-

COS 217: Introduction to Programming Systems

Assignment 5: Assembly Language
Programming, Testing, and Debugging

% PRINCETON UNIVERSITY

https://unsplash.com/@ryanjohns

[

Assignment 5 Goals

Apply your knowledge of AARCHG64 assembly language!
1. Emulate the compiler: translate C to assembly language

2. Beat the compiler: re-implement one critical function to run as quickly as possible

Also, practice testing and debugging!

PART 1

[

The wc command

Learning.is.a,
treasure,which,

accompanies.its,

5 12

owner.everywhere.,

Consider a file named proverb containing the following text:

——.Chinese.,proverb,

Then running wc < proverb prints the number of
lines, words, and characters:

82

@danieltuttle

https://unsplash.com/@danieltuttle

-
Our implementation: mywc. C

while ((iChar = getchar()) != EOF) {

LCharCount++;

if (isspace(iChar)) {
if (iInWord) {
WordCount++;
iInWord = FALSE;
I
} else {
if (! iInWord)
iInWord = TRUE;
}
if (iChar == '\n"')
lLineCount++;
+
if (iInWord)
5| WordCount++;

_ printf("%71d %71d %71d\n", lLineCount, WordCount, 1CharCount); Y.

-

Part 1a Task

Translate mywc. c into mywc.s
* Generate flattened C code (using conventions seen in lecture)
* Use the flattened C as comments in mywc.s

e Use exactly the same algorithm/logic/memory interaction: don't simplify or optimize
* Use the same 5 static variables
e Still call getchar, isspace, and printf

 Don't use the output from gcc217 (it's convoluted and it's against the rules)

 Make the code readable, with liberal use of .equ

-
Part 1b Task

Compose data files (called mywc*. txt) that perform the following (see lecture 9):

* boundary tests ("corner cases")

 statement tests (exercise every line of code)

e stress tests (but don't get too wild - not too big, and only a subset of ASCII)
Explain how your tests match up with your code

Some hints:

* Pretend you're us: design test cases to expose what's wrong

* Write a program that uses rand () to generate random characters

* Programmatically generate boundary tests (which might be hard with an editor)

« Complete Part 1 in the first week of the assignment period (i.e., by W 11/20)

PART 2

-

Bignum Motivation

10|

Secure communication is enabled by cryptography, which is based on the
conjectured difficulty of solving certain problems involving big numbers.

Example: discrete logarithm

Let A =g2 mod p
It is believed to be Hard to find a given A, g, and p.
(This might or might not change with quantum computers...)

-

Diffie-Hellman Key Exchange

Suppose that Alice creates a secret a and sends A = g2 mod p to Bob.

= gb i A
Then Bob creates a secret b and sends B = g° mod p to Alice. Q PR Q
B

Alice computes B2 mod p = g2 mod p, and Bob computes A® mod p = g2° mod p
e Alice and Bob now share the same secret number! (To be used e.g. as an encryption key.)

* Any eavesdropper knowing A, B, g, and p can't efficiently compute the secret.

But, to make trial-and-error attacks hard, these computations
need numbers much bigger than 32 bits (1nt) or 64 bits (Long).

11

(

Multiple Precision Arithmetic or "Bignum" Libraries

Emulate arithmetic on quantities bigger than a machine word

Do operations "by hand", except operating on bigger chunks than single digits

* |n fact, each "digit" is a machine word - 64 bits in our case
 When adding two "digits", they both range not from O to 9, but from O to 18.4 quintillion (-ish)

Example: the GMP library (gmplib.org)

Our simplified version: BigInt
* "Limited" to 32768 64-bit words
* No negative numbers

* Only implemented operation: +
* Can't quite do Diffie-Hellman key exchange, but our client computes
reallyreallyreally large Fibonacci numbers (which grow exponentially)

12

-

BigInt Objects

13

enum {MAX_DIGITS = 32768};

struct BigInt

{
/* The number of used digits in the BigInt object. The integer 0

has length @. This field could be of type int, but then the
compiler would place padding between this field and the next. *x/

long lLength;

/* The digits comprising the BigInt object. aulDigits[@] stores the
least significant digit. The unused digits are set to 0. */
unsigned long aulDigits[MAX_DIGITS];
b

typedef struct BigInt *BigInt_T;

BigInt Objects

0000ffffbedd0o1o
0000ffffbeddoo18
0000ffffbedd0n20

0000ffffbedd0n28
HEAP

STACK

0000000000000002

?\7\77777777777777

EEE\EEEEEEEEEEEEE

@0@0\8\000660@0000

\

0000TffTbedddd1lo

oBigInt—>1Length
oBigInt—>aulDigits[0]
oBigInt—>aulDigits[1]

oBigInt—>aulDigits[2]

oBigInt

-

BigInt_add

15|

Ox FFFFFFFFFFFFFFFF 2222222222222222 1111111111111111
+ 0x EEEEEEEEEEEEEEEE 7777777777777777

-

BigInt_add

0x FFFFFFFFFFFFFFFF 2222222222222222 1111111111111111
+ 0x EEEEEEEEEEEEEEEE 7777777777777777

Ox FFFFFFFFFFFFFFFF 2222222222222222 1111111111111111
+ 0x EEEEEEEEEEEEEEEE 7777777777777777

8888888888888888

aulDigits[0]

16|

-

BigInt_add

17

0x FFFFFFFFFFFFFFFF 2222222222222222 1111111111111111
+ 0x EEEEEEEEEEEEEEEE 7777777777777777

0x FFFFFFFFFFFFFFFF 2222222222222222 1111111111111111
+ 0x EEEEEEEEEEEEEEEE 7777777777777777

8888888888888888

 —

Ox FFFFFFFFFFFFFFFF 2222222222222222 1111111111111111
+ 0x EEEEEEEEEEEEEEEE 7777777777777777

1111111111111110 8888888888888888

aulDigits[1]

ulCarry

-

BigInt_add

18|

O0x FFFFFFFFFFFFFFFF 2222222222222222
+ 0x EEEEEEEEEEEEEEEE

0x FFFFFFFFFFFFFFFF 2222222222222222
+ 0x EEEEEEEEEEEEEEEE

1
0x FFFFFFFFFFFFFFFF 2222222222222222
+ 0x EEEEEEEEEEEEEEEE

1111111111111110

1111111111111111
1777777777777777

1111111111111111
1777777777777777

8888888888888888

1111111111111111
1777777777777777

8888888888888888

1
0x FFFFFFFFFFFFFFFF 2222222222222222 1111111111111111
+ 0x EEEEEEEEEEEEEEEE 7777777777777777
ulCarry 0000000000000000 1111111111111110 8888888888888888

aulDigits[2]

-

BigInt_add

19|

0x

+ OX

0x

+ OX

0x

+ OX

FFFFFFFFFFFFFFFF 2222222222222222
EEEEEEEEEEEEEEEE

FFFFFFFFFFFFFFFF 2222222222222222
EEEEEEEEEEEEEEEE

1
FFFFFFFFFFFFFFFF 2222222222222222
EEEEEEEEEEEEEEEE

1111111111111110

1111111111111111
1777777777777777

1111111111111111
1777777777777777

8888888888888888

1111111111111111
1777777777777777

8888888888888888

0x

+ 0x

1 1
FFFFFFFFFFFFFFFF 2222222222222222 1111111111111111
EEEEEEEEEEEEEEEE 7777777777777777

0000000000000000 1111111111111110 8888888888888888

1 1
FFFFFFFFFFFFFFFF 2222222222222222 1111111111111111
EEEEEEEEEEEEEEEE 7777777777777777

000000000000000] 0000000000000000 1111111111111110 8888888888888888

lLength = 4;

aulDigits[3]

-

Part 2a: Unoptimized C BigInt_add Implementation

20,

Study the given code.

Then build a fib program consisting of the files fib.c, bigint.c, and
bigintadd. c, without the =D NDEBUG or -0 options.

Run the program to compute fib(250000).
In your readme file note the amount of CPU time consumed.

-

Part 2b/c: Optimized C BigInt_add Implementation

21

Then build a fib program consisting of the files fib.c, bigint.c, and
bigintadd. c, with the -=D NDEBUG and -0 options.

Run the program to compute fib(250000).
In your readme file note the amount of CPU time consumed.

Profile the code with gprof. (More on this in an upcoming lecture.)

(

Part 2d/e/f. Implement in Assembly Language

22

Suppose, not surprisingly, your gprof analysis shows that most CPU time is spent
executing the BigInt_add function. In an attempt to gain speed, you decide to
code the BigInt_add function manually in assembly language...

e (Callable from C code!
* Most realistic way of using assembly: you usually won't write entire programs...

« Common to see highly-optimized "kernel" libraries for cryptography,
Image/video processing, compression, scientific computing, etc.

* Your task: write correct, optimized code, and eventually beat the compiler!

-

Part 2d: Translate to Assembly Language

23

Straightforward translation, as in part 1

Translate both the BigInt_larger and BigInt_add functions

Use exactly the same algorithm/logic — don't simplify or optimize

Use the same local variables, stored in memory (on the stack)

Make the code readable, with liberal use of .equ

* Test by comparing output against bigintadd.c using diff

[

Part 2e: Optimize to use registers, not the stack

24

Straightforward translation won't beat the compiler. ~(

So, modify your assembly language code to use
callee-saved registers instead of memory
for all parameters and local variables (see slides from a previous lecture).

This should get you close ... but probably still won't beat the compiler.
(Darn you 70+ years of compilers research!)

-

Part 2f (Challenge Portion): Optimize All You Want

25|

Start with the following optimizations:

-
Part 2f (Challenge Portion): Optimize All You Want

Start with the following optimizations:

* Use the guarded loop pattern (Pyeatt/Ughetta Ch. 5, Sec. 3.2)

Original C Basic Flattened C Guarded Loop Pattern
loopl: if (! expr) goto endloopl;
while (expr) A{ if (! expr) goto endloopl; loopl:
statementl; statementl; statementl;
statementN; » statementN; » statementN;
} goto loopl; if (expr) goto loopl;
endloopl: endloopl:

Pro: 1 fewer instruction per iteration of the loop

Con: Harder to maintain duplicated code (to compute and test lexpr and expr)
26|

-

Part 2f (Challenge Portion): Optimize All You Want

Start with the following optimizations:

* Use the guarded loop pattern (Pyeatt/Ughetta Ch. 5, Sec. 3.2)

* Inline the call of the BigInt_larger function

Effectively: replace function calls with the function body of the callee

Pro: Fewer instructions executed: no bl, no prologue, no epilogue, no ret
Con: Harder to read/maintain less modular code

27

-

Part 2f (Challenge Portion): Optimize All You Want

28|

Start with the following optimizations:
* Use the guarded loop pattern (Pyeatt/Ughetta Ch. 5, Sec. 3.2)
* Inline the call of the BigInt_larger function

* Use the adcs ("add with carry and set condition flags") instruction

1
Ox 3333333333333333 2222222222222222
+ Ox 6666666666666666 EEEEEEEEEEEEEEEE

0x 999999999999999A 1111111111111110

-

Part 2f (Challenge Portion): Optimize All You Want

29|

Start with the following optimizations:

* Use the guarded loop pattern (Pyeatt/Ughetta Ch. 5, Sec. 3.2)

* Inline the call of the BigInt_larger function

* Use the adcs ("add with carry and set condition flags") instruction

carry flag set
by first adds

= N

Ox 3333333333333333 2222222222222222
<4 }QQG666666666666666 EEEEEEEEEEEEEEEE\

x1

x3

adds x5, x1, x3
adcs x6, x2, x4

999999999999999A 1111111111111110

X6

x5

-

Part 2f (Challenge Portion): Optimize All You Want

30|

Start with the following optimizations:

* Use the guarded loop pattern (Pyeatt/Ughetta Ch. 5, Sec. 3.2)

* Inline the call of the BigInt_larger function

* Use the adcs ("add with carry and set condition flags") instruction

Then feel free to implement any additional optimizations!

Equaling/beating the compiler is totally realistic!

But this part is challenging. Don't let it consume your life. Don't fail your other classes.

We will not think unkindly of you if you decide not to push too hard on it.

Reminder: this is a partnered assignment. Please make the effort to find a partner! p

IN A4 | FINALLY GOT GOOD AT DEBUGGING ...
DO | HAVE TO RE-LEARN GDB FOR ASSEMBLY?

-

Debugging Assembly Language with GDB

Most of the gdb commands you already know can be used with assembly language!

* run, break, backtrace, frame, step, next, continue,
list, print, display, X, watch, etc.

* Major difference: we’ll primarily care about contents of registers and
memory pointed to by registers

 Let’'s compare...

32
v

(

GDB: C vs. Assembly Language - Preparation

C ARM Assembly

* Build with the -g flag: * Add .size directive to the end of

, , every function:
gcc2l7 —-g —c myfile.c —o myfile.o

.global myfunc
myfunc:

ret
.size myfunc, (. — myfunc)

- Then build with -g flag:

gcc2l7 —g —c myfile.s -0 myfile.o

33

[

GDB: C vs. Assembly Language - Running
C ARM Assembly

e From emacs: Exactly the same

Meta-x gdb / Esc-x gdb

e Orfromcommand line:

$ gdb myprog

* And then start the program:

(gdb) run [arguments]

34

-
GDB: C vs. Assembly Language - Where Am |?

C ARM Assembly
* From command-line: Exactly the same

(gdb) where (or backtrace or bt)

(gdb) list (or 1)

* Inemacs (or TUI mode): code and
current location displayed in split-
screen

35|

-

GDB: C vs. Assembly Language - Printing Variables

C

* Print contents of variable i:

(gdb) print i (or p)

 Prints using format appropriate to
type of i. Can override format to hex,
decimal, character, etc.:

(gdb) p/x i
(gdb) p/d i
(gdb) p/c i

36|

ARM Assembly
* Print contents of register x1.:
v

(gdb) print $x1

e (Can override format:

(gdb) p/x $sp
(gdb) p/d $x1
(gdb) p/c $w2

* Print contents of all registers:

(gdb) info registers (or i r)

-

GDB: C vs. Assembly Language - Pointers

37

(gdb) x pi (gdb)

(gdb)
(gdb)
(gdb)
(gdb)
(gdb)

C ARM Assembly
 Dereference pi and print value: Dereference sp+8 and print value:
(gdb) p *pi (gdb) p *(int *) ($sp+8)

X $sp+8

e (Qverride data size and format:

x/bx $sp (byte in hex)

x/h $x29 (16-bit halfword)
x/wd $x1 (32-bit word in dec)
x/g $x10 (64-bit giantword)
x/1 $pc (instruction)

[

GDB: C vs. Assembly Language - Breakpoints

38|

C

Set breakpoint:

(gdb) break foo.c:37 (or b)
(gdb) b 42 (current file)

(b 59 if j > 17

(

watch 1 (break if i changes)

gdb
gdb

N N N

Step to next line of code:

(gdb) step (or s)
(gdb) next (or n — step over
function calls)

Resume execution:

(gdb) continue (or c)
(gdb) ¢ 7 (skip next 7 breakpoints)

ARM Assembly
 Set breakpoint:
(gdb) break foo.s:37

(gdb) b 59 if $w2 > 17
(gdb) watch $x1

e Step to next instruction:

(gdb) stepi (or si)
(gdb) nexti (or ni)

e Resume execution:

(gdb) continue
(gdb) c 7

-

GDB: C vs. Assembly Language - Auto-Display
C ARM Assembly

* Print contents of variable i every time * Auto-display contents of register x1.:

gdb resumes control: /
(gdb) display $x1

(gdb) display i (or disp)
 Must use cast/dereference syntax to
* Prints using format appropriate to auto-display memory contents:
type of i. Can override format to hex,
decimal, character, etc.: (gdb) disp *(unsigned *)($sp+8)
(gdb) disp/x *(long) ($x1+8%$x2)
(gdb) disp/x i

(gdb) disp/d i
(gdb) disp/c i

39

(

Debugging Assembly Language with GDB

40|

Simple tutorial provided this week as a precept handout: take the time to work it!

Probably worth your time to learn to use advanced features.
Especially conditional breakpoints, watchpoints, and displays!

For a full assembly debugging session, watch Lecture 20B from Fall 2020
(posted on course schedule page)

... as a bonus, it also gives a live walkthrough of iterative optimization similar to what
you'll be moving through in bigintadd.s = bigintaddopt.s = bigintaddoptopt.s

