
UNIX Processes
COS 417: Operating Systems

Spring 2025, Princeton University

Core of the UNIX Process API

Core of the UNIX Process API
fork()

Duplicate the memory, file descriptors, user, group, etc… of the
current process

Core of the UNIX Process API
fork()

Duplicate the memory, file descriptors, user, group, etc… of the
current process
• What’s different?

Core of the UNIX Process API
fork()

Duplicate the memory, file descriptors, user, group, etc… of the
current process
• What’s different?

wait(int pid)

Wait for the process with process id pid to exit.

Core of the UNIX Process API
fork()

Duplicate the memory, file descriptors, user, group, etc… of the
current process
• What’s different?

wait(int pid)

Wait for the process with process id pid to exit.

exec??(char *pathname, ...)

Replace current program for process with program at pathname.

Flexible: Concurrency
def divide_and_concur():
 cpus = get_num_cpus()
 big_img = readfile("some_large_image.raw")
 step = big_img.pixels() / cpus
 for i in 0..cpus:
 pid = fork()
 if pid == 0:
 result = apply_filter(big_img[(step * i)..][..step])
 write_to_file("some_large_image_bw.raw", step * i, step)

Flexible: Don’t repeat yourself
def fancy_web_server(port):
 conf = read_config_file()
 very_expensive_initialization(conf)
 listen_socket = listen(port)
 for i in 0..10:
 pid = fork()
 if pid == 0:
 for connection in listen_socket:
 while req = read_request(connection):
 handle_req(conf, req)

Flexible: Run other programs concurrently
def simple_shell():
 cmd = input("What do you want to run? ")
 pid = fork()
 if pid == 0:
 exec(cmd)
 else:
 print("I'm still here, just waiting, k?")
 wait(pid)

What the fork()?
Concurrency

Code re-use

Multi-processing (e.g. a shell)

What the fork()?
Concurrency
Threads, e.g. p-threads, share memory thus almost always better for
parallelism, events better for single-threaded concurrency…

Code re-use

Multi-processing (e.g. a shell)

What the fork()?
Concurrency
Threads, e.g. p-threads, share memory thus almost always better for
parallelism, events better for single-threaded concurrency…

Code re-use
Used to be important because many libraries were not thread safe,
so shared libraries not a good option. Mostly fixed now.

Multi-processing (e.g. a shell)

What the fork()?
Concurrency
Threads, e.g. p-threads, share memory thus almost always better for
parallelism, events better for single-threaded concurrency…

Code re-use
Used to be important because many libraries were not thread safe,
so shared libraries not a good option. Mostly fixed now.

Multi-processing (e.g. a shell)
Disaster!

Figure 1: Time to run fork() + exec() vs. spawn()¹

¹A fork() in the road, Bauman et al.

Why is fork() so slow?

It seems reasonable to suppose that it exists in Unix mainly
because of the ease with which fork could be implemented

without changing much else.
— Dennis Ritchie (1984)

fork() on the original UNIX for PDP-7

• Couldn’t have two processes in memory
– No memory translation HW

• Context switch to a different process?
1. Pause current process
2. Copy main memory to storage
3. Overwrite memory with next process’s

stored state
• For fork(), just skip the last step!

fork() on the original UNIX for PDP-7

• Couldn’t have two processes in memory
– No memory translation HW

• Context switch to a different process?
1. Pause current process
2. Copy main memory to storage
3. Overwrite memory with next process’s

stored state
• For fork(), just skip the last step!

Simple to implement, fast (relatively)!

fork() on the original UNIX for PDP-7

• Memory is small!
– <= 144 KB

• Memory access is (relatively) fast!
– 1/2 CPU cycle

fork() today
• Memory is enourmous!

– 1GB for a process is typical

• Memory access is (relatively) sloooooooowwwww!
– 100s of CPU cycles

Two options for implementing:
1. Copy all of memory upfront.

2. Copy memory lazily on write (copy-on-write)
• But each copy-on-write is very sloooooooowwwww

fork() + exec() today
fork()

New process points to same memory, marked CoW

exec()

In new process immediately overwrites all memory

For each page in memory: incur a page fault; allocate new memory;
copy memory; modify page tables

fork() + exec() vs. spawn()

spawn()

Create a new, empty process and
loads new program into it.

No unnecessary copying, no
page faults.

So why the fork() is fork() still around?
1. 50 years of legacy.

2. No other access to copy-on-write semantics in most operating
systems

• Snapshots & memoization (e.g. Android Zygotes)

• Asynchronous persistence (e.g. Redis)

So why the fork() is fork() still around?
1. 50 years of legacy.

2. No other access to copy-on-write semantics in most operating
systems

• Snapshots & memoization (e.g. Android Zygotes)

• Asynchronous persistence (e.g. Redis)

Consider not using fork() in the future.

Your favorite language probably doesn’t.

More to cover
• file descriptors
• stdout, stderr, stdin
• pipes, how they allow inter process communication
• Linux vs. UNIX philosophy difference

	UNIX Processes
	COS 417: Operating Systems
	Spring 2025, Princeton University

	Core of the UNIX Process API
	fork()
	wait(int pid)
	exec??(char *pathname, ...)

	Flexible: Concurrency
	Flexible: Don't repeat yourself
	Flexible: Run other programs concurrently
	What the fork()?
	Concurrency
	Code re-use
	Multi-processing (e.g. a shell)

	Why is fork() so slow?
	fork() on the original UNIX for PDP-7
	fork() today
	Two options for implementing:

	fork() + exec() today
	fork()
	exec()

	fork() + exec() vs. spawn()
	spawn()

	So why the fork() is fork() still around?
	More to cover

