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Objectives

• We will cover:
– Bundled React
– Bundled React via Vite
– React commentary
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Agenda

• Bundled React: motivation
• Bundled React
• Bundled React: Vite
• React commentary
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Bundled React: Motivation
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Bundled React: Motivation
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Bundled React: Motivation
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Bundled React: Motivation

• Problem
– At load-time:

• Browser fetches index.html page, and then…
• Browser fetches react
• Browser fetches react-dom
• Browser fetches babel
• Browser uses babel to convert your JSX code to 

JavaScript code
• Browser executes your JavaScript code
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Blue => load-time overhead



Agenda

• Bundled React: motivation
• Bundled React
• Bundled React: Vite
• React commentary
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Bundled React

• Preliminary note:
– Don’t bundle your Assignment 4 

solution!!!
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Bundled React

• Solution
– Before load-time:

• Use babel to convert your JSX code to JavaScript 
code

• Use a bundling program (e.g., webpack) to place 
react, react-dom, and your JavaScript code in a 
JavaScript bundle

– At load-time:
• Browser fetches your index.html page
• Browser fetches your JavaScript bundle
• Browser executes your JavaScript code
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Bundled React
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Bundled React
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Bundled React
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Bundled React

• Detailed instructions…
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Bundled React

• Thanks, in part, to Lucas Manning (‘20)…
• See PennyReactWebpack app (cont.)

– runserver.py
– penny.sql, penny.sqlite
– database.py
– penny.py (same)
– PennyHeader.jsx, PennyFooter.jsx, 

PennySearch.jsx, App.jsx
– main.js
– index.html
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Bundled React

• See PennyReactWebpack app (cont.)
– package.json

• Configures npm
– webpack.config.js

• Configures webpack
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Bundled React

• To give it a try:
– Install node.js
– Install dependencies

• npm install
– Examines package.json
– (Recursively) installs dependencies into node_modules 

directory
– Creates package-lock.json file

» Summary of contents of node_modules directory
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Bundled React

• To give it a try (cont.):
– Build the bundle

• npm run build
– Runs webpack

» Examines webpack.config.js
» Uses babel to convert JSX to JavaScript, and 

transpile JavaScript to ES5
» Packs all ES5 JavaScript code into one large bundle 

(static/app.bundle.js)
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Bundled React

21

$ cd PennyReactWebpack
$ npm run build

> pennyreactwebpack@1.0.0 build
> webpack

asset app.bundle.js 15.6 KiB [compared for emit] [minimized] (name: main) 1 
related asset
orphan modules 9.25 KiB [orphan] 4 modules
cacheable modules 34.3 KiB
  modules by path ./node_modules/react/ 16.6 KiB
    ./node_modules/react/index.js 186 bytes [built] [code generated]
    ./node_modules/react/cjs/react.production.js 16.5 KiB [built] [code 
generated]
  modules by path ./node_modules/react-dom/ 7.83 KiB
    ./node_modules/react-dom/index.js 1.33 KiB [built] [code generated]
    ./node_modules/react-dom/cjs/react-dom.production.js 6.5 KiB [built] 
[code generated]
  ./main.js + 4 modules 9.8 KiB [built] [code generated]
webpack 5.97.1 compiled successfully in 420 ms
$ 



Bundled React

• To give it a try (cont.):
– Run the app

• python runserver.py 55555

22



Bundled React
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$ cd PennyReactWebpack
$ python runserver.py 55555
 * Serving Flask app 'penny'
 * Debug mode: on
WARNING: This is a development server. Do not use it in a 
production deployment. Use a production WSGI server 
instead.
 * Running on all addresses (0.0.0.0)
 * Running on http://127.0.0.1:55555
 * Running on http://192.168.1.10:55555
Press CTRL+C to quit
 * Restarting with stat
 * Debugger is active!
 * Debugger PIN: 957-120-414



Bundled React

• To give it a try (cont.):
– Browse to http://localhost:55555
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Agenda

• Bundled React: motivation
• Bundled React
• Bundled React: Vite
• React commentary
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Bundled React: Vite

• Problem
– Bundling a large app can be slow
– Using webpack (as shown) to repeatedly 

generate bundles can be slow during 
development of a large app
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Bundled React: Vite

• Solution 1
– Configure webpack to allow development 

without bundling
• Bundles created at your command

– Configure webpack to do hot module 
reloading

• Change JavaScript code => browser reloads it

• Solution 2
– Use a high-level React development 

environment
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Bundled React: Vite

• High-level React development 
environments
– create-react-app

• Popular but deprecated
– Next.js

• Popular but complicated
– Vite

• Popular and (relatively) simple
– Several others
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Bundled React: Vite

• Vite
– A popular React web development 

environment
– Recognized for its speed
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Bundled React: Vite

• General approach
– Through Vite, create a front-end server

• Delivers index.html and JS bundle to browser
– Independent of Vite, create a back-end 

server
• Written in Python/Flask/Jinja2 (or whatever!)
• Provides services (API) to React app
• Interacts with DB
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Bundled React: Vite
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Bundled React: Vite
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Bundled React: Vite
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Bundled React: Vite
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Bundled React: Vite

• Problem: Cross-Origin Resource Sharing 
(CORS)
– Browser loads JS code from front-end server
– JS code sends AJAX requests to back-end 

server
– Back-end server notes that JS code is not 

from back-end server (has a different origin)
– Back-end server refuses to respond
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Bundled React: Vite

• Solution: 
– Override CORS
– Command back-end server to allow AJAX 

requests from JavaScript code that the 
browser loaded from the front-end server
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Bundled React: Vite

• Detailed instructions…
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Bundled React: Vite

• Step 1:  Create the back end

– Assuming that you’ve created a proper 
Python virtual env and have installed Flask…
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Bundled React: Vite

• Step 1.1: Create a 
PennyReactViteBackend directory 
anywhere in your file system
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Bundled React: Vite

• Step 1.2: Place in the 
PennyReactViteBackend directory these 
files:
– runserver.py
– penny.sql
– penny.sqlite
– database.py
– penny.py
– requirements.txt
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Bundled React: Vite

• Step 2: Create the front end

– Assuming that you’ve installed node.js…
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Bundled React: Vite

• Step 2.1: Create a 
PennyReactViteFrontend directory 
containing a default app anywhere in your 
file system
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$ npm create vite@latest \
   PennyReactViteFrontend -– \
   --template react

Enter pennyreactvitefrontend as the Package name



Bundled React: Vite

• Step 2.2: Delete all files from the 
PennyReactViteFrontend/public directory
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$ cd PennyReactViteFrontend/public
$ rm *



Bundled React: Vite

• Step 2.3: Delete all files from the 
PennyReactViteFrontend/src directory
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$ cd PennyReactViteFrontend/src
$ rm -r *



Bundled React: Vite

• Step 2.4: In the 
PennyReactViteFrontend/src directory add 
these files:
– main.jsx
– App.jsx
– PennyHeader.jsx,
– PennyFooter.jsx
– PennySearch.jsx
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Bundled React: Vite

• Step 2.5: In the PennyReactViteFrontend 
directory add/overwrite these files:
– .env.development
– .env.production
– vite.config.js
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Bundled React: Vite

• Step 2.6: In the PennyReactViteFrontend 
directory edit index.html
– Change this

• <title>Vite + react</title>

– to this:
• <title>Penny.com</title>
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Bundled React: Vite

• Step 2.7: Install dependencies

– Installs dependencies into the node_modules 
directory
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$ cd PennyReactViteFrontend
$ npm install



Bundled React: Vite

• Step 3: Run the app in development mode
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Bundled React: Vite

• Step 3.1: Run PennyReactViteBackend

– Starts back-end test server on localhost at 
port 5000
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$ cd PennyReactViteBackend
$ export FRONTEND_URL=http://localhost:5173
$ python runserver.py



Bundled React: Vite

• Step 3.2: Run PennyReactViteFrontend

– Starts front-end test server on localhost at 
port 5173
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$ cd PennyReactViteFrontend
$ npm run dev 



Bundled React: Vite

• Step 3.3: Browse to http://localhost:5173
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http://localhost:5173


Bundled React: Vite

• Step 4: Run the app in production mode
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Bundled React: Vite

• Step 4.1: Run PennyReactViteBackend

– Starts back-end test server on localhost at 
port 5000
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$ cd PennyReactViteBackend
$ export FRONTEND_URL=http://localhost:4173
$ python runserver.py



Bundled React: Vite

• Step 4.2: Build PennyReactViteFrontend

– Builds React bundle
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cd PennyReactViteFrontend
npm run build



Bundled React: Vite

• Step 4.3: Run PennyReactVite

– Starts front-end test server on localhost at 
port 4173
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cd PennyReactViteFrontend
npm run preview



Bundled React: Vite

• Step 4.4: Browse to http://localhost:4173
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http://localhost:5173


Aside: Deployment

• Deploying to Render/Heroku
– Deploy front-end server as a static site
– Deploy back-end server as a web service
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Aside: Adding Authentication

• Adding authentication (CAS or Google) to:
– A one-server bundled React app

• (Such as is created by webpack)
• Not too difficult

– A two-server bundled React app
• (Such as is created by Vite)
• Very difficult
• Alternative: hack Vite so it generates a one-server 

app
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More React

• There is much more to React…

• Recommended starter book:
– The Road to React (Robin Weiruch)
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Agenda

• Bundled React: motivation
• Bundled React
• Bundled React: Vite
• React commentary
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React Commentary

• jQuery
– HTML code contains JavaScript code
– Modularity by technologies

• React
– HTML code is generated by JavaScript code
– Modularity by components
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React Commentary

• Commentary:
– Should you use React for:

• The “hello” application?
• The “echo” application?
• The “datetime” application?
• The Penny application?
• The Assignment 4 application?
• Your project application?
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React Commentary

• Commentary:
– Use React iff it’s appropriate to do so!

• Large web application
• Web application with a component that’s repeated 

many times
• Web application that benefits from using existing 

React components
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Summary

• We have covered:
– Bundled React apps
– Bundled React apps: Vite
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Summary

• We have covered:
– Client-side web programming using 

JavaScript
• The browser DOM
• AJAX
• jQuery
• React

• See also:
• Appendix 1:  Arrow Functions
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Appendix 1:
Arrow Functions
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Arrow Functions

• Recall from JavaScript lectures…
• Question: How is this bound within a 

function f()?
• Answer: Depends upon how f() is 

called: 
Function Call Binding of this
f() In f(), this is undefined
o.f() In f(), this is bound to o
new f() In f(), this is bound to a new empty object
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Arrow Functions

• Some terms for this lecture:

– Ordinary function:  a non-arrow function
– Ordinary variable:  a non-this variable
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Arrow Functions

• Arrow function def expressions
– Informally arrow functions
– Arrow functions vs ordinary functions:

• More succinct
• Same semantics - mostly!!!
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Aside: setInterval & setTimeout

setInterval(f, ms);
// Call f every ms milliseconds

setTimeout(f, ms);
// Call f after ms milliseconds

In Node.js:

We’ll use
now

window.setInterval(f, ms);
// Call f every ms milliseconds

window.setTimeout(f, ms);
// Call f after ms milliseconds

In browsers:

We have
seen

71

We have
seen



Arrow Functions

• Fact 1: In an ordinary function…
– The value of this is determined 

dynamically
• Based upon the call
• o.f() 

– In the function this is bound to o
• f()

– In the function this is undefined
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Arrow Functions

• See arrow1.js
– Notes:

• Global code calls main()
• main() calls blueCar.writeColor()
• blueCar.writeColor() calls setTimeout()
• setTimeout() calls given ordinary function

– As f(), not as o.f()
• In ordinary function, this is undefined

$ node arrow1.js
undefined
$
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Arrow Functions

• Fact 2: In an ordinary function…
– The value of an ordinary variable is 

determined statically
• Based upon program block structure
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Arrow Functions

• See arrow2.js
– Notes:

• Global code calls main()
• main() calls blueCar.writeColor()
• blueCar.writeColor() calls setTimeout()
• setTimeout() calls given ordinary function

– As f(), not as o.f()
• In ordinary function, this is undefined

– But the ordinary function doesn’t use this!

$ node arrow2.js
blue
$
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Arrow Functions

• Fact 3: In an arrow function…
– The value of this (and any ordinary 

variable) is determined statically
• Based upon program block structure
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Arrow Functions

• See arrow3.js
– Notes:

• Global code calls main()
• main() calls blueCar.writeColor()
• blueCar.writeColor() calls setTimeout()
• setTimeout() calls given arrow function

– As f(), not as o.f()
• In arrow function, this is bound to blueCar

$ node arrow3.js
blue
$
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Arrow Functions

• Question:  Why use arrow functions?
• Answer 1: They’re often more succinct
• Answer 2: this is defined statically

• Arrow functions often are appropriate as 
callback functions
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