Git and GitHub ... then C

o wll

(Watgprogrammer s w1

https://unsplash.com/@afgprogrammer
https://unsplash.com/@synkevych
https://unsplash.com/@pawel_czerwinski

-

Agenda

Our computing environment

e Lecture 1 and Precepts 1 and 2:
Linux and Bash

e Lecture 2: git and GitHub

A taste of C
e History of C
e Building and running C programs
e Characteristics of C
e Example program: charcount

Revision Control Systems A
Problems often faced by programmers:

* Help! I've deleted my code! How do | ?

 How can | try out one way of writing this function, and if it doesn’t work?

e Help! I've introduced a subtle bug that | can’t find. How can |
since the last working version?

* How do | work with source code on ?

* How do | work (e.g., a COS 217 partner) on the same program?
 What changes did my partner just make?

 If my partner and | make changes to different parts of a program,
how do we ?

All of these problems are solved by revision control tools, e.g.:

git

Repository vs. Working Copy

WORKING COPY f REPOSITORY (or “repo”)
* Represents single version * Contains all checked-in
of the code versions of the code
* Plain files (e.g, .c) e Specialized format, located
 Make a coherent set of in .git directory
modifications, then e Can view commit history
commit this version of code * Can diff any versions
to the repository Can check out any version,
* Best practice: write a by default the most recent

We'll rarely use checkout except to
throw away local changes (see slide 6)

meaningful commit message j (known as HEAD)

-

Relevant xkcd

| COMMENT DATE.
CREATED MAN LOOP & TMING CONTROL

ENABLED CONFIG FILE PARSING

MISC BUGFIXES

CODE ADDITIONS/EDITS

MORE. CODE

HERE HAVE CODE.

ANARAAAA

ADKFJISLKDFISDKLFD

MY HANDS ARE TYPING LJORDS

HARARARAAANDS

AS A PROJECT DRAGS ON, MY GIT COMMIT
MESSAGES GET LESS AND LESS INFORMATIVE.

https://xkcd.com/1296/ /

https://xkcd.com/1296/

Local vs. Remote Repositories

LOCAL REPOSITORY f

* Located in .git directory

* Only accessible from the
computer where it lives

 Commit early, commit often:
you can only go back to
versions you’'ve committed

e Can push current state (i.e.,
complete committed history)

state from remote repo
of a local repo to remote repo j

REMOTE REPOSITORY

* Located in the cloud
E.g., github.com

e Can clone remote repo into
local repo + working copy on
multiple machines

* Any clone can pull the current

COS 217 V GitHub

We distribute assignment code through a github.com repo
 But you can’t push to our repo!

You should create your own (private!) repo for each assignment
* Two methods in git primer handout

* One clone on armlab, to test and submit

* If developing on your own machine, another clone there:
be sure to commit and push "up” to github,
then pull "down" onto armlab

-

Agenda

Our computing environment

e Lecture 1 and Precepts 1 and 2:
Linux and Bash

e Lecture 2: git

A taste of C
e History of C
e Building and running C programs
e Characteristics of C
e Example program: charcount

(

The C Programming Language

Who? Dennis Ritchie
When? ~1972

Where? Bell Labs

Why? Build the Unix OS

Read more history:
https://www.bell-labs.com/usr/dmr/www/chist.html|

https:///
https://www.bell-labs.com/usr/dmr/www/chist.html

-
Java vs. C: History

This is what
we're using
1960 1970 1972 1978 1989 /1999 2011 2018
ANSI C89 | | ISO/ANSI
BCPL > B [C K& C | < ~on] cog —>{ ISO C11 —>{1SO C18

Algol /
\

Simula \ C++ —> Java

LISP ——— > Smalltalk

11

C vs. Java: Design Goals

Build the Unix OS

Low-level; close to HW
and OS

Good for system-level
programming

Support structured
programming

Unsafe: don't get in the
programmer’s way

Language of the Internet

High-level; insulated from
hardware and OS

Good for application-level
programming

Support object-oriented
programming

Safe: can't step
“outside the sandbox”

Look like C!

-

Agenda

Our computing environment

e Lecture 1 and Precepts 1 and 2:
Linux and Bash

e Lecture 2: git

A taste of C
e History of C
e Building and running C programs
e Characteristics of C
e Example program: charcount

-
Building Java Programs

$ javac MyProg.java Java compiler
(machine lang code)

HW (ArmLab)
. OS (Linux) |~
MyProg.java " javac MyProg.class
(Java code)) (bytecode)

(

Running Java Programs

$ java MyProg

Java interpreter /
“virtual machine”
(machine lang code)

HW (ArmLab)

OS (Linux) |

[data \ » java
4

{ data

MyProg.class
(bytecode)

-
Building C Programs

$ gcc217 myprog.c —o myprog C “Compiler driver”
(machine lang code)

HW (ArmLab)
. OS (Linux) |~
myprog.c myprog
[(C code) "l { (machine lang code) }

-
Running C Programs

$./myprog myprog
(machine lang code)

HW (ArmLab)
OS (Linux) |~

[data » myprog { data }

-

Agenda

Our computing environment

e Lecture 1 and Precepts 1 and 2:
Linux and Bash

e Lecture 2: git

A taste of C
e History of C
e Building and running C programs
e Characteristics of C
e Example program: charcount

[

Java vs. C: Portability

Program Code Type Portable?
MyProg.java ‘ Java source code ‘ Yes
myprog.c C source code Mostly
MyProg.class Bytecode Yes
myprog Machine lang code No

Conclusion: Java programs are more portable

(For example, COS 217 has used many architectures over the years,
and every time we've switched, all our programs have had to be recompiled!)

J

(

Java vs. C: Safety & Efficiency

Java
 null reference checking
* Automatic array-bounds checking
* Automatic memory management (garbage collection)
e Other safety features

* NULL pointer checking,
* Manual bounds checking
* Manual memory management

Conclusion 1: Java is often safer than C

Conclusion 2: Java is often slower than C

-
> Cis for...car?

Q: Which corresponds to the C programming language?

23

Java vs. C: Details

Next 7 slides show C language details by way of Java comparisons.

For now, use as a comparative language overview reference to start the
simple "syntax mapping" stage of learning C, so that you're well
prepared to dive into the less rote aspects in the coming weeks.

-

Java vs. C: Details

24

Overall
Program
Structure

Hello. java:

public class Hello
{ public static void main
(String[] args)
{ System.out.printin(
"hello, world");
¥

by

hello.c:

#include <stdio.h>

int main(void)

{ printf("hello, world\n");
return 0;

}

Building

$ javac Hello.java

$ gcc21l7 hello.c —o hello

Running

$ java Hello
hello, world

$

$./hello
hello, world

$

-
Java vs. C: Details

IIIIIIIIIIIIIIIIIIIIIIIIIIﬁiiilIIIIIIIIIIIIIIIIIIIIIIIiiIIIIIIIIIIII

byte // 8 bits (unsigned, signed) char
[P short // 16 bits (unsigned, signed) short

int // 32 bits (unsigned, signed) int

long // 64 bits (unsigned, signed) long

: /* no equivalent x/

-

Java vs. C: Details

S S, R
Array bound : .
Chec}:dng // run—time check /* no run-time check x/

-

Java vs. C: Details

String

Relational ops * | ==, !=, <, >, <=, >= =, =, <, >, <=,

’ - ’

* Essentially the same in the two languages

sl + s2 #include <string.h>
concatenation sl += s2 strcat(sl, s2);

>=

-

Java vs. C: Details

switch (i) switch (i)
{ case 1: { case 1:
break; break;

* Essentially the same in the two languages

-

Java vs. C: Details

i o while (i < @) while (i < 0)
R statement: statement:

continue stmt* | continue; continue;

* Essentially the same in the two languages

-
Java vs. C: Details

Compound stmt statementl; statementl;
(alias block) * statement2; statement2;

} }

* Essentially the same in the two languages

-

Agenda

Our computing environment

e Lecture 1 and Precepts 1 and 2:
Linux and Bash

e Lecture 2: git

A taste of C
e History of C
e Building and running C programs
e Characteristics of C
e Example program: charcount

-
The charcount Program

Functionality:
* Read all characters from standard input stream
e Write to standard output stream the number of characters read

stdin stdout

Line 1 ‘[77]
[Line 2]—— charcount » 77

34

The charcount Program

The program:

#include <stdio.h>
/* Write to stdout
chars 1n stdin.
int main(void) {
int c;
int charCount =
c = getchar();

the number of
Return 0. x/

0;

while (c !'= EOF) {

charCount++;

c = getchar();

}

printf("%d\n", charCount);

return 0;

35

charcount Building and Running

$ gcc2l7 charcount.c

$ Ls

: a.out

$ gcc2l7 charcount.c -0 charcount
$ Ls

a.out charcount

:

36

charcount Building and Running

$ gcc2l7 charcount.c —o charcount
$./charcount

Line 1

Line 2

What is this?
What is the effect?
What is printed?

37

charcount Building and Running

$ gcc2l7 charcount.c —o charcount
$./charcount

Line 1

Line 2

~D

14

$

Includes visible
characters plus
two newlines

38

charcount Building and

Running

$ cat somefile
Line 1
Line 2

14
$

$./charcount < somefile

|

What is this?
What is the effect?

39

charcount Building and Running

¢ ./charcount > someotherfile
Line 1

Line 2

“D

$ cat someotherfile

$

14
What is this?
What is the effect?

-

Running charcount

Run-time trace, referencing the original C code...

charcount.c

{

#include <stdio.h>

int main(void)

int c;

int charCount =
c = getchar();
while (c !'= EOF)

0;\
{ charCount++;

c = getchar();
¥

printf("%d\n", charCount);
return 0;

Execution begins at the
main () function
* No classes in the C language.

Block /x*/
comments are
the only legal
ones in C90:

no//

-

Running charcount

Why int
not char?

charcount.c

#include <stdio.h>
/* Write to stdout the number of
chars in stdin. Return 0. x/
int main(void)
{ » int c;
int charCount = 0;*\\\\\\\\\\\
c = getchar();
while (c != EOF)
{ charCount++;
c = getchar();
}

printf("%d\n", charCount);
return 0;

Run-time trace, referencing the original C code...

We allocate space for
¢ and charCount
In the stack section of

memory

Variables
must be
declared at
the top of a
block

-

Running charcount

42

Run-time trace, referencing the original C code...

charcount.c

#include <stdio.h>
/* Write to stdout the number of _
chars in stdin. Return 0. x/ getchar() tries to read char

{intilr?iizfvoid) from stdin
int charCount = 0: Success = returns that
e . char value (within an int)
{ charCount++; Failure = returns EOF
c = getchar();
}
printf("%sd\n", charCount);
return 0;

¥

EOF is a special value,
distinct from all possible chars

-
Running charcount

Run-time trace, referencing the original C code...

charcount.c

#include <stdio.h>

/* Write to stdout the number of
chars in stdin. Return 0. x/

int main(void)

{ int c; Assuming c # EOF,
int charCount = 0; we increment
c = getchar();
while (c != EOF) charCount

{ charCount++;
c = getchar();
s

printf("%d\n", charCount);
return 0;

-
Running charcount

Run-time trace, referencing the original C code...

charcount.c

#include <stdio.h>

/* Write to stdout the number of
chars in stdin. Return 0. x/

int main(void)

{ int c;
int charCount = 0; We call getchar()

c = getchar(); again and recheck
while (c !'= EOF)

{ charCount++; |OOp condition
c = getchar();

I3
printf("%d\n", charCount);
return 0;

44

-

Running charcount

Run-time trace, referencing the original C code...

charcount.c

#include <stdio.h>
/* Write to stdout the number of
chars in stdin. Return 0. *x/
int main(void) « Eventually getchar()
{ int c;
int charCount = 0; returns EOF _
c = getchar(); * Loop condition fails
while (c !'= EOF) o :
{ charCotnter: We C_aII prlntf()
c = getchar(); to write final
¥
printf("%sd\n", charCount); charCount
return 0;
¥

-

Running charcount

Run-time trace, referencing the original C code...

charcount.c

#include <stdio.h>
/* Write to stdout the number of

chars in stdin. Return 0. %/ * return statement returns
int main(void)

{ int c: to calling function
int charCount = 0; e return from main()
e S returns to _start,

{ charCount++; terminates program
c = getchar();

s

printf("%sd\n", charCount);

return 0;

¥

_ #include <stdlib.h>
Normal execution = 0 or EXIT_SUCCESS & to use these constants

_ Abnormal execution = EXIT_FAILURE y,

(

Coming up next ...

47

More character processing,
structured exactly how we'll
want you to design your

Assignment 1 solution!

Read the Al specs soon: you'll be ready to start after Lecture 3!

https://commons.wikimedia.org/wiki/User:FrankieF
https://unsplash.com/@christianlue

