide abstractions similar to those of full OSes.

Do not run multiple independent or interacting applications!

Enables applications to have more predictable timing, fixed
resource allocations and a high degree of control over the
hardware.

Multiplexing without Virtualization
Basic assumption so far: we have more applications than
processors, so we have to virtualize CPUs…

Multiplexing without Virtualization
Basic assumption so far: we have more applications than
processors, so we have to virtualize CPUs…

What if we had more CPUs than applications?

Multiplexing without Virtualization
Basic assumption so far: we have more applications than
processors, so we have to virtualize CPUs…

What if we had more CPUs than applications?

Multiplexing without Virtualization
Basic assumption so far: we have more applications than
processors, so we have to virtualize CPUs…

What if we had more CPUs than applications?

Logical Partitions
Divide a physical system into multiple partitions (slices), each
running their own process / OS.

Each paritition has direct, but restricted access to the underlying
hardware, constrained to their assigned physical partition.

Logical Partitions, Illustrated

Logical Partitions, Illustrated

Logical Partitions, Illustrated

𝑝𝐴 𝑝𝐶 𝑝𝐷

𝑝𝐷 𝑝𝐴

𝑝𝐶

Logical Partitions, Illustrated

𝑝𝐴 𝑝𝐶 𝑝𝐷

𝑝𝐷 𝑝𝐴

𝑝𝐶

Can this model support fork?

Logical Partitions, Illustrated

𝑝𝐴 𝑝𝐶 𝑝𝐷

𝑝𝐷 𝑝𝐴

𝑝𝐴′𝑝𝐶

Logical Partitions, Illustrated

𝑝𝐴 𝑝𝐴′ 𝑝𝐶 𝑝𝐷

𝑝𝐷 𝑝𝐴

𝑝𝐴′𝑝𝐶

Logical Partitions, Illustrated

𝑝𝐴 𝑝𝐶 𝑝𝐷

𝑝𝐷 𝑝𝐴

𝑝𝐶

What about spawn?

Logical Partitions, Illustrated

𝑝𝐴 𝑝𝐵 𝑝𝐶 𝑝𝐷

𝑝𝐷 𝑝𝐴

𝑝𝐵𝑝𝐶

Logical Partitions can be Wasteful
Logical Partitions cannot overprovision, avoid side channels such
as through timing, and have predictable performance & timing.

Logical Partitions can be Wasteful
Logical Partitions cannot overprovision, avoid side channels such
as through timing, and have predictable performance & timing.

For the majority of applications, they are wasteful: applications
rarely keep a CPU busy for long periods of time. Your computer runs
thousands of processes.

How can we retain these benefits,
without wasting so many resources?

Static Processes for Predictable Behavior
→ Virtualize the CPU according to a fixed schedule,

among a static set of processes!

Formally verified microkernel OS

Used in safety-critical, real-time
domains, like automotive ECUs.
Formal correctness proof.

Memory safe embedded OS

Used in security root of trusts
(RoTs). You might be running
Tock in your laptop today!

𝑝𝐴
𝑝𝐵

𝑝𝐶

𝑝𝐷

𝑝𝐴
𝑝𝐵

𝑝𝐶

𝑝𝐷 𝑝𝐴 𝑝𝐵 𝑝𝐶 𝑝𝐷

Can this model support fork, or spawn?

Preemptive vs. Cooperative Scheduling

def temperature_alert(trip):
 while True:
 cur = sensor.readC()
 if cur > trip_point:
 send_alert(cur)

Possible timing constraints?

Preemptive vs. Cooperative Scheduling

def temperature_alert(trip):
 while True:
 cur = sensor.readC()
 if cur > trip_point:
 send_alert(cur)

Possible timing constraints:
• Sample sensor n times per sec

• Max delay between sampling
the sensor and sending alert

• No interruption when sending
alert (e.g., sending a series of
wireless packets)

Can temperature_alert() meet
these constraints?

Preemptive vs. Cooperative Scheduling

def temperature_alert(trip):
 while True:
 cur = sensor.readC()
 if cur > trip_point:
 send_alert(cur)
 yield_control()

Possible timing constraints:
• Sample sensor n times per sec

• Max delay between sampling
the sensor and sending alert

• No interruption when sending
alert (e.g., sending a series of
wireless packets)

Can temperature_alert() meet
these constraints?

Preemptive vs. Cooperative Scheduling

@sched(priority = HIGHEST)
def temperature_alert(trip):
 while True:
 cur = sensor.readC()
 if cur > trip_point:
 send_alert(cur)
 yield_control()

Possible timing constraints:
• Sample sensor n times per sec

• Max delay between sampling
the sensor and sending alert

• No interruption when sending
alert (e.g., sending a series of
wireless packets)

Can temperature_alert() meet
these constraints?

Preemptive vs. Cooperative Scheduling

@sched(priority = HIGHEST)
def temperature_alert(trip):
 while True:
 cur = sensor.readC()
 if cur > trip_point:
 send_alert(cur)
 yield_control()

def evil_proc():
 while True:
 pass

Preemptive vs. Cooperative Scheduling

@sched(priority = HIGHEST)
def temperature_alert(trip):
 while True:
 cur = sensor.readC()
 if cur > trip_point:
 send_alert(cur)
 yield_control()

def evil_proc():
 while True:
 pass

In a cooperatively scheduled
system, a single stuck process
can bring it to a halt!

Preemptive vs. Cooperative Scheduling

Tradeoff between

timing guarantees for each process

and

whole-system liveness.

Preemptive vs. Cooperative Scheduling

@sched(priority = HIGHEST)
def temperature_alert(trip):
 while True:
 cur = sensor.readC()
 if cur > trip_point:
 send_alert(cur)
 yield_control()

Cooperatively scheduled

def evil_proc():
 while True:
 pass

Preemptively scheduled

Virtualization
Transform an underlying resource into an (often) more general,
powerful and easy to use virtual form of itself.

An important tool for portability!

Example: Virtual Memory
Creates a virtual address space that does not correspond to any
single whole or partial physical resource.

Its interface does not introduce higher-level abstractions, like a fork
system call or files in a file system.

Virtualization is Ubiquitous
Process Virtual Machines

Virtualization is Ubiquitous
Process Virtual Machines

Web Browsers run JavaScript and WebAssembly
Reexpose host CPU (x86, AMD64, aarch64) as a virtual machine that
can interpret and execute code provided by a website.

Virtualization is Ubiquitous
Process Virtual Machines

Web Browsers run JavaScript and WebAssembly
Reexpose host CPU (x86, AMD64, aarch64) as a virtual machine that
can interpret and execute code provided by a website.

Apple Rosetta 2
Translation layer for running AMD64 legacy macOS applications on
new M-series Apple SoCs implementing the ARM aarch64
architecture.

Virtualization is Ubiquitous
System Virtual Machines

Virtualization is Ubiquitous
System Virtual Machines

QEMU – Quick Emulator
Runs as a process, and provides virtualized (emulated) versions of
all resources required to run a full operating system.

You’ll be using QEMU in this class!

Can provide a virtual guest system similar to your host computer
(fast), or emulate an entirely different system architecture (slower).

UNIX Processes
Covered in depth in prior lectures.

Provide all three of multiplexing, virtualization and abstraction.

Cloud Computing
It’s just other people’s computers!

It’s a little more complex! A “cloud” is a lot like an operating system.

It Multiplexes: Running many tenants on shared infrastructure.

It Virtualizes: Providing virtual machines and resources to support
a diverse set of workloads and enable “migrations”.

It Abstracts: High-level concepts like “lambda functions” and
“object storage” on top of physical resources like CPUs and disks.

Not just a single process: variety of offerings, different properties.

Departure from Kernel–Userspace Model
Kernel no longer behaves like a “library” to processes, like in LDE. It
does not run underneath a process, it runs next to it.

Meta-Layering: Each tenant may itself run a full operating system.

	Alternative OS Process Models
	COS 417: Operating Systems
	Spring 2025, Princeton University

	Processes, Revisited
	Multiplexing
	Virtualization
	Abstraction

	Processes provide all of the above
	Through these properties, processes can…
	Introduce Concurrency
	Provide Isolation
	Enable Portability

	Processes are pretty great!
	So … why not just use them?

	Diverse requirements & constraints!
	All computers run multiple apps, no?

	Diverse requirements & constraints!
	What about performance and overheads?
	Virtualization and abstraction can impact performance.

	UNIX Processes are still pretty neat!
	Alternative OS Process Models
	Desktop-class Operating Systems
	Embedded, Cloud, Accelerators…

	Let's Explore the Design Space
	Do we need processes at all?
	Bare-metal programs can still use abstractions!
	Multiplexing without Virtualization
	Logical Partitions, Illustrated
	Logical Partitions can be Wasteful
	Static Processes for Predictable Behavior
	Preemptive vs. Cooperative Scheduling
	Virtualization
	Example: Virtual Memory

	Virtualization is Ubiquitous
	Web Browsers run JavaScript and WebAssembly
	Apple Rosetta 2

	UNIX Processes
	Cloud Computing
	Departure from Kernel–Userspace Model

