
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 2/11/25 6:32  AM

1.3 STACKS AND QUEUES II

‣ linked lists

‣ stack implementation

‣ queue implementation

‣ iterators

‣ Java collections
https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Stacks and queues

Fundamental data types.

・Value: collection of objects.

・Operations: add, remove, iterate, size, test if empty.
 
Stack. Remove the item most recently added.
Queue. Remove the item least recently added.

enqueue dequeue

queue

F E D C B A

2

poppush

stack

A

B

C

D

E

F

Programming assignment 2

Deque. Remove either the most recently or the least recently added item.
Randomized queue. Remove a random item.
 
 
 
 
 
 
 
 
 
 
Your job.

・Step 1. Identify a data structure that meets the performance requirements.

・Step 2. Implement it from scratch.

3

think carefully about step 1
before proceeding to step 2

1.3 STACKS AND QUEUES II

‣ linked lists

‣ stack implementation

‣ queue implementation

‣ iterators

‣ Java collectionsROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Last lecture. Use a resizable array to implement all operations in amortized time.
This lecture. Use a singly linked list to implement all operations in time in the worst case.
 
 
Singly linked list.

・Each node stores an item and a link/pointer to the next node in the sequence.

・Last node links to null.

・Maintain link first to first node.

・Maintain link last to last node (if needed).

Θ(1)

Θ(1)

Linked lists

5

"I"
"have"

"a"
first

"dream"

null

node

link to
next node

holds link to
first node

item

null terminated

Possible memory representation of an array

Java array. The elements in an array are stored contiguously in memory.
 
Consequences.

・Accessing array element takes time.

・Cannot change the length of an array.

・When passing an array to a function, the function can change array elements.

i Θ(1)

6

memory representation
(using poetic license)

4 304

286

memory
address

"I" "have" "a" "dream"

304

reference variable a[]
(holds memory address of elements)

length of array

a[] array elements

Possible memory representation of a singly linked list

Java linked list. The nodes in a linked list are stored non-contiguously in memory.
 
Consequences.

・Accessing ith node in linked list takes time.

・Easy to change the length of a linked list.
Θ(i)

7

memory address
of Node object

memory representation
(using poetic license)Node object null reference

"dream" 0

318

"I" 286

304

"a" 318

330

"have" 330

286 first

304

object reference
(holds memory address of Node object)

memory address
of next node

Node data type. Each Node object contains:

・An item.

・A reference to the next Node in the sequence.

null

null
null

null
null

null
null

null

Creating a linked lists in Java

8

Node a = new Node();
Node b = new Node();
Node c = new Node();
Node d = new Node();
a.item = "I";
b.item = "have";
c.item = "a";
d.item = "dream";
a.next = b;
b.next = c;
c.next = d;
d.next = null;
first = a;

public class Node {
 private String item;
 private Node next;
}

Node data type

Node object

item
next node

"I"
"have"

"a"
first

"dream"

a
b

c
d

null

creating a 4-node linked list

Traversing a singly linked list

Goal. Systematically process each element in a singly linked list.
 
Solution. For loop idiom.

9

for (Node x = first; x != null; x = x.next) {
 StdOut.println(x.item);
}

x

"I"
"have"

"a"
first

"dream"

null

Stacks and queues II: poll 1

What does the following code fragment do to the linked list below?

 

A. Deletes node containing "I".

B. Deletes node containing "have".

C. Deletes node containing "a".

D. Leaves the linked list unchanged.

10

first.next = first.next.next;

"I"
"have"

"a"
first

"dream"

null

Stacks and queues II: poll 1

What does the following code fragment do to the linked list below?

 

A. Deletes node containing "I".

B. Deletes node containing "have".

C. Deletes node containing "a".

D. Leaves the linked list unchanged.

11

first.next = first.next.next;

"I"
"have"

"a"
first

"dream"

null

garbage collector reclaims memory
when no remaining references

first.next

first.next.next

Doubly linked list. [2 links per node]  
 
 
 

Binary tree. [2 links per node]
 
 
 
 
 
Directed graph. [many links per node]

Linked data structures: context

Null-terminated linked list.
 
 
 
 
Circular linked list.
 
 
 
 
 
Parent-link tree.

12

1.3 STACKS AND QUEUES II

‣ linked lists

‣ stack implementation

‣ queue implementation

‣ iterators

‣ Java collectionsROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Stacks and queues II: poll 2

How to implement efficiently a stack with a singly linked list?

 
 

 

C. Both A and B.  

D. Neither A nor B.

14

today dream a have I null

most recently added

I have a dream today null

least recently added

B.

A.

Stack: linked-list implementation

・Maintain link first to first node in a singly linked list.

・Push new item before first.

・Pop item from first.

15

first

today dream a have I null

most recently added

!

dream
a

have
first

I

null

singly linked list

Stack implementation with a linked list: pop

16

save item to return

String item = first.item;

delete first node

first = first.next;

return saved item

return item;

garbage collector reclaims memory
when no remaining references

dream
a

have

first

I

null

public class Node {
 private String item;
 private Node next;
}

Node object

item
next node

Stack implementation with a linked list: push

17

save a link to the list

Node oldFirst = first;

create a new node at the front

first = new Node();

initialize the instance variables in the new Node

first.item = "dream";
first.next = oldFirst;

dream
a

have
first

I

null

oldFirst

a
have

I

null

oldFirst

null

null
first

a
havefirst

I

null

oldFirst

item
next node

Node object

public class Node {
 private String item;
 private Node next;
}

public class LinkedStack<Item> {
 private Node first = null;

 private class Node {
 private Item item;
 private Node next;
 }

 public boolean isEmpty() {
 return first == null;
 }

 public void push(Item item) {
 Node oldFirst = first;
 first = new Node();
 first.item = item;
 first.next = oldFirst;
 }

 public Item pop() {
 Item item = first.item;
 first = first.next;
 return item;
 }
}

Stack: linked-list implementation

18

private nested class
(access modifiers for instance variables of such a class don’t matter)

no Node constructor defined explicitly ⇒
Java supplies a default no-argument constructor

(which initializes instance variables to default values)

use generics

Stack: linked-list implementation performance

Proposition. Every operation takes Θ(1) time.
 
 
Proposition. A LinkedStack with n items has n Node objects and uses ~ 40 n bytes.
 
 
 
 
 
 
 
 
 
Remark. This counts the memory for the stack itself, including the string references.  
 [but not the memory for the string objects, which the client allocates]

19

8 bytes (reference to Item)

8 bytes (reference to Node)

16 bytes (object overhead)

40 bytes per stack Node

public class Node
{
 String item;
 Node next;
...
}

node object (inner class) 40 bytes

references

object
overhead

extra
overhead

item

next

8 bytes (non-static nested class extra overhead)

nested class

private class Node {
 private Item item;
 private Node next;
}

Stack implementations: resizable array vs. linked list

Tradeoffs. Can implement a stack with either a resizable array or a linked list; client can use either.  

Q. Which is more efficient?
A. It depends.
 
Linked-list implementation.

・ worst-case performance guarantee.

・More memory.  

Resizable-array implementation.

・ amortized performance guarantee.

・Less memory.

・Better use of cache.

Θ(1)

Θ(1)

20

"I" "have" "a" "dream" null null null null

n = 4

a[]

accessing nearby memory locations (e.g., in an array)
is much faster than accessing scattered
memory locations (e.g., in a linked list)

"dream"
"a"

"have"
first

"I"

null

1.3 STACKS AND QUEUES II

‣ linked lists

‣ stack implementation

‣ queue implementation

‣ iterators

‣ Java collectionsROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Stacks and queues II: poll 3

How to implement efficiently a queue with a singly linked list?

 
 

 

C. Both A and B.  

D. Neither A nor B.

22

least recently added

have a dream todayI null

most recently added

most recently added

dream a have Itoday null

least recently addedB.

A.

Queue: linked-list implementation

・Maintain one link first to first node in a singly linked list.

・Maintain another link last to last node.

・Dequeue from first.

・Enqueue after last.

null!have a dream today

least recently added

I

most recently added

23

first last

null

most recently added

last

Queue dequeue: linked-list implementation

Remark. Code is identical to pop().

24

save item to return

String item = first.item;

delete first node

first = first.next;

return saved item

return item;

I
have

a
first

dream

null

I
have

a

first

dream

null

last

singly linked list

last

nested class

public class Node {
 private String item;
 private Node next;
}

Queue enqueue: linked-list implementation

25

save a link to the last node

Node oldLast = last;

create a new node at the end

last = new Node();
last.item = "dream";

link together

oldLast.next = last;

I
havefirst

a

null

lastoldLast

I
have

a

null

oldLast

dream

null

first

last

I
have

a
first

dream

null

last
oldLast

nested class

public class Node {
 private String item;
 private Node next;
}

public class LinkedQueue<Item> {
 private Node first, last;

 private class Node {
 /* identical to LinkedStack */
 }

 public boolean isEmpty() {
 return first == null;
 }

 public void enqueue(Item item) {
 Node oldLast = last;
 last = new Node();
 last.item = item;
 last.next = null;
 if (isEmpty()) first = last;
 else oldLast.next = last;
 }

 public Item dequeue() {
 Item item = first.item;
 first = first.next;
 if (isEmpty()) last = null;
 return item;
 }
}

 Queue: linked-list implementation

26

corner case: add to an empty queue
(don’t forget to update first)

corner case: remove down to an empty queue
(avoid loitering)

1.3 STACKS AND QUEUES II

‣ linked lists

‣ stack implementation

‣ queue implementation

‣ iterators

‣ Java collectionsROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Iteration

Design challenge. Allow a client to access sequentially (iterate over) the items in a collection,  
without exposing the collection’s internal representation.
 
 
 
 
 
 
 
 
 
 
 
 
 
Java solution. Use a foreach loop.

28

stack (resizable-array representation)

a[]

n

I have a dream today ! null null

0 1 2 3 4 5 6 7

stack (linked-list representation)

first

today dream a have! I null

i

current

Java provides elegant syntax for iterating over the items in a collection.
 
 
 
 
 
 
 
 
 
 
To provide clients the ability to iterate with a foreach loop:

・Collection must have a method iterator(), which returns an Iterator object.

・An Iterator object represents the state of a traversal.
– the hasNext() returns true unless the traversal is complete
– the next() method returns the next item in the traversal

Stack<String> stack = new Stack<>();
...

Iterator<String> iterator = stack.iterator();
while (iterator.hasNext()) {
 String s = iterator.next();
 // do something with s

Foreach loop

29

equivalent code (longhand)“foreach” loop (shorthand)

Stack<String> stack = new Stack<>();
...

for (String s : stack) {
 // do something with s
}

}

e.g., current spot in sequence

Java defines two interfaces that facilitate foreach loops.

・ Iterable interface: iterator() method that returns an Iterator.

・ Iterator interface: next() and hasNext() methods.

・Each interface is parameterized using generics.
 
 
 
 
 
 
 
 
 
 
Type safety. Foreach loop won’t compile unless collection is Iterable (or an array).

public interface Iterable {
 Iterator iterator();
}

java.lang.Iterable interface

Iterator and Iterable interfaces

public interface Iterable<Item> {
 Iterator<Item> iterator();
}

public interface Iterator {
 boolean hasNext();
 Item next();
}

java.util.Iterator interface

“ I represent the state of one traversal. ”

public interface Iterator<Item> {
 boolean hasNext();
 Item next();
}

30

“ I am a collection that can be traversed with a foreach loop. ”

Java interface = set of related methods that
define some behavior (partial API)

ensures that the (implicit) call to
iterator() will succeed at run time

Stack iterator: resizable-array implementation

31

import java.util.Iterator;
import java.util.NoSuchElementException;

public class ResizableArrayStack<Item> {
 private int n; // number of items in the stack
 private Item[] a; // stack items
 ...

 public Iterator<Item> iterator() {
 return new ReverseArrayIterator();
 }

 private class ReverseArrayIterator implements Iterator<Item> {
 private int i = n-1; // index of next item to return

 public boolean hasNext() {
 return i >= 0;
 }

 public Item next() {
 if (!hasNext()) throw new NoSuchElementException();
 return a[i--];
 }
 }
}

a[]

n

I have a dream today ! null null

0 1 2 3 4 5 6 7

i

implements Iterable<Item>

code in inner class can
access instance variables

in outer class

collection implements
the Iterable interface

object you return
must implements the
Iterator interface

Iterator API says to throw
this exception if called after

traversal is complete

Stack iterator: linked-list implementation (in IntelliJ)

32

first

a have Idream null

current

import java.util.Iterator;
import java.util.NoSuchElementException;

public class LinkedStack<Item> implements Iterable<Item> {
 private Node first;
 ...

 public Iterator<Item> iterator() {
 return new LinkedIterator();
 }

 private class LinkedIterator implements Iterator<Item> {
 private Node current = first;

 public boolean hasNext() {
 return current != null;
 }

 public Item next() {
 if (!hasNext()) throw new NoSuchElementException();
 Item item = current.item;
 current = current.next;
 return item;
 }
 }
}

Stacks and queues II: poll 4

Suppose that you add A, B, and C to a stack (linked list or resizable array), in that order.  
What does the following code fragment do?

 
 
 
 

A. Prints A-A A-B A-C B-A B-B B-C C-A C-B C-C

B. Prints C-C C-B C-A B-C B-B B-A A-C A-B A-A

C. Run-time exception.

D. Depends on the implementation.

33

for (String s : stack)
 for (String t : stack)
 StdOut.println(s + "-" + t);

java.util.Stack
(iterator is broken due to design fail!)

Stacks and queues II: poll 5

Suppose that you add A, B, and C to a stack (linked list or resizable array), in that order.  
What does the following code fragment do?

 
 
 

A. Prints C C B B A A

B. Prints C C B C A B

C. Prints C C C C C C C C ...

D. Run-time exception.

E. Depends on the implementation.

34

for (String s : stack) {
 StdOut.println(s);
 StdOut.println(stack.pop());
 stack.push(s);
} modifies stack

java.util.Stack
(detects concurrent modification)

our lecture implementation of
LinkedStack and ResizableArrayStack

Iteration: concurrent modification

Q. What should happen if a client modifies a collection while traversing it?
A. A fail-fast iterator throws a java.util.ConcurrentModificationException.
 
 
 
 
 
 
Q. How to detect concurrent modification?
A.

・Maintain count of total number of push() and pop() calls in Stack instance variable.

・Store that count in *Iterator subclass instance variable upon construction.

・If, when calling either next() or hasNext(), the stack count is not equal to  
the iterator count, throw exception.

35

concurrent modification

for (String s : stack)
 stack.push(s);

Java iterators summary

Iterator and Iterable. Two Java interfaces that allow a client to iterate over the items in a collection,  
without exposing the collection’s internal representation.
 
 
 
 
 
 
 
 
This course.

・Yes: use iterators in client code.

・Yes: implement iterators (Assignment 2 only).

36

Stack<String> stack = new Stack<>();
...

for (String s : stack) {
 ...
}

1.3 STACKS AND QUEUES II

‣ linked lists

‣ stack implementation

‣ queue implementation

‣ iterators

‣ Java collectionsROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Java collections framework

Java's libraries for collection data types.

・java.util.LinkedList [doubly linked list]

・java.util.ArrayList [resizable array]

・java.util.TreeMap [red–black BST]

・java.util.HashMap [hash table]

This course. Implement from scratch (once).
Beyond. Basis for understanding performance guarantees.
 
Best practices.

・Use Stack and Queue in algs4.jar for stacks and queues to improve design and efficiency.

・Use java.util.ArrayList or java.util.LinkedList when other ops needed.  
(but remember that some ops are inefficient)

38

COS 226 story (from Assignment 1)

Goal. Generate random open sites in an n-by-n percolation system 
and repeat until system percolates.
 
Jenny.

・Pick (row, col) at random; if already open, repeat.

・Takes time.
 
Kenny.

・Create a java.util.ArrayList to store the blocked sites.

・Pick an index at random and delete.

・Takes time.
 
 
 
Lesson. Don’t use a library until you understand its API!
This course. Can’t use a library until we’ve implemented it in class.

Θ(n2)

n2

Θ(n4)

39

Kenny

Why is my program so slow ?

Stacks and queues summary

Fundamental data types.

・Value: collection of objects.

・Operations: add, remove, iterate, size, test if empty.
 
Stack. [LIFO] Remove the item most recently added.
Queue. [FIFO] Remove the item least recently added.
 
Efficient implementations.

・Resizable array.

・Singly linked list.

40

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

Credits

image source license

Assignment Logo Kathleen Ma ’18 by author

Stack of Books Adobe Stock Education License

Long Queue Line Adobe Stock Education License

People Standing in Line Adobe Stock Education License

Stack of Sweaters Adobe Stock Education License

Programmer Icon Jaime Botero public domain

ChatGPT Phone Adobe Stock Education License

https://stock.adobe.com/images/tall-pile-of-books-lots-various-isolated-transparent-background-photo-png-file/546470718
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/people-queuing-up-in-a-long-queue-line/135762482
https://stock.adobe.com/enterprise-conditions#educationLicenses
http://people%20standing%20in%20line%20By%20Olga%20Tik%20https://stock.adobe.com/images/queue-people-are-standing-in-line-vector-image-of-people-from-the-back-a-crowd-of-people/479350972
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/stack-of-sweaters/28195940
https://stock.adobe.com/enterprise-conditions#educationLicenses
http://www.clker.com/clipart-programmer-1.html
https://wiki.creativecommons.org/wiki/public_domain
https://stock.adobe.com/images/chatgpt-vector-mockup-smartphone-screen-concept-template-with-logo-login-signup-new-chat-prompt-interface-openai-chatbot-screen-interface-template-on-iphone/580095635
https://stock.adobe.com/enterprise-conditions#educationLicenses

A final thought

“ Linked lists, nodes connected with care,

 Arrays resizing, with memory to spare.

 Organizing data, their only need,

 Helping us, with efficiency indeed. ”

