COS 217: Introduction to Programming Systems

Numbers (in C and otherwise)

Q: Why do computer programmers confuse Christmas and Halloween?

A: Because 25 Dec == 31 Oct

The Decimal Number System

Name

• From Latin decem ("ten")

Characteristics

- For us, these symbols (Not universal ...)
 - 0 1 2 3 4 5 6 7 8 9

	_									_
European (descended from the West Arabic)	0	1	2	3	4	5	6	7	8	9
Arabic-Indic	•	١	۲	٣	٤	٥	٦	٧	٨	٩
Eastern Arabic-Indic (Persian and Urdu)	•	١	۲	٣	۴	۵	Ŷ	٧	٨	٩
Devanagari (Hindi)	0	१	२	ą	8	५	ų,	૭	٢	९
Tamil		க	ഉ	л <u>ь</u>	ச	Մ	Ŧn	எ	भ	Fn
<u> https://commons.wikimedi</u>	<u>a.o</u>	rg/v	viki/	/File	e:Ara	abic	<u>n</u>	ume	rals	-en.

Cowbirds in Love #43 - Sanjay Kulkacek There are 10 rocks. Oh, you must be using base 4. See, I use base 10. No. I use base 10. What is base 4?

Every base is base 10.

Positional

- 2945 ≠ 2495
- $\cdot 2945 = (2*10^3) + (9*10^2) + (4*10^1) + (5*10^0)$

2 (Most) people use the decimal number system

The Binary Number System

binary

adjective: being in a state of one of two mutually exclusive conditions such as on or off, true or false, molten or frozen, presence or absence of a signal. From late Latin *binarius* ("consisting of two"), from classical Latin *bis* ("twice")

Characteristics

- Two symbols: 0 1
- Positional: $1010_{B} \neq 1100_{B}$

Most (digital) computers use the binary number system

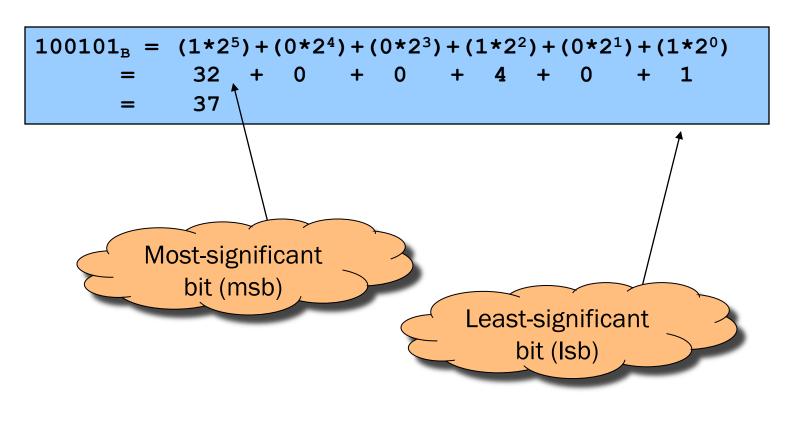
Terminology

- **Bit**: a single binary symbol ("binary digit")
- Byte: (typically) 8 bits
- Nibble / Nybble: 4 bits we'll see a more common name for 4 bits soon.

Decimal-Binary Equivalence

Decimal	Binary		Decimal	Binary
0	0		16	10000
1	1		17	10001
2	10		18	10010
3	11		19	10011
4	100		20	10100
5	101		21	10101
6	110		22	10110
7	111		23	10111
8	1000		24	11000
9	1001		25	11001
10	1010		26	11010
11	1011		27	11011
12	1100		28	11100
13	1101		29	11101
14	1110		30	11110
15	1111		31	11111
		I		

Binary to decimal: expand using positional notation



Integer-Binary Conversion

(Decimal) Integer to binary: do the reverse

• Determine largest power of 2 that's \leq number; write template

 $37 = (?*2^5) + (?*2^4) + (?*2^3) + (?*2^2) + (?*2^1) + (?*2^0)$

• Fill in template

$37 = (1*2^5) + (0*2^4) + (0*2^3) + (1*2^2) + (0*2^1) + (1*2^2)$	2°)
<u>-32</u>	
5	
<u>-4</u>	
1 100101 _B	
<u>-1</u>	
0	

Integer-Binary Conversion

Integer to binary division method

• Repeatedly divide by 2, consider remainder

Read from bottom to top: 100101_{B}

The Hexadecimal Number System

Name

9

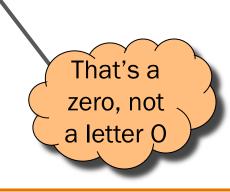
From ancient Greek ἕξ (hex, "six") + Latin-derived decimal

Characteristics

- Sixteen symbols ("hexits")
 - 0 1 2 3 4 5 6 7 8 9 A B C D E F
- Positional
 - $A13D_H \neq 3DA1_H$

Computer programmers often use hexadecimal ("hex")

• In C: Ox prefix (OxA13D, etc.)



Binary-Hexadecimal Conversion

Observation:

• $16^1 = 2^4$, so every 1 hexit corresponds to a nybble (4 bits)

Binary to hexadecimal

101000100111101_B **A** 1 3 D_H Number of bits in binary number not a multiple of 4? \Rightarrow pad with zeros on left

Hexadecimal to binary

 A
 1
 3
 D_H

 10100001001111101_B

Discard leading zeros from binary number if appropriate

Integer-Hexadecimal Conversion

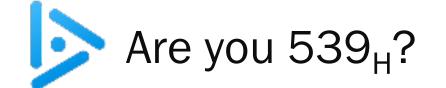
Hexadecimal to (decimal) integer: expand using positional notation

$$25_{\rm H} = (2*16^{1}) + (5*16^{0})$$

= 32 + 5
= 37

Integer to hexadecimal: use the division method

37 / 16 = 2 R 5 2 / 16 = 0 R 2 Read from bottom to top: $25_{\rm H}$



Convert binary 101010 into decimal and hex

- A. 21 decimal, A2 hex
- B. 21 decimal, A8 hex
- C. 18 decimal, 2A hex
- D. 42 decimal, 2A hex

hint: convert to hex first

challenge: once you've locked in and discussed with a neighbor, figure out why this slide's title is what it is.

The Octal Number System

Name

• "octo" (Latin) \Rightarrow eight

Characteristics

- Eight symbols
 - 01234567
- Positional
 - 17430 ≠ 73140

Computer programmers sometimes use octal (so does Mickey!)

Why?

• In C: 0 prefix (01743, etc.)

```
[cmoretti@tars:tmp$ls -l myFile
-rw-r--r-- 1 cmoretti wheel 0 Sep 7 10:58 myFile
[cmoretti@tars:tmp$chmod 755 myFile
[cmoretti@tars:tmp$ls -l myFile
-rwxr-xr-x 1 cmoretti wheel 0 Sep 7 10:58 myFile
```


INTEGERS

Representing Unsigned (Non-Negative) Integers

Mathematics

- Non-negative integers' range is 0 to ∞

Computers

- Range limited by computer's word size
- Word size is n bits \Rightarrow range is 0 to $2^n 1$ representing with an n bit binary number
- Exceed range \Rightarrow overflow

Typical computers today

• n = 32 or 64, so range is 0 to $2^{32} - 1$ (~4 billion) or $2^{64} - 1$ (huge ... ~1.8e19)

Pretend computer for these slides, hereafter on these slides:

- Assume n = 4, so range is 0 to $2^4 1$ (15)
- All points generalize to larger word sizes like 32 and 64

Representing Unsigned Integers

On 4-bit pretend computer

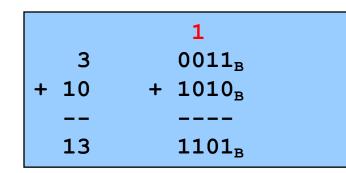
Unsigned	
<u>Integer</u>	<u>Rep</u>
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

Adding Unsigned Integers

+ 10

1

Addition



111

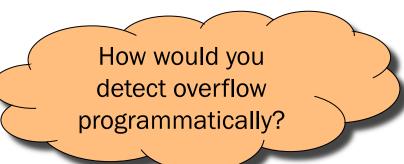
0111_B

0001_B

 $+ 1010_{\rm B}$

Start at right column Proceed leftward Carry 1 when necessary

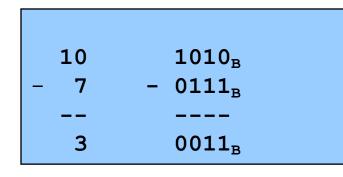
Beware of overflow



Results are mod 2⁴ 7 + 10 = 17 17 mod 16 = 1

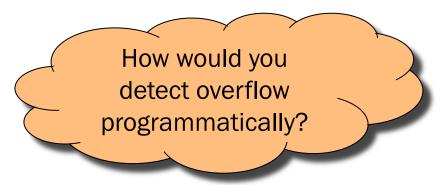
Subtracting Unsigned Integers

Subtraction



Start at right column Proceed leftward Borrow when necessary

Beware of overflow



Results are mod 2⁴ 19 3 - 10 = -7

-7 mod 16 = 9

Can I borrow an aside?

б 12 7 12 3 8 3 8 -4 3 4 7 12 7 2 7 12 3 8 8 8 3 4 4

- A. Wait, what is that top one!?
- B. Wait, what is that bottom one!?
- C. I knew about both these elementary subtraction algorithms.

Reminder: negative numbers exist

Obsolete Attempt #1: Sign-Magnitude

Integer	Rep
-7	1111
-6	1110
-5	1101
-4	1100
-3	1011
-2	1010
-1	1001
-0	1000
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Definition

High-order bit indicates sign

 $0 \Rightarrow \text{positive}$

$1 \Rightarrow negative$

Remaining bits indicate magnitude

 $0101_{\rm B} = 101_{\rm B} = 5$ $1101_{\rm B} = -101_{\rm B} = -5$

Pros and cons

+ easy to understand, easy to negate

+ symmetric

- two representations of zero
- need different algorithms to add signed and unsigned numbers
 Not widely used for integers today

Obsolete Attempt #2: Ones' Complement

<u>Integer</u>	<u>Rep</u>
-7	1000
-6	1001
-5	1010
-4	1011
-3	1100
-2	1101
-1	1110
-0	1111
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Definition High-order bit has weight $-(2^{b-1}-1)$ $1010_B = (1*-7) + (0*4) + (1*2) + (0*1)$ = -5 $0010_B = (0*-7) + (0*4) + (1*2) + (0*1)$ = 2

Computing negative = flipping all bits

Similar pros and cons to sign-magnitude

Two's Complement

Integer	Rep
-8	1000
-7	1001
-6	1010
-5	1011
-4	1100
-3	1101
-2	1110
-1	1111
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Definition High-order bit has weight $-(2^{b-1})$ $1010_B = (1*-8) + (0*4) + (1*2) + (0*1)$ = -6 $0010_B = (0*-8) + (0*4) + (1*2) + (0*1)$ = 2

Two's Complement (cont.)

Rep	
1000	
1001	
1010	
1011	
1100	
1101	
1110	
1111	
0000	
0001	
0010	
0011	
0100	
0101	
0110	
0111	
	1000 1001 1010 1011 1100 1101 1110 1111 0000 0001 0001 0010 0011 0100 0101 0110

Computing negative neg(x) = ~x + 1 neg(x) = onescomp(x) + 1 $neg(0101_B) = 1010_B + 1 = 1011_B$ $neg(1011_B) = 0100_B + 1 = 0101_B$

Pros and cons

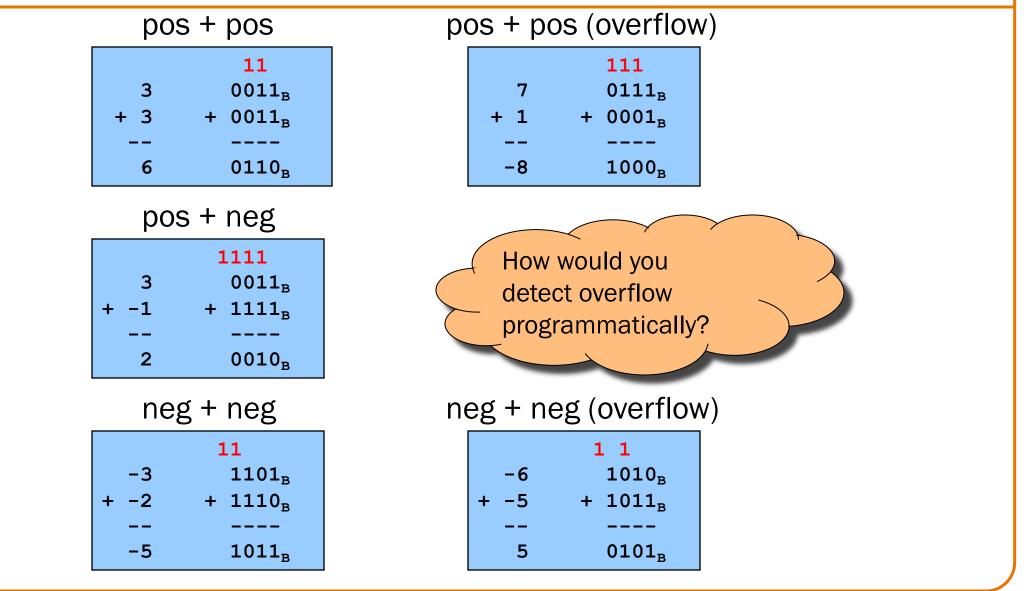
- not symmetric

("extra" negative number; -(-8) = -8)

+ one representation of zero

+ same algorithms add/subtract signed and unsigned integers

Adding Signed Integers



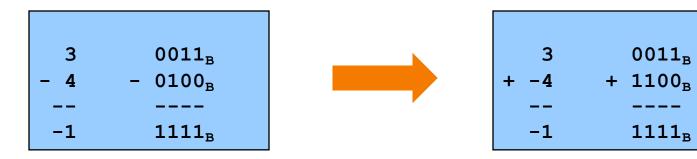
Subtracting Signed Integers

How would you compute 3 – 4?

3	0011 _B
- 4	- 0100 _B
?	???? _B

Subtracting Signed Integers

Perform subtraction Compute two's comp with borrows or and add



Negating Signed Ints: Math Question: Why does two's comp arithmetic work? Answer: $[-b] \mod 2^4 = [twoscomp(b)] \mod 2^4$ [-b] mod 2⁴ $= [2^4 - b] \mod 2^4$ $= [2^4 - 1 - b + 1] \mod 2^4$ $= [(2^4 - 1 - b) + 1] \mod 2^4$ = $[onescomp(b) + 1] \mod 2^4$ = $[twoscomp(b)] \mod 2^4$ So: $[a - b] \mod 2^4 = [a + twoscomp(b)] \mod 2^4$ $[a - b] \mod 2^4$ $= [a + 2^4 - b] \mod 2^4$ $= [a + 2^4 - 1 - b + 1] \mod 2^4$ $= [a + (2^4 - 1 - b) + 1] \mod 2^4$ = $[a + onescomp(b) + 1] \mod 2^4$

= $[a + twoscomp(b)] \mod 2^4$

(AT LONG[°] LAST) INTEGERS IN C

° no pun intended, I swear!

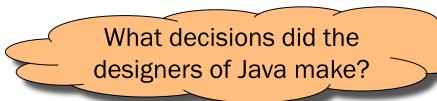
Integer Data Types in C

Integer types of various sizes: {signed, unsigned} {char, short, int, long}

- Shortcuts: signed assumed for short/int/long; unsigned means unsigned int
- char is 1 byte
 - Number of bits per byte is unspecified (but in the 21st century, safe to assume it's 8)
 - Signedness is system dependent, so for arithmetic use "signed char" or "unsigned char"
- Sizes of other integer types not fully specified but constrained:
 - int was intended to be "natural word size" of hardware, but isn't always
 - 2 ≤ sizeof(short) ≤ sizeof(int) ≤ sizeof(long)

On armlab:

- Natural word size: 8 bytes ("64-bit machine")
- char: 1 byte
- short: 2 bytes
- int: 4 bytes (compatibility with widespread 32-bit code)
- long: 8 bytes



Integer Types in Java vs. C

•	Java	С
Unsigned types	char // 16 bits	unsigned char unsigned short unsigned (int) unsigned long
Signed types	byte // 8 bits short // 16 bits int // 32 bits long // 64 bits	<pre>signed char (signed) short (signed) int (signed) long</pre>

1.Not guaranteed by C, but on **armlab**, **short** = 16 bits, **int** = 32 bits, **long** = 64 bits 2.Not guaranteed by C, but on **armlab**, **char** is unsigned

sizeof Operator

- Applied at compile-time
- Operand can be a data type
- Operand can be an expression, from which the compiler infers a data type

Examples, on armlab using gcc217

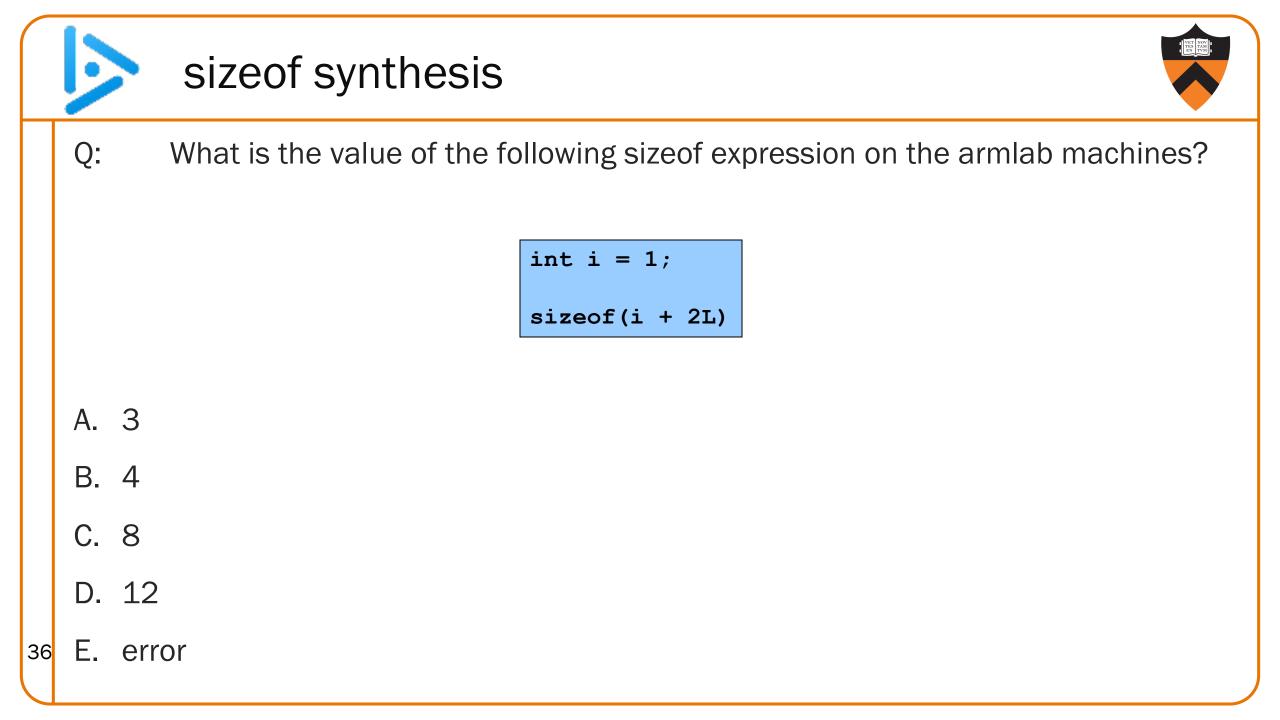
- sizeof(int) evaluates to 4
- sizeof(i) evaluates to 4 if i is a variable of type int
- sizeof(1+2) evaluates to 4

Integer Literals in C

- Decimal int: 123
- Prefixes to indicate a different base
 - Octal int: 0173 = 123
 - Hexadecimal int: 0x7B = 123
 - No prefix to indicate binary int literal

- Suffixes to indicate a different type
 - Use "L" suffix to indicate long literal
 - Use "U" suffix to indicate unsigned literal
 - No suffix to indicate char or short literals; instead, cast

char:	'{' (← really int, as seen last time), (char) 123, (char) 0173, (char) 0x7B
int:	123, 0173, 0x7B
long:	123L, 0173L, 0x7BL
short:	(short)123, (short)0173, (short)0x7B
unsigned int:	123U, 0173U, 0x7BU
unsigned long:	123UL, 0173UL, 0x7BUL
unsigned short:	(unsigned short)123, (unsigned short)0173, (unsigned short)0x7B



Shawn Rossi 💬

OPERATIONS ON NUMBERS

Reading / Writing Numbers

Motivation

- Must convert between external form (sequence of character codes) and internal form
- Could provide getchar(), putshort(), getint(), putfloat(), etc.
- Alternative implemented in C: parameterized functions

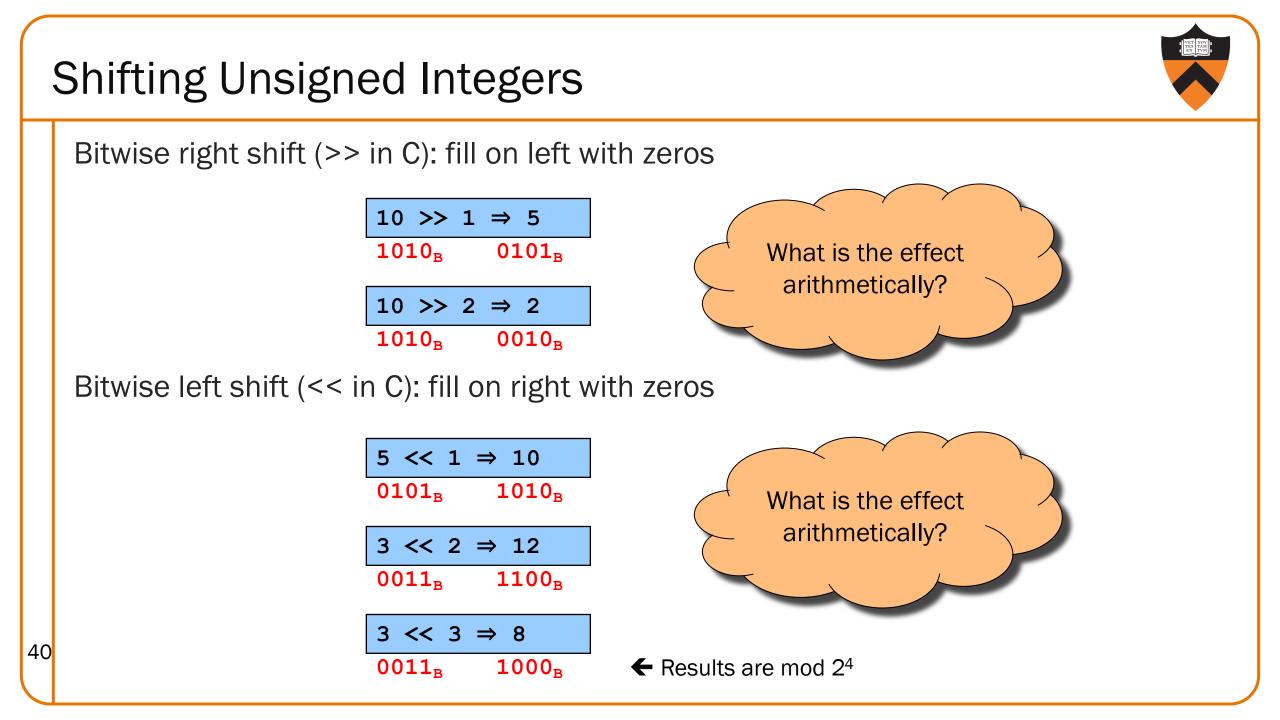
scanf() and printf()

- Can read/write any primitive type of data
- First parameter is a format string containing conversion specs: size, base, field width
- Can read/write multiple variables with one call

See King book for details

Operators in C

- Typical arithmetic operators: + * / %
- Typical relational operators: == != < <= > >=
 - Each evaluates to FALSE \Rightarrow 0, TRUE \Rightarrow 1
- Typical logical operators: ! && ||
 - Each interprets $0 \Rightarrow FALSE$, non- $0 \Rightarrow TRUE$
 - Each evaluates to FALSE \Rightarrow 0, TRUE \Rightarrow 1
- Cast operator: (type)
- Bitwise operators: ~ & | ^ >> <<



Other Bitwise Operations on Unsigned Integers

Bitwise NOT (~ in C)

• Flip each bit (don't forget leading 0s!)

Bitwise AND (& in C)

41

• AND (1=True, 0=False) corresponding bits

10	1010 _B	10 & 2	1010 _B
& 7 	& 0111 _B	& Z 	& 0010 _B
2	0010 _B	2	0010 _B

Useful for "masking" bits to O x & 0 is 0, x & 1 is x

Other Bitwise Operations on Unsigned Ints

Bitwise OR: (| in C)

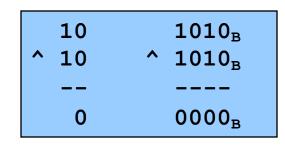
• Logical OR corresponding bits

10 1	1010 _B 0001 _B
11	1011 _B

Useful for "masking" bits to 1 x | 1 is 1, x | 0 is x

Bitwise exclusive OR (^ in C)

• Logical exclusive OR corresponding bits



x ^ x sets all bits to 0

Logical vs. Bitwise Ops

Logical AND (&&) vs. bitwise AND (&)

• 2 (TRUE) && 1 (TRUE) => 1 (TRUE)

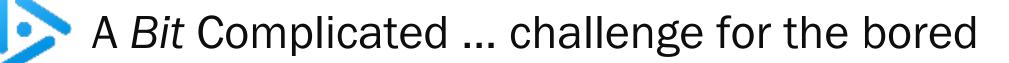
Decimal	Binary			
2	00000000	00000000	00000000	0000010
&& 1	00000000	00000000	0000000	0000001
1	00000000	00000000	00000000	00000001

• 2 (TRUE) & 1 (TRUE) => 0 (FALSE)

Decimal	Binary
2	0000000 0000000 0000000 0000010
& 1	0000000 0000000 0000000 0000001
0	0000000 0000000 0000000 0000000

Implication:

- Use logical AND to control flow of logic
- Use **bitwise** AND only when doing bit-level manipulation
- Same for OR and NOT



How do you set bit k (where the least significant bit is bit 0) of unsigned variable u to zero (leaving everything else in u unchanged)?

- A. u &= (0 << k);
- B. u |= (1 << k);
- C. u |= ~(1 << k);
- D. u &= ~(1 << k);
- E. u = ~u ^ (1 << k);

Aside: Using Bitwise Ops for Arithmetic

Can use <<, >>, and & to do some arithmetic efficiently

- $x * 2^{y} == x << y$ • $3*4 = 3*2^{2} = 3<<2 \Rightarrow 12$
- $x / 2^{y} == x >> y$ • $13/4 = 13/2^{2} = 13>>2 \Rightarrow 3$
- $x \% 2^{y} == x \& (2^{y}-1)$ • 13%4 = 13%2² = 13&(2²-1)
 - $= 13\&3 \Rightarrow 1$

45

13 & 3	1101 _B & 0011 _B
1	0001 _B

Fast way to multiply by a power of 2

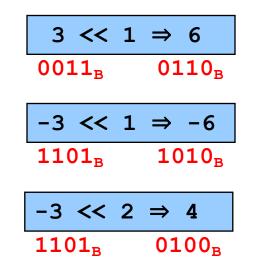
Fast way to divide <u>unsigned</u> by power of 2

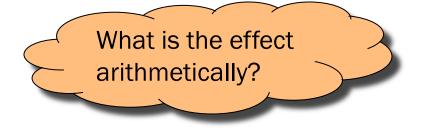
Fast way to mod by a power of 2

Many compilers will do these transformations automatically!

Shifting Signed Integers

Bitwise left shift (<< in C): fill on right with zeros



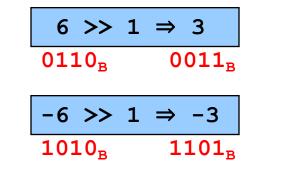


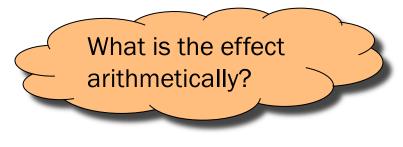
Results are mod 2⁴

Bitwise right shift: fill on left with ???

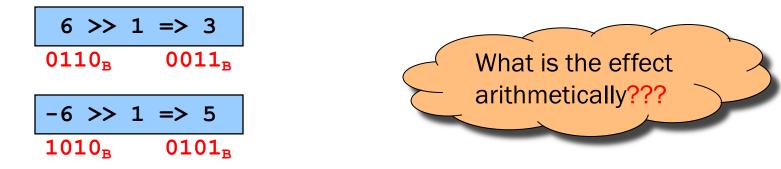
Shifting Signed Integers (cont.)

Bitwise arithmetic right shift: fill on left with sign bit





Bitwise logical right shift: fill on left with zeros



In C, right shift (>>) could be logical (>>> in Java) or arithmetic (>> in Java)

- Not specified by standard (happens to be arithmetic on armlab)
 - Best to avoid shifting signed integers

47

Other Operations on Signed Ints

Bitwise NOT (~ in C)

• Same as with unsigned ints

Bitwise AND (& in C)

• Same as with unsigned ints

Bitwise OR: (| in C)

• Same as with unsigned ints

Bitwise exclusive OR (^ in C)

• Same as with unsigned ints

Best to avoid using signed ints for bit-twiddling.

Many high-level languages provide an assignment statement

C provides an assignment operator

- Performs assignment, and then evaluates to the assigned value
- Allows assignment to appear within larger expressions
- But be careful about precedence! Extra parentheses often needed!

Assignment Operator Examples

Examples

```
i = 0;
   /* Side effect: assign 0 to i.
      Evaluate to 0. */
j = i = 0; /* Assignment op has R to L associativity */
   /* Side effect: assign 0 to i.
      Evaluate to 0.
      Side effect: assign 0 to j.
      Evaluate to 0. */
while ((i = getchar()) != EOF) ...
   /* Read a character or EOF value.
      Side effect: assign that value to i.
      Evaluate to that value.
      Compare that value to EOF.
      Evaluate to 0 (FALSE) or 1 (TRUE). */
```

50

Special-Purpose Assignment in C

Motivation

- The construct a = b + c is flexible
- The construct d = d + e is somewhat common
- The construct d = d + 1 is very common

Assignment in C

- Introduce += operator to do things like d += e
- Extend to -= *= /= ~= &= |= ^= <<= >>=
- All evaluate to whatever was assigned
- Pre-increment and pre-decrement: ++d --d
- Post-increment and post-decrement (evaluate to old value): d++ d--

Q: What are i and j set to in the following code?

i	= 5;	
j	= i++;	
j	= 5; = i++; += ++i;	•

A. 5, 7

B. 7, 5

C. 7, 11

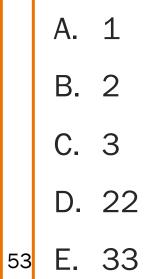
D. 7, 12

52 E. 7, 13

Incremental Iffiness

Q: What does the following code print?

```
int i = 1;
switch (i++) {
    case 1: printf("%d", ++i);
    case 2: printf("%d", i++);
}
```



Sample Exam Question (Spring 2017, Exam 1)

1(b) (12 points/100) Suppose we have a 7-bit computer. Answer the following questions.

- (i) (4 points) What is the largest unsigned number that can be represented in 7 bits? In binary: In decimal:
- (ii) (4 points) What is the smallest (i.e., most negative) signed number represented in 2's complement in 7 bits?

In binary: In decimal:

54

(iii) (2 points) Is there a number n, other than 0, for which n is equal to -n, when represented in 2's complement in 7 bits? If yes, show the number (in decimal). If no, briefly explain why not.

(iv) (2 points) When doing arithmetic addition using 2's complement representation in 7 bits, is it possible to have an overflow when the first number is positive and the second is negative? (Yes/No answer is sufficient, no need to explain.)

(Hard!) Sample Exam Question (Fall 2020, Exam 1)

- a. In the two ranges below, replace the "____" with the inclusive upper and lower bounds of decimal numbers that do not change value when moving from i-bit two's complement to (i+1)-bit two's complement (for example, when moving from four bits to represent integers to using five bits to do so). The two ranges consider two different possibilities for changing an i-bit value into an (i+1)-bit value:

If we make the change by prepending a 0 onto the front of the i-bit representation (e.g., 1001 -> 01001):

x <= x <= _____ If we make the change by prepending a 1 onto the front of the i-bit representation (e.g., 1001 -> 11001):

____ <= x <= ____

b. In the range below, replace the "____" with the inclusive upper and lower bounds of armlab C int literals for which the expression still compiles and does not change value when adding a 0 before the first character of the literal (for example, 217 -> 0217):

__ <= x <= ____

Hint 1: does a literal 09 compile?

55

Hint 2: the word "expression" is intentional; note that the first character of a signed int is not necessarily a digit.

@tylerleeeaston180.98	-0.21 4.75 51
10,60,740.2	-6.87 8.87 21
AD 024 . 122.50	-9.45 1.54 18
140.04	
130 556 +180.98 51.36 556 +740.21	-0.21 4.75 51 -6.87 8.87 21
10 014 102 50	-9.45 1.54
	-3.36 7.02
8.15 1.36 +180.98	-0.21 4.75
s1.0° 560 -10 21	-0.8/ 8.87
10 03 61	-9.45 1.54
	-3.36 7.02
61.30 - 56 + 100.00	-0.21 4.75
21.88 5.50 21.88 5.20 21.88 5.20 +740.21	-6.87 8.87
18.69 - 62 + 122.50	-9.45 1.54
18^{10} $126 + 140.04$	-3.36 7.02
h.v - r6 +100.00	-0.21 4.75
21.00 0 24 +140.21	-6.87 8.87
$^{(0.00)}_{1.75}$ 9.62 + 122.50	-9.45 1.54
1875 9.62 +140.04	-3.36 7.02
1,00 00 08	-0 21 4 75

APPENDIX: FLOATING POINT

Rational Numbers

Mathematics

- A rational number is one that can be expressed as the ratio of two integers
- Unbounded range and precision

Computer science

- Finite range and precision
- Approximate using floating point number

Floating Point Numbers

Like scientific notation: e.g., c is $2.99792458 \times 10^8 \text{ m/s}$

This has the form

(multiplier) × (base)^(power)

In the computer,

- Multiplier is called mantissa
- Base is almost always 2
- Power is called exponent

Floating-Point Data Types

C specifies:

- Three floating-point data types: float, double, and long double
- Sizes unspecified, but constrained:
- sizeof(float) ≤ sizeof(double) ≤ sizeof(long double)

On ArmLab (and on pretty much any 21st-century computer using the IEEE standard)

- float: 4 bytes
- double: 8 bytes

On ArmLab (but varying across architectures)

• long double: 16 bytes

59

Floating-Point Literals

How to write a floating-point number?

- Either fixed-point or "scientific" notation
- Any literal that contains decimal point or "E" is floating-point
- The default floating-point type is double
- Append "F" to indicate float
- Append "L" to indicate long double

Examples

- double: 123.456, 1E-2, -1.23456E4
- float: 123.456F, 1E-2F, -1.23456E4F
- long double: 123.456L, 1E-2L, -1.23456E4L

IEEE Floating Point Representation

Common finite representation: IEEE floating point

More precisely: ISO/IEEE 754 standard

Using 32 bits (type **float** in C):

- 1 bit: sign ($0 \Rightarrow$ positive, $1 \Rightarrow$ negative)
- 8 bits: exponent + 127

Using 64 bits (type **double** in C):

- 1 bit: sign (0⇒positive, 1⇒negative)
- 11 bits: exponent + 1023

When was floating-point invented?

mantissa (noun): decimal part of a logarithm, 1865, Answer: long before computers! from Latin mantisa "a worthless addition, makeweight"

x 0	0 1 2 3				- 1	6		8	9.	$\Delta_{\rm ss}$	I	2	144	
		* 3 *			1			+						
50	-6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	9	I	2	
51	.7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	8	I	2	-
52	.7160		7177			7202			7226		8	I	2	1
53	.7243	and a state of the state of the	7259			7284				7316	8	T	2	

Floating Point Example

Sign (1 bit):

• $1 \Rightarrow$ negative

Exponent (8 bits):

- 10000011_B = 131
- 131 127 = 4

Mantissa (23 bits):

- $1 + (1^{+}2^{-1}) + (0^{+}2^{-2}) + (1^{+}2^{-3}) + (1^{+}2^{-4}) + (0^{+}2^{-5}) + (1^{+}2^{-6}) + (1^{+}2^{-7}) + (0^{+}2^{-...}) = 1.7109375$

Number:

• $-1.7109375 \times 2^4 = -27.375$

32-bit representation

63

Floating Point Consequences

"Machine epsilon": smallest positive number you can add to 1.0 and get something other than 1.0

For float: $\epsilon \approx 10^{-7}$

- No such number as 1.00000001
- Rule of thumb: "almost 7 digits of precision"

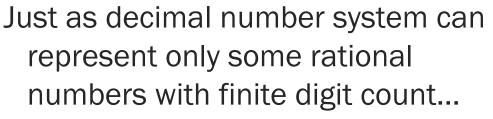
For double: $\epsilon~\approx 2\times 10^{-16}$

• Rule of thumb: "not quite 16 digits of precision"

These are all relative numbers

I VER TESS TAM E E TAM

Floating Point Consequences, cont



• Example: 1/3 cannot be represented

Binary number system can represent only some rational numbers with finite digit count

• Example: 1/5 cannot be represented

Beware of round-off error

- Error resulting from inexact representation
- Can accumulate

 Decimal
 Rational

 Approx
 Value

 .3
 3/10

 .33
 33/100

 .333
 333/1000

Binary	<u>Rational</u>
Approx	<u>Value</u>
0.0	0/2
0.01	1/4
0.010	2/8
0.0011	3/16
0.00110	6/32
0.001101	13/64
0.0011010	26/128
0.00110011	51/256
•••	

• Be careful when comparing two floating-point numbers for equality

What does the following code print?

```
double sum = 0.0;
double i;
for (i = 0.0; i != 10.0; i++)
   sum += 0.1;
if (sum == 1.0)
   printf("All good!\n");
else
   printf("Yikes!\n");
```

- A. All good!
- B. Yikes!
- C. (Infinite loop)
- D. (Compilation error)

B: Yikes!

... loop terminates, because we can represent 10.0 exactly by adding 1.0 at a time.

... but sum isn't 1.0 because we can't represent 1.0 exactly by adding 0.1 at a time.

66