
Client-Side Web Programming:
JavaScript (Part 5)

Copyright © 2025 by
Robert M. Dondero, Ph.D.

Princeton University

1

Objectives

• We will cover:
– Bundled React
– Bundled React via Vite
– React commentary

2

Agenda

• Bundled React: motivation
• Bundled React
• Bundled React: Vite
• React commentary

3

Bundled React: Motivation

Server

index

searchresults

Browser

index.html

penny JS/JSX

Browser requests and receives index.html

So far:

4

Bundled React: Motivation

Server

index

searchresults

Browser

index.html
react
react-dom
babel
penny JS/JSX

cdn

react
react-dom
babel

Browser requests and receives react,
react-dom, and babel

So far (cont.):

5

Bundled React: Motivation

Server

index

searchresults

Browser

index.html
react
react-dom
babel
penny JS

Browser uses babel to convert JSX code
to JS code

So far (cont.):

6

Bundled React: Motivation

Server

index

searchresults

Browser

index.html

react
react-dom
penny JS

Browser requests and receives book info

AJAX

So far (cont.):

7

Bundled React: Motivation

• Problem
– At load-time:

• Browser fetches index.html page, and then…
• Browser fetches react
• Browser fetches react-dom
• Browser fetches babel
• Browser uses babel to convert your JSX code to

JavaScript code
• Browser executes your JavaScript code

8
Blue => load-time overhead

Agenda

• Bundled React: motivation
• Bundled React
• Bundled React: Vite
• React commentary

9

Bundled React

• Preliminary note:
– Don’t bundle your Assignment 4

solution!!!

10

Bundled React

• Solution
– Before load-time:

• Use babel to convert your JSX code to JavaScript
code

• Use a bundling program (e.g., webpack) to place
react, react-dom, and your JavaScript code in a
JavaScript bundle

– At load-time:
• Browser fetches your index.html page
• Browser fetches your JavaScript bundle
• Browser executes your JavaScript code

11

Bundled React

npm

npm requests and receives react, react-dom,
babel, webpack
npm uses webpack and babel to create a JS
bundle containing react, react-dom, and penny
JS

JS bundle

npm registry
react
react-dom
babel
webpack

penny JS/JSX

12

Bundled React

Server

index

searchresults

Browser

index.html

Browser requests and receives index page

JS bundle

13

Bundled React

Server

index

searchresults

Browser

index.html
JS bundle

Browser requests and receives JS bundle

JS bundle

14

Bundled React

Server

index

searchresults

Browser

index.html
JS bundle

Browser requests and receives book info

AJAX

JS bundle

15

Bundled React

• Detailed instructions…

16

Bundled React

• Thanks, in part, to Lucas Manning (‘20)…
• See PennyReactWebpack app (cont.)

– runserver.py
– penny.sql, penny.sqlite
– database.py
– penny.py (same)
– PennyHeader.jsx, PennyFooter.jsx,

PennySearch.jsx, App.jsx
– main.js
– index.html

17

Bundled React

• See PennyReactWebpack app (cont.)
– package.json

• Configures npm
– webpack.config.js

• Configures webpack

18

Bundled React

• To give it a try:
– Install node.js
– Install dependencies

• npm install
– Examines package.json
– (Recursively) installs dependencies into node_modules

directory
– Creates package-lock.json file

» Summary of contents of node_modules directory

19

Bundled React

• To give it a try (cont.):
– Build the bundle

• npm run build
– Runs webpack

» Examines webpack.config.js
» Uses babel to convert JSX to JavaScript, and

transpile JavaScript to ES5
» Packs all ES5 JavaScript code into one large bundle

(static/app.bundle.js)

20

Bundled React

21

$ cd PennyReactWebpack
$ npm run build

> pennyreactwebpack@1.0.0 build
> webpack

asset app.bundle.js 15.6 KiB [compared for emit] [minimized] (name: main) 1
related asset
orphan modules 9.25 KiB [orphan] 4 modules
cacheable modules 34.3 KiB
 modules by path ./node_modules/react/ 16.6 KiB
 ./node_modules/react/index.js 186 bytes [built] [code generated]
 ./node_modules/react/cjs/react.production.js 16.5 KiB [built] [code
generated]
 modules by path ./node_modules/react-dom/ 7.83 KiB
 ./node_modules/react-dom/index.js 1.33 KiB [built] [code generated]
 ./node_modules/react-dom/cjs/react-dom.production.js 6.5 KiB [built]
[code generated]
 ./main.js + 4 modules 9.8 KiB [built] [code generated]
webpack 5.97.1 compiled successfully in 420 ms
$

Bundled React

• To give it a try (cont.):
– Run the app

• python runserver.py 55555

22

Bundled React

23

$ cd PennyReactWebpack
$ python runserver.py 55555
 * Serving Flask app 'penny'
 * Debug mode: on
WARNING: This is a development server. Do not use it in a
production deployment. Use a production WSGI server
instead.
 * Running on all addresses (0.0.0.0)
 * Running on http://127.0.0.1:55555
 * Running on http://192.168.1.10:55555
Press CTRL+C to quit
 * Restarting with stat
 * Debugger is active!
 * Debugger PIN: 957-120-414

Bundled React

• To give it a try (cont.):
– Browse to http://localhost:55555

24

Agenda

• Bundled React: motivation
• Bundled React
• Bundled React: Vite
• React commentary

25

Bundled React: Vite

• Problem
– Bundling a large app can be slow
– Using webpack (as shown) to repeatedly

generate bundles can be slow during
development of a large app

26

Bundled React: Vite

• Solution 1
– Configure webpack to allow development

without bundling
• Bundles created at your command

– Configure webpack to do hot module
reloading

• Change JavaScript code => browser reloads it

• Solution 2
– Use a high-level React development

environment

27

Bundled React: Vite

• High-level React development
environments
– create-react-app

• Popular but deprecated
– Next.js

• Popular but complicated
– Vite

• Popular and (relatively) simple
– Several others

28

Bundled React: Vite

• Vite
– A popular React web development

environment
– Recognized for its speed

29

Bundled React: Vite

• General approach
– Through Vite, create a front-end server

• Delivers index.html and JS bundle to browser
– Independent of Vite, create a back-end

server
• Written in Python/Flask/Jinja2 (or whatever!)
• Provides services (API) to React app
• Interacts with DB

30

Bundled React: Vite

Vite

Vite requests and receives react, react-dom
Vite creates JS bundle containing those libraries
and penny JS

Front-End Server

npm registry

react
react-dom

penny JS/JSX
index.html

JS bundle

31

Bundled React: Vite

Run the front-end and back-end servers
Browser requests and receives index page

Front-End Server

index.html

JS bundle

Browser

index.html

Back-End Server

searchresults

32

Bundled React: Vite

Browser requests and receives JS bundle

Front-End Server

index.html

JS bundle

Browser

index.html
JS bundle

Back-End Server

searchresults

33

Bundled React: Vite

Browser requests and receives book info

Front-End Server

index.html

JS bundle

Browser

index.html
JS bundle

Back-End Server

searchresults

AJAX

34

Bundled React: Vite

• Problem: Cross-Origin Resource Sharing
(CORS)
– Browser loads JS code from front-end server
– JS code sends AJAX requests to back-end

server
– Back-end server notes that JS code is not

from back-end server (has a different origin)
– Back-end server refuses to respond

35

Bundled React: Vite

• Solution:
– Override CORS
– Command back-end server to allow AJAX

requests from JavaScript code that the
browser loaded from the front-end server

36

Bundled React: Vite

• Detailed instructions…

37

Bundled React: Vite

• Step 1: Create the back end

– Assuming that you’ve created a proper
Python virtual env and have installed Flask…

38

Bundled React: Vite

• Step 1.1: Create a
PennyReactViteBackend directory
anywhere in your file system

39

Bundled React: Vite

• Step 1.2: Place in the
PennyReactViteBackend directory these
files:
– runserver.py
– penny.sql
– penny.sqlite
– database.py
– penny.py
– requirements.txt

40

Bundled React: Vite

• Step 2: Create the front end

– Assuming that you’ve installed node.js…

41

Bundled React: Vite

• Step 2.1: Create a
PennyReactViteFrontend directory
containing a default app anywhere in your
file system

42

$ npm create vite@latest \
 PennyReactViteFrontend -– \
 --template react

Enter pennyreactvitefrontend as the Package name

Bundled React: Vite

• Step 2.2: Delete all files from the
PennyReactViteFrontend/public directory

43

$ cd PennyReactViteFrontend/public
$ rm *

Bundled React: Vite

• Step 2.3: Delete all files from the
PennyReactViteFrontend/src directory

44

$ cd PennyReactViteFrontend/src
$ rm -r *

Bundled React: Vite

• Step 2.4: In the
PennyReactViteFrontend/src directory add
these files:
– main.jsx
– App.jsx
– PennyHeader.jsx,
– PennyFooter.jsx
– PennySearch.jsx

45

Bundled React: Vite

• Step 2.5: In the PennyReactViteFrontend
directory add/overwrite these files:
– .env.development
– .env.production
– vite.config.js

46

Bundled React: Vite

• Step 2.6: In the PennyReactViteFrontend
directory edit index.html
– Change this

• <title>Vite + react</title>

– to this:
• <title>Penny.com</title>

47

Bundled React: Vite

• Step 2.7: Install dependencies

– Installs dependencies into the node_modules
directory

48

$ cd PennyReactViteFrontend
$ npm install

Bundled React: Vite

• Step 3: Run the app in development mode

49

Bundled React: Vite

• Step 3.1: Run PennyReactViteBackend

– Starts back-end test server on localhost at
port 5000

50

$ cd PennyReactViteBackend
$ export FRONTEND_URL=http://localhost:5173
$ python runserver.py

Bundled React: Vite

• Step 3.2: Run PennyReactViteFrontend

– Starts front-end test server on localhost at
port 5173

51

$ cd PennyReactViteFrontend
$ npm run dev

Bundled React: Vite

• Step 3.3: Browse to http://localhost:5173

52

http://localhost:5173

Bundled React: Vite

• Step 4: Run the app in production mode

53

Bundled React: Vite

• Step 4.1: Run PennyReactViteBackend

– Starts back-end test server on localhost at
port 5000

54

$ cd PennyReactViteBackend
$ export FRONTEND_URL=http://localhost:4173
$ python runserver.py

Bundled React: Vite

• Step 4.2: Build PennyReactViteFrontend

– Builds React bundle

55

cd PennyReactViteFrontend
npm run build

Bundled React: Vite

• Step 4.3: Run PennyReactVite

– Starts front-end test server on localhost at
port 4173

56

cd PennyReactViteFrontend
npm run preview

Bundled React: Vite

• Step 4.4: Browse to http://localhost:4173

57

http://localhost:5173

Aside: Deployment

• Deploying to Render/Heroku
– Deploy front-end server as a static site
– Deploy back-end server as a web service

58

Aside: Adding Authentication

• Adding authentication (CAS or Google) to:
– A one-server bundled React app

• (Such as is created by webpack)
• Not too difficult

– A two-server bundled React app
• (Such as is created by Vite)
• Very difficult
• Alternative: hack Vite so it generates a one-server

app

59

More React

• There is much more to React…

• Recommended starter book:
– The Road to React (Robin Weiruch)

60

Agenda

• Bundled React: motivation
• Bundled React
• Bundled React: Vite
• React commentary

61

React Commentary

• jQuery
– HTML code contains JavaScript code
– Modularity by technologies

• React
– HTML code is generated by JavaScript code
– Modularity by components

62

React Commentary

• Commentary:
– Should you use React for:

• The “hello” application?
• The “echo” application?
• The “datetime” application?
• The Penny application?
• The Assignment 4 application?
• Your project application?

63

React Commentary

• Commentary:
– Use React iff it’s appropriate to do so!

• Large web application
• Web application with a component that’s repeated

many times
• Web application that benefits from using existing

React components

64

Summary

• We have covered:
– Bundled React apps
– Bundled React apps: Vite

65

Summary

• We have covered:
– Client-side web programming using

JavaScript
• The browser DOM
• AJAX
• jQuery
• React

• See also:
• Appendix 1: Arrow Functions

66

Appendix 1:
Arrow Functions

67

Arrow Functions

• Recall from JavaScript lectures…
• Question: How is this bound within a

function f()?
• Answer: Depends upon how f() is

called:
Function Call Binding of this
f() In f(), this is undefined
o.f() In f(), this is bound to o
new f() In f(), this is bound to a new empty object

68

Arrow Functions

• Some terms for this lecture:

– Ordinary function: a non-arrow function
– Ordinary variable: a non-this variable

69

Arrow Functions

• Arrow function def expressions
– Informally arrow functions
– Arrow functions vs ordinary functions:

• More succinct
• Same semantics - mostly!!!

70

Aside: setInterval & setTimeout

setInterval(f, ms);
// Call f every ms milliseconds

setTimeout(f, ms);
// Call f after ms milliseconds

In Node.js:

We’ll use
now

window.setInterval(f, ms);
// Call f every ms milliseconds

window.setTimeout(f, ms);
// Call f after ms milliseconds

In browsers:

We have
seen

71

We have
seen

Arrow Functions

• Fact 1: In an ordinary function…
– The value of this is determined

dynamically
• Based upon the call
• o.f()

– In the function this is bound to o
• f()

– In the function this is undefined

72

Arrow Functions

• See arrow1.js
– Notes:

• Global code calls main()
• main() calls blueCar.writeColor()
• blueCar.writeColor() calls setTimeout()
• setTimeout() calls given ordinary function

– As f(), not as o.f()
• In ordinary function, this is undefined

$ node arrow1.js
undefined
$

73

Arrow Functions

• Fact 2: In an ordinary function…
– The value of an ordinary variable is

determined statically
• Based upon program block structure

74

Arrow Functions

• See arrow2.js
– Notes:

• Global code calls main()
• main() calls blueCar.writeColor()
• blueCar.writeColor() calls setTimeout()
• setTimeout() calls given ordinary function

– As f(), not as o.f()
• In ordinary function, this is undefined

– But the ordinary function doesn’t use this!

$ node arrow2.js
blue
$

75

Arrow Functions

• Fact 3: In an arrow function…
– The value of this (and any ordinary

variable) is determined statically
• Based upon program block structure

76

Arrow Functions

• See arrow3.js
– Notes:

• Global code calls main()
• main() calls blueCar.writeColor()
• blueCar.writeColor() calls setTimeout()
• setTimeout() calls given arrow function

– As f(), not as o.f()
• In arrow function, this is bound to blueCar

$ node arrow3.js
blue
$

77

Arrow Functions

• Question: Why use arrow functions?
• Answer 1: They’re often more succinct
• Answer 2: this is defined statically

• Arrow functions often are appropriate as
callback functions

78

