
Client-Side Web Programming:
JavaScript (Part 4)

Copyright © 2025 by
Robert M. Dondero, Ph.D.

Princeton University

1

Objectives

• We will cover:
– React: concepts
– React: fundamentals
– React: useState hooks
– React: props
– React: useEffect hooks
– React: realistic example
– React: commentary

2

Agenda

• React: concepts
• React: fundamentals
• React: useState hooks
• React: props
• React: useEffect hooks
• React: realistic example
• React: commentary

3

React: Concepts

4
Note: React == React.js == ReactJS

Jordan
Walke

React: Concepts

• The fundamental idea…

• jQuery (or no client-side library)
– HTML code contains JavaScript code

• React
– HTML code is generated by JavaScript code

5

React: Concepts

• Two styles of React programming:
– Class-based

• (pro) Easier to understand?
• (con) Semi-deprecated

– Functional
• (pro) More succinct
• (con) Harder to understand?

• We’ll cover functional…

6

React: Concepts

• Key concept: components
– Pgmmer defines components
– Each component is defined as a function
– Components can be arranged hierarchically
– Each component:

• Can have state
• Can accept properties (props) from parent

component
• Returns a DOM subtree

7

React: Concepts

• Key concept: virtual DOM
– Corresponding to the browser DOM tree,

React maintains a virtual DOM tree
– For each browser DOM node, there is a

virtual DOM node

8

React: Concepts

• Key concept: virtual DOM (cont.)
– At initial rendering, and when the state of a

component changes:
• Component returns a DOM subtree
• React updates the virtual DOM tree with the

component’s DOM subtree
• React compares the updated virtual DOM tree with

the previous version to determine diffs
• Using diffs, React reconciles the virtual DOM tree

and browser DOM tree
– Updates the fewest possible browser DOM nodes

9

React: Concepts

• Key supporting technology: JSX
(JavaScript XML)
– Allows embedding of HTML-like code

(actually, XML code) in JavaScript code

10

React: Concepts

• Key concept: React bundles
– Typically React programmers use webpack,

Next.js, Vite, … to create React bundles
– Here, for simplicity, we will not create React

bundles
• But see next lecture

11

Agenda

• React: concepts
• React: fundamentals
• React: useState hooks
• React: props
• React: useEffect hooks
• React: realistic example
• React: commentary

12

React: Fundamentals

• “Hello World” example

13

React: Fundamentals

• See noreacthello.html

14

React: Fundamentals

• See reacthello.html
– Things to note:

• Overall structure
• (Minimal) use of HTML

– Almost all HTML code is generated by JavaScript code
• Use of JSX
• Defining a component

– Which returns a DOM subtree

15

React: Fundamentals

• See reacthello.html (cont.)
– Things to note:

• React.StrictMode
– “Lets you find common bugs in your components early

during development.”
– “Use StrictMode to enable additional development

behaviors and warnings for the component tree inside.”

16

https://react.dev/reference/react/StrictMode

Agenda

• React: concepts
• React: fundamentals
• React: useState hooks
• React: props
• React: useEffect hooks
• React: realistic example
• React: commentary

17

React: useState Hooks

• “Echo” example

18

React: useState Hooks

• See noreactecho1.html
– Things to note:

• Event handling via JavaScript

• See noreactecho2.html
– Things to note:

• Event handling mostly via HTML

19

React: useState Hooks

• See reactecho1.html
– Things to note:

• useState hook
– Defines a state variable and a function that can be

called to change its value
• When a component’s state changes, React:

– Uses state to create and return a DOM subtree
– Update virtual DOM tree with DOM subtree
– Reconciles virtual DOM tree with browser DOM tree

20

React “reacts” to each change in state

Aside: Arrow Functions

• Arrow function def expressions
– Informally arrow functions
– Arrow functions vs ordinary functions:

• Often more succinct
• Same semantics - mostly!!!

– See Appendix 1 for more information

21

Aside: Arrow Functions

• See arrow.js

22

$ node arrow.js
25
25
25
25
25
30
30
30
30
hi
hi
hi
$

React: useState Hooks

• See reactecho2.html (cont.)
– Things to note:

• Uses arrow functions exclusively

23

React: useState Hooks

• See reactecho3.html (cont.)
– Things to note:

• Uses arrow functions as callbacks

24

Agenda

• React: concepts
• React: fundamentals
• React: useState hooks
• React: props
• React: useEffect hooks
• React: realistic example
• React: commentary

25

React: Props

• See reactecho4.html
– Things to note:

• Components arranged in a tree (hierarchy)
• Use of a prop to send data downward

– From parent component to child component
– From Echo to EchoOutput

• Use of a prop to send data upward
– From child component to parent component
– From EchoInput to Echo
– Prop must be a callback function

26

React: Props
• Question:

– How does a parent component send data to
a child component?

• Answer:
– Props

• Question:
– How does a child component send data to its

parent component?
• Answer:

– Props that reference callback functions

27

Agenda

• React: concepts
• React: fundamentals
• React: useState hooks
• React: props
• React: useEffect hooks
• React: realistic example
• React: commentary

28

React: useEffect Hooks

• “Datetime” example

29

React: useEffect Hooks

• See noreactdatetime.html
– Things to note:

• We’ve seen such code before

30

React: useEffect Hooks

• See reactdatetime.html
– Things to note:

• useEffect hook
– React.useEffect(f);

» Call f() at initial render and every subsequent
render

– React.useEffect(f, []);
» Call f() at initial render

– React.useEffect(f, [statevar]);
» Call f() at initial render and when statevar

changes

31

Agenda

• React: concepts
• React: fundamentals
• React: useState hooks
• React: props
• React: useEffect hooks
• React: realistic example
• React: commentary

32

React: Realistic Example

• See PennyReact1 app

33

Thanks, in
part, to Liam
Esparraguara
(‘24)

React: Realistic Example

• See PennyReact1 app (cont.)

34

React: Realistic Example

• See PennyReact1 app (cont.)

35

React: Realistic Example

• See PennyReact1 app (cont.)

36

React: Realistic Example

• See PennyReact1 app (cont.)
– runserver.py
– penny.sql, penny.sqlite
– database.py
– penny.py
– index.html

37

React: Realistic Example

• Problem (not really, but let’s pretend)
– The PennySearch function is too long
– The PennySearch component is too complex

• Solution
– Factor the PennySearch function into

subordinate functions
– Factor the PennySearch component into child

components

38

React: Realistic Example

• See PennyReact2 app (cont.)
– runserver.py
– penny.sql, penny.sqlite
– database.py
– penny.py
– index.html

39

Agenda

• React: concepts
• React: fundamentals
• React: useState hooks
• React: props
• React: useEffect hooks
• React: realistic example
• React: commentary

40

React: Commentary

• Repeating the fundamental idea…

• jQuery
– HTML code contains JavaScript code

• React
– HTML code is generated by JavaScript code

41

React: Commentary

• jQuery
– HTML code contains JavaScript code
– Modularity by technologies

• React
– HTML code is generated by JavaScript code
– Modularity by components

42

React: Commentary

• Commentary:
– Should you use React for:

• The “hello” application?
• The “echo” application?
• The “datetime” application?
• The Penny application?
• The Assignment 4 application?
• Your project application?

43

React: Commentary

• Commentary:
– Use React iff it’s appropriate to do so!

• Large web applications
• Web applications with a component that’s repeated

many times
• Web application that benefits from using existing

React components

44

Summary
• We have covered:

– React: concepts
– React: fundamentals
– React: useState hooks
– React: props
– React: useEffect hooks
– React: realistic example
– React: commentary

• See also:
– Appendix 1: Arrow functions

45

Appendix 1:
Arrow Functions

Arrow Functions

• Recall from JavaScript lectures…
• Question: How is this bound within a

function f()?
• Answer: Depends upon how f() is

called:

47

Function Call Binding of this
f() In f(), this is undefined
o.f() In f(), this is bound to o
new f() In f(), this is bound to a new empty object

Arrow Functions

• Some terms for this lecture:

– Ordinary function: a non-arrow function
– Ordinary variable: a non-this variable

48

Arrow Functions

• Arrow function def expressions
– Informally arrow functions
– Arrow functions vs ordinary functions:

• More succinct
• Same semantics - mostly!!!

49

Aside: setInterval & setTimeout

setInterval(f, ms);
// Call f every ms milliseconds

setTimeout(f, ms);
// Call f after ms milliseconds

In Node.js:

We’ll use
now

window.setInterval(f, ms);
// Call f every ms milliseconds

window.setTimeout(f, ms);
// Call f after ms milliseconds

In browsers:

We have
seen

50

We have
seen

Arrow Functions

• Fact 1: In an ordinary function…
– The value of this is determined

dynamically
• Based upon the call
• o.f()

– In the function this is bound to o
• f()

– In the function this is undefined

51

Arrow Functions

• See arrow1.js
– Notes:

• Global code calls main()
• main() calls blueCar.writeColor()
• blueCar.writeColor() calls setTimeout()
• setTimeout() calls given ordinary function

– As f(), not as o.f()
• In ordinary function, this is undefined

52

$ node arrow1.js
undefined
$

Arrow Functions

• Fact 2: In an ordinary function…
– The value of an ordinary variable is

determined statically
• Based upon program block structure

53

Arrow Functions

• See arrow2.js
– Notes:

• Global code calls main()
• main() calls blueCar.writeColor()
• blueCar.writeColor() calls setTimeout()
• setTimeout() calls given ordinary function

– As f(), not as o.f()
• In ordinary function, this is undefined

– But the ordinary function doesn’t use this!

54

$ node arrow2.js
blue
$

Arrow Functions

• Fact 3: In an arrow function…
– The value of this (and any ordinary

variable) is determined statically
• Based upon program block structure

55

Arrow Functions

• See arrow3.js
– Notes:

• Global code calls main()
• main() calls blueCar.writeColor()
• blueCar.writeColor() calls setTimeout()
• setTimeout() calls given arrow function

– As f(), not as o.f()
• In arrow function, this is bound to blueCar

56

$ node arrow3.js
blue
$

Arrow Functions

• Question: Why use arrow functions?
• Answer 1: They’re often more succinct
• Answer 2: this is defined statically

• Arrow functions often are appropriate as
callback functions

57

